首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess muscle metabolism and inorganic phosphate (Pi) peak splitting during exercise, 31-phosphorus nuclear magnetic resonance spectroscopy was performed during ramp incremental and submaximal step exercise with and without circulatory occlusion. Seven healthy men performed calf flexion in a superconducting magnet. There was no Pi splitting during ramp incremental exercise with the circulation present and phosphocreatine (PCr) decreased linearly by 0.07 (SEM 0.01) mmol · l−1 · s−1, while exercise with the circulation occluded caused the Pi peak to split into a high and a low pH peak. The rate of PCr decrease during exercise with the circulation occluded was 0.15 (SEM 0.03) mmol · l−1 · s−1 which with the efficiency of the adenosine 5′-triphosphate (ATP) hydrolysis reaction corresponded well to the mechanical energy. Both with and without occlusion of the circulation PCr decreased with some time lag which may reflect the consumption of residual oxygen. In submaximal step exercise PCr decreased exponentially at the onset of exercise with the circulation open whereas it decreased linearly by 0.15␣mmol · l−1 · s−1 when the circulation was occluded. After exercise, occlusion of the circulation was maintained for 1 min more and there was no PCr resynthesis. It is suggested that ATP synthesis was limited by the availability of oxygen. Accepted: 14 August 1996  相似文献   

2.
 To investigate the role of fluid shifts during the short-term adjustment to acute hypobaric hypoxia (AHH), the changes in lower limb (LV) and forearm volumes (FV) were measured using a strain-gauge plethysmograph technique in ten healthy volunteers exposed to different altitudes (450 m, 2500 m, 3500 m, 4500 m) in a hypobaric chamber. Arterial blood pressure, heart rate, arterial oxygen saturation (S aO2), endtidal gases, minute ventilation and urine flow were also determined. A control experiment was performed with an analogous protocol under normobaric normoxic conditions. The results showed mean decreases both in LV and FV of −0.52 (SD 0.39) ml · 100 ml−1 and −0.65 (SD 0.32) ml · 100 ml−1, respectively, in the hypoxia experiments [controls: LV −0.28 (SD 0.37), FV −0.41 (SD 0.47) ml · 100 ml−1]. Descent to normoxia resulted in further small but not significant decreases in mean LV [−0.02 (SD 0.11) ml · 100 ml−1], whereas mean FV tended to increase slightly [ + 0.02 (SD 0.14) ml · 100 ml−1]; in the control experiments mean LV and FV decreased continuously during the corresponding times [−0.19 (SD 0.31), −0.18 (SD 0.10) ml · 100 ml−1, respectively]. During the whole AHH, mean urine flow increased significantly from 0.84 (SD 0.41) ml · min−1 to 3.29 (SD 1.43) ml · min−1 in contrast to the control conditions. We concluded that peripheral fluid volume shifts form a part of the hypoxia-induced acute cardiovascular changes at high altitude. In contrast to the often reported formation of peripheral oedema after prolonged exposure to hypobaric hypoxia, the results provided no evidence for the development of peripheral oedema during acute induction to high altitude. However, the marked increase in interindividual variance in S aO2 and urine flow points to the appearance of the first differences in the short-term adjustment even after 2 h of acute hypobaric hypoxia. Accepted: 27 August 1996  相似文献   

3.
The present study investigated the relationship between plasma potassium ion concentration ([K+]) and skeletal muscle torque during three different 15-min recovery periods after fatigue induced by four 30-s sprints. Four males and one female completed the multiple sprint exercise on three separate days; recovery was passive, i.e. no cycling exercise (PRec), active cycling at 30% peak oxygen consumption O2peak (30% Rec) and active cycling at 60% O2peak (60% Rec). Plasma [K+] was measured from blood sampled from an antecubital vein of subjects at rest and at 0, 3, 5, 10 and 15 min into each recovery. Isokinetic leg strength was measured at rest and at 1, 6, 11 and 16 min during each recovery. Following the exhaustive sprints, [K+] increased significantly from an average mean (SEM) resting value of 3.81 (0.07) mmol · l−1 to 4.48 (0.19) mmol · l−1 (P < 0.01). In all recovery conditions, plasma [K+] returned to resting levels within 3 min following the fourth sprint. However, in the two active recovery conditions plasma [K+] increased over the remainder of the recovery periods to 4.36 (0.12) mmol · l−1 in the 30% Rec condition and 4.62 (0.12) mmol · l−1 in the 60% Rec condition, the latter being significantly higher than the former (P < 0.01). The maximum torque measured following the sprints decreased significantly, on average, to 61.1 (8.36)% of peak levels (P < 0.01). After 15 min of recovery, maximum torque was highest in the 30% Rec condition at 92.13 (3.06)% of peak levels (P < 0.01), compared to 85.23 (3.64)% and 85.71 (0.82)% for the PRec and 60% Rec conditions, respectively. In contrast to the significant differences in plasma [K+] across all three recovery conditions, muscle torque recovery was significantly different in only the 30% Rec condition. In summary, recovery of peak levels of muscle torque following fatiguing exercise does not appear to follow changes in plasma [K+]. Accepted: 18 October 1996  相似文献   

4.
This study examined the effect of mild hypobaria (MH) on the peak oxygen consumption (O2peak) and performance of ten trained male athletes [ (SEM); O2peak = 72.4 (2.2) ml · kg−1 · min−1] and ten trained female athletes [O2peak = 60.8 (2.1) ml · kg−1 · min−1]. Subjects performed 5-min maximal work tests on a cycle ergometer within a hypobaric chamber at both normobaria (N, 99.33 kPa) and at MH (92.66 kPa), using a counter-balanced design. MH was equivalent to 580 m altitude. O2peak at MH decreased significantly compared with N in both men [− 5.9 (0.9)%] and women [− 3.7 (1.0)%]. Performance (total kJ) at MH was also reduced significantly in men [− 3.6 (0.8)%] and women [− 3.8 (1.2)%]. Arterial oxyhaemoglobin saturation (SaO2) at O2peak was significantly lower at MH compared with N in both men [90.1 (0.6)% versus 92.0 (0.6)%] and women [89.7 (3.1)% versus 92.1 (3.0)%]. While SaO2 at O2peak was not different between men and women, it was concluded that relative, rather than absolute, O2peak may be a more appropriate predictor of exercise-induced hypoxaemia. For men and women, it was calculated that 67–76% of the decrease in O2peak could be accounted for by a decrease in O2 delivery, which indicates that reduced O2 tension at mild altitude (580 m) leads to impairment of exercise performance in a maximal work bout lasting ≈ 5 min. Accepted: 30 July 1996  相似文献   

5.
Integrated electromyography (iEMG) of the m. vastus lateralis was analysed during cycle ergometry in male subjects (n = 8). Two work trials were conducted, one under normoxia (N), the other under environmental normobaric hypoxia (EH in which the oxygen fraction in inspired gas = 0.116), each trial lasting 10 min. The absolute power output (180 W) was the same for both trials and was equivalent to 77 (4)% of maximum heart rate in trial N. Maximal voluntary isometric contractions were performed after each trial to assess changes in force, muscle fibre conduction velocity (MFCV), electromechanical delay (EMD), median frequency of EMG (MF) and maximal iEMG (iEMGmax). Biopy samples of muscle were obtained from the m. vastus medialis before testing. Myosin heavy chain (MHC) differences were determined through sodium dodecyl-polyacrylamide gel electrophoresis followed by densitometric analysis. No differences in submaximal iEMG were observed between EH and N trials during the first minute of work. At the end of both work trials iEMG was significantly elevated compared with starting values, however the iEMG recorded in EH exceeded N values by 15%. At the end of the EH trials the following were observed: a decrease in isometric force, MFCV and MF with an increase in EMD and the iEMGmax/force ratio. The iEMGmax was unchanged. No differences in any of these variables were observed after the N trial. Mean (SD) lactate concentrations following EH and N trials were 9.2 (4.4) mmol · 1−1 and 3.5 (1.1) mmol · 1−1, respectively. Results indicate that an increased motor unit recruitment and rate coding was needed in EH to maintain the required power output. The increased motor unit recruitment and rate coding were associated with myoelectric evidence of “peripheral” muscle fatigue. Subjects with higher compositions of type II MHC accumulated more lactate and displayed greater reductions in MF and MFCV during fatigue. Accepted: 16 June 1996  相似文献   

6.
Eight fit men [maximum oxygen consumption (O2max) 64.6 (1.9) ml · kg−1 · min−1, aged 28.3 (1.7) years (SE in parentheses) were studied during two treadmill exercise trials to determine the effect of endogenous opioids on insulin and glucagon immunoreactivity during intense exercise (80% O2max). A double-blind experimental design was used with subjects undertaking the two exercise trials in counterbalanced order. Exercise trials were 20 min in duration and were conducted 7 days apart. One exercise trial was undertaken following administration of naloxone (N; 1.2 mg; 3 ml) and the other after receiving a placebo (P; 0.9% NaCl saline; 3 ml). Prior to each experimental trial a flexible catheter was placed into an antecubital vein and baseline blood samples were collected. Immediately after, each subject received either a N or P bolus injection. Blood samples were also collected after 20 min of continuous exercise (running). Glucagon was higher (P < 0.05), while insulin was lower (P < 0.05), during exercise compared with pre-exercise values in both trials. However, glucagon was higher (P < 0.05) in the P than in the N exercise trial [141.4 (8.3) ng · l−1 vs 127.2 (7.6) ng · l−1]. There were no differences in insulin during exercise between the P and N trials [50.2 (4.3) pmol · l−1 vs 43.8 (5) pmol · l−1]. These data suggest that endogenous opioids may augment the glucagon response during intense exercise. Accepted: 15 June 1996  相似文献   

7.
We investigated the effect of training and racing at moderate altitude (MA) on oxidative stress by assessment of serum diene conjugation (DC) and serum antioxidant potential (TRAP). Nine male top level skiers were studied during a national race (20–30 km) at sea level (SL). Thereafter, the athletes trained for 2 weeks at MA, after which they participated in a 20–30 km race at MA. Venous blood samples were taken before and after the race. The DC, indicating early events of lipid peroxi dation, did not change during the race at SL (16 850 vs 15 900 ΔAbsorbance · l−1) or at MA (19 870 vs. 20 630 ΔAbs · l−1). At MA serum DC was higher than at SL both before (25%) and after (30%) the race, the postrace difference being statistically significant (P < 0.05). The TRAP increased during the race at MA (from 1387 to 1943 μmol · 1−1, P  =  0.016), but not at SL (1713 vs 1582 μmol · l−1). These observations would suggest that the level of oxidative stress might be greater during living, training and racing at MA (higher DC levels). Increased TRAP during the race at MA may indicate that the physiological adaptation to extreme acute oxidative stress was altered. The physiological significance of this observation remains to be investigated. Accepted: 18 October 1996  相似文献   

8.
Whereas with advancing age, peak heart rate (HR) and cardiac index (CI) are clearly reduced, peak stroke index (SI) may decrease, remain constant or even increase. The aim of this study was to describe the patterns of HR, SI, CI, arteriovenous difference in oxygen concentration (C a-vO2), mean arterial pressure (MAP), systemic vascular resistance index (SVRI), stroke work index (SWI) and mean systolic ejection rate index (MSERI) in two age groups (A: 20–30 years, n = 20; B: 50–60 years n = 20. After determination of pulmonary function, an incremental bicycle exercise test was performed, with standard gas-exchange measurements and SI assessment using electrical impedance cardiography. The following age-related changes were found: similar submaximal HR response to exercise in both groups and a higher peak HR in A than in B[185 (SD 9) vs 167 (SD 14) beats · min−1, P < 0.0005]; increase in SI with exercise up to 60–90 W and subsequent stabilization in both groups. As SI decreased towards the end of exercise in B, a higher peak SI was found in A [57.5 (SD 14.0) vs 43.6 (SD 7.7) ml · m−2, P < 0.0005]; similar submaximal CI response to exercise, higher peak CI in A [10.6 (SD 2.5) vs 7.2 (SD 1.3) l · min−1 · m−2, P < 0.0005]; no differences in C a-vO2 during exercise; higher MAP at all levels of exercise in B; higher SVRI at all levels of exercise in B; lower SWI in B after recovery; higher MSERI at all levels of exercise in A. The decrease in SI with advancing age would seem to be related to a decrease in myocardial contractility, which can no longer be compensated for by an increase in preload (as during submaximal exercise). Increases in systemic blood pressure may also compromise ventricular function but would seem to be of minor importance. Accepted: 24 September 1996  相似文献   

9.
The purpose of this investigation was to examine if exercise-induced arterial oxyhemoglobin desaturation selectively observed in highly trained endurance athletes could be related to differences in the pulmonary diffusing capacity (D L) measured during exercise. The D L of 24 male endurance athletes was measured using a 3-s breath-hold carbon monoxide procedure (to give D LCO) at rest as well as during cycling at 60% and 90% of these previously determined O2max. Oxyhemoglobin saturation (S aO2%) was monitored throughout both exercise protocols using an Ohmeda Biox II oximeter. Exercise-induced oxyhemoglobin desaturation (DS) (S aO2% < 91% at O2max) was observed in 13 subjects [88.2 (0.6)%] but not in the other 11 nondesaturation subjects [NDS: 92.9 (0.4)%] (P ≤ 0.05), although O2max was not significantly different between the groups [DS: 4.34 (0.65) l / min vs NDS: 4.1 (0.49) l / min]. At rest, no differences in either D LCO [m1 CO · mmHg−1 · min−1: 41.7 (1.7) (DS) vs 41.1 (1.8) (NDS)], D LCO / A [8.2 (0.4) (DS) vs 7.3 (0.9) (NDS)], MVV [l / min: 196.0 (10.4) (DS) vs 182.0 (9.9) (NDS)] or FEV1/FVC [86.3 (2.2) (DS) vs 82.9 (4.7) (NDS)] were found between groups (P ≥ 0.05). However, E /O2 at O2max was lower in the DS group [33.0 (1.1)] compared to the NDS group [36.8 (1.5)] (P ≤ 0.05). Exercise D LCO (m1 CO · mmHg−1 · min−1 ) was not different between groups at either 60% O2max [DS: 55.1 (1.4) vs NDS: 57.2 (2.1)] or at 90% O2max [DS: 61.0 (1.8) vs NDS: 61.4 (2.9)]. A significant relationship (r = 0.698) was calculated to occur between S aO2% and E /O2 during maximal exercise. The present findings indicate that the exercise-induced oxyhemoglobin desaturation seen during submaximal and near-maximal exercise is not related to differences in D L, although during maximal exercise S aO2 may be limited by a relatively lower exercise ventilation. Accepted: 25 September 1996  相似文献   

10.
Unidirectional flux rates of Ca2+ across gastrointestinal tissues from sheep and goats were measured in vitro by applying the Ussing-chamber technique. Except for the sheep duodenum, mucosal to serosal Ca2+ flux rates (J ms) exceeded respective flux rates in the opposite direction (J sm) in both species and in all segments of the intestinal tract. This resulted in net Ca2+ flux rates␣(J net = J ms − J sm) ranging between −2 and 9 nmol · cm−2 · h−1 in sheep and between 10 and 15 nmol cm−2 · h−1 in goats. In sheep, only J net in jejunum, and in goats, J netin duodenum and jejunum were significantly different from zero. Using sheep rumen wall epithelia, significant J net of Ca2+ of around 5 nmol · cm−2 · h−1 could be detected. Since the experiments were carried out in the absence of an electrochemical gradient, significant net Ca2+ absorption clearly indicates the presence of active mechanisms for Ca2+ transport. Dietary Ca depletion caused increased calcitriol plasma concentrations and induced significant stimulations of net Ca2+ absorption in goat rumen. J net of Ca2+ across goat rumen epithelia was significantly reduced by 1 mmol · l −1 verapamil in the mucosal buffer solution. In conclusion, there is clear evidence for the rumen as a main site for active Ca2+ absorption in small ruminants. Stimulation of active Ca2+ absorption by increased plasma calcitriol levels and inhibition by mucosal verapamil suggest mechanistic and regulatory similarities to active Ca2+ transport as described for the upper small intestines of monogastric species. Accepted: 31 July 1996  相似文献   

11.
Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETRmax) at saturating quantum flux (PPFDsat), and decreasing thereafter. ETRmax ranged from 217 μmol electrons · m−2 · s−1 at a PPFDsat of 1725 μmol photons · m−2 · s−1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m−2 · s−1 at a PPFDsat of 745 μmol electrons · m−2 · s−1 in Podocarpus dispermis. Good correlations were observed between ETRmax and both PPFDsat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n), with q n saturating faster in species with low PPFDsat. Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFDsat, wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity. Received: 15 April 1996 / Accepted: 30 September 1996  相似文献   

12.
The purpose of this study was to determine the walking speed which has the greatest influence on neural relaxation in healthy elderly women as determined by electromyogram (EMG) and electroencephalogram (EEG) analyses. Seven elderly female volunteers [mean age 68.5 (SD 3.95) years] served as subjects for this study. The EMG signals were recorded from the gastrocnemius (MG), soleus (SL) and tibialis anterior (TA) muscles while walking on a treadmill, starting at 40␣m · min−1 and increasing 6 m · min−1 incrementally for 10␣min. The turning point of muscle activities (by integrated EMG, iEMGtp) was determined as the walking speed at the point at which the mean rate of change of iEMG (MG + SL + TA) abruptly increased. After the determination of iEMGtp, the treadmill was set at three constant speeds, one corresponding to the speed for the iEMGtp and two others 20% higher or lower than that for the iEMGtp. The subjects then walked for 20 min at each of these speeds on 3 separate days and their EEG power spectrum data were obtained for frequencies from the 8 to 13 Hz (α-wave component, AWC). The mean of iEMGtp for our subjects was at a mean walking speed of 64.7 (SD 7.9) m · min−1. Considering the subjects' age and height, iEMGtp was somewhat faster than their expected self-paced normal walking speed. There were no differences between the mean AWC values of the subjects prior to exercising at each of the three speeds. The mean AWC values after exercise were significantly (P < 0.01) greater than before. The extent of the increase in AWC at iEMGtp was greater than those at slower speeds. Our data would suggest that walking exercise at the speed which corresponds with EMG evidence of iEMGtp may induce the most significant relaxing effects in elderly women. Accepted: 11 September 1996  相似文献   

13.
Major electrolytes and nitrogenous excretory products were analysed in the blood plasma, ureteral urine and cloacal urine of juvenile Alligator mississippiensis and Crocodylus porosus in fresh and hypoosmotic salt water (206 mosmol · l−1). Both species coped well with saline water, showing little (Alligator) or no (Crocodylus) change in plasma composition. Comparisons of renal-cloacal function point to major differences in their osmoregulatory physiology. The cloaca of C. porosus is a very active osmoregulatory organ in salt and fresh water, contributing to water conservation and NaCl excretion through the lingual salt glands. In contrast, the cloaca of Alligator has little impact on the composition of excreted urine. It seems likely that A.␣mississippiensis is largely constrained to a renal response to osmotic and ionic stress while C. porosus is able to call on a more complex mix of renal response, post-renal modification of urine in the cloaca, and excretion of excess NaCl through the salt glands. The results support the idea that there are deep-seated differences in the osmoregulatory physiology of alligatorids and crocodylids (Eusuchia), an understanding of which should provide valuable insights into their evolution and zoogeography. Accepted: 7 September 1996  相似文献   

14.
This study was designed to determine how changes in oxygen uptake (O2) and heart rate (HR) during submaximal cycle ergometry were determined by changes in cycle geometry and/or lower-limb kinematics. Fourteen trained cyclists [Mean (SD): age, 25.5 (6.4) years; body mass 74.4 (8.8) kg; peak O2, 4.76 (0.79) l. min−1 peak] were tested at three seat-tube angles (70°, 80°, 90°) at each of three trunk angles (10°, 20°, 30°) using a modified Monark cycle ergometer. All conditions were tested at a power output corresponding to 95% of the O2 at each subject's ventilatory threshold while pedalling at 90 rpm and using aerodynamic handlebars. Sagittal-view kinematics for the hip, knee, and ankle joints were also recorded for all conditions and for the subjects' preferred positioning on their own bicycles. No combination of seat-tube and trunk angle could be considered optimal since many of the nine conditions elicited statistically similar mean O2 and HR values. Mean hip angle (HA) was the only kinematic variable that changed consistently across conditions. A regression relationship was not observed between mean O2 or HR and mean hip angle values (P > 0.45). Significant curvilinear relationships were observed, however, between ΔO2 (O2 − minimum O2) and ΔHA (mean HA − preferred HA) using the data from all subjects (R = 0.45, SEE = 0.13 l . min−1) and using group mean values (R = 0.93, SEE = 0.03 l . min−1). In both cases ΔO2 minimized at ΔHA = 0, which corresponded to the subjects' preferred HA from their own bicycles. Thus, subjects optimized their O2 cost at cycle geometries that elicited similar lower-limb kinematics as the preferred geometries from their own bicycles. Accepted: 3 July 1996  相似文献   

15.
The aim of this study was to investigate quality coding of blend ratios of binary mixtures by olfactory receptor cells in the spiny lobster. Three odorants (adenosine-5′-monophosphate, l-glutamate, and taurine) at 0.1–100 μmol · l−1 and seven blend ratios of each of their binary mixtures at a total concentration of 100 μmol · l−1 were used. The olfactory cells recorded (n = 48) evoked across-neuron patterns for single odorants that were well separated from each other. Across-neuron patterns varied with stimulus concentration but less than with stimulus type. Blend ratios of the three mixtures evoked across-neuron patterns that were orderly placed within a continuum between those elicited by the components. Mixture interactions, defined as a lack of independent effects by a mixture's components, occurred in 25, 24 and 37% of responses to blend ratios of glutamate/taurine, adenosine-5′-monophosphate/taurine, and glutamate/adenosine-5′-monophosphate, respectively. These mixture interactions did not have a large enough effect on the across-neuron patterns for the mixtures such they would be novel relative to those of the single components. These results suggest that despite mixture interactions the quality of individual compounds is not lost when mixed. This corroborates behavioral studies showing that spiny lobsters have the ability to elementally process odor mixtures. Accepted: 23 August 1996  相似文献   

16.
Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season. Received: 3 March 1996 / Accepted: 19 October 1996  相似文献   

17.
To study the physiological responses induced by immersing in cold water various areas of the upper limb, 20 subjects immersed either the index finger (T1), hand (T2) or forearm and hand (T3) for 30 min in 5°C water followed by a 15-min recovery period. Skin temperature of the index finger, skin blood flow (Qsk) measured by laser Doppler flowmetry, as well as heart rate (HR) and mean arterial blood pressure (ˉBPa) were all monitored during the test. Cutaneous vascular conductance (CVC) was calculated as Qsk / ˉBPa. Cold induced vasodilatation (CIVD) indices were calculated from index finger skin temperature and CVC time courses. The results showed that no differences in temperature, CVC or cardiovascular changes were observed between T2 and T3. During T1, CIVD appeared earlier compared to T2 and T3 [5.90 (SEM 0.32) min in T1 vs 7.95 (SEM 0.86) min in T2 and 9.26 (SEM 0.78) min in T3, P < 0.01]. The HR was unchanged in T1 whereas it increased significantly at the beginning of T2 and T3 [+13 (SEM 2) beats · min−1 in T2 and +15 (SEM 3) beats · min−1 in T3, P < 0.01] and then decreased at the end of the immersion [−12 (SEM 3) beats · min−1 in T2, and −15 (SEM 3) beats · min−1 in T3, P < 0.01]. Moreover, ˉBPaincreased at the beginning of T1 but was lower than in T2 and T3 [+9.3 (SEM 2.5) mmHg in T1, P < 0.05;  +20.6 (SEM 2.6) mmHg and 26.5 (SEM 2.8) mmHg in T2 and T3, respectively, P < 0.01]. The rewarming during recovery was faster and higher in T1 compared to T2 and T3. These results showed that general and local physiological responses observed during an upper limb cold water test differed according to the area immersed. Index finger cooling led to earlier and faster CIVD without significant cardiovascular changes, whereas hand or forearm immersion led to a delayed and slower CIVD with a bradycardia at the end of the test. Accepted: 26 November 1996  相似文献   

18.
This study compared the effects of supplementing the normal diets of six trained cyclists [maximal oxygen uptake O2max) 4.5 (0.36)l · min−1; values are mean (SD)] with additional carbohydrate (CHO) on muscle glycogen utilisation during a 1-h cycle time-trial (TT). Using a randomised crossover design, subjects consumed either their normal diet (NORM) for 3 days, which consisted of 426 (137) g · day−1 CHO [5.9 (1.4) g · kg−1 body mass (BM)], or additional CHO (SUPP) to increase their intake to 661 (76) g · day−1 [9.3 (0.7) g · kg−1 BM]. The SUPP diet elevated muscle glycogen content from 459 (83) to 565 (62) mmol · kg−1 dry weight (d.w.) (P < 0.05). However, despite the increased pre-exercise muscle glycogen stores, there was no difference in the distance cycled during the TT [40.41 (1.44) vs 40.18 (1.76) km for NORM and SUPP, respectively]. With NORM, muscle glycogen declined from 459 (83) to 175 (64) mmol · kg−1 d.w., whereas with SUPP the corresponding values were 565 (62) and 292 (113) mmol · kg−1 d.w. Accordingly, both muscle glycogen utilisation [277 (64) vs 273 (114) mmol · kg−1 d.w.] and total CHO oxidation [169 (20) vs 165 (30) g · h−1 for NORM and SUPP, respectively] were similar. Neither were there any differences in plasma glucose or lactate concentrations during the two experimental trials. Plasma glucose concentration averaged 5.5 (0.5) and 5.6 (0.6) mmol · l−1, while plasma lactate concentration averaged 4.4 (1.9) and 4.4 (2.3) mmol · l−1 for NORM and SUPP, respectively. The results of this study show that when well-trained subjects increase the CHO content of their diet for 3 days from 6 to 9 g · kg−1 BM there is only a modest increase in muscle glycogen content. Since supplementary CHO did not improve TT performance, we conclude that additional CHO provides no benefit to performance for athletes who compete in intense, continuous events lasting 1 h. Furthermore, the substantial muscle CHO reserves observed at the termination of exercise indicate that whole-muscle glycogen depletion does not determine fatigue at this exercise intensity and duration. Accepted: 25 November 1996  相似文献   

19.
The effects of l-arginine, and its analogues N ω-nitro-l-arginine methyl ester and N ω-nitro-l-arginine on vascular resistance were investigated in the intact coronary system of an isolated non-working trout heart preparation. l-Arginine, at 10–8 mol · l–1induced a slight vasodilatory effect (max 10%). N ω-nitro-l-arginine methyl ester and N ω-Nitro-l-arginine in the range 10–8–10–4 mol · l–1 caused dose-dependent increases in coronary resistance. The vasodilatory action of l-arginine was abolished when the preparation was pretreated with 10–4 mol · l–1 N ω-nitro-l-arginine or N ω-nitro-l-arginine methyl ester. Nitroprusside alone at 1 mmol · l–1 induced a maximum vasodilation (30%) of the coronary system. Methylene blue a known inhibitor of guanylate cyclase, induced a strong vasoconstriction (already significant at 10–5 mol · l–1) and was able to overcome the vasodilative effect of nitroprusside. The endothelial nitric oxide agonists acetylcholine and serotonin, established in mammalian vessels, also mediate vasodilation in trout coronary system. In 50% of preparations, acetylcholine induced a biphasic response with vasodilation at low concentration (max 15% at 10–8 mol · l–1). Serotonin displayed a dose-response vasodilation in the range 10–8–10–4 mol · l–1 (max 20%). These vasodilative effects were reduced or abolished by 10–4 mol · l–1 l-NA. These data support the existence of NO-mediated vasodilation mechanisms in the trout coronary system. Accepted: 1 July 1996  相似文献   

20.
Xiahong Feng 《Oecologia》1998,117(1-2):19-25
To evaluate how the land carbon reservoir has been responding to the rising CO2 concentration of the atmosphere, it is important to study how plants in natural forests adjust physiologically to the changing atmospheric conditions. Many experimental studies have addressed this issue, but it has been difficult to scale short-term experimental observations to long-term ecosystem-level responses. This paper derives carbon-isotope-related variables for the past 100–200 years from measurements on trees from natural forests. Calculations show that the c i/c a ratios [c i/c a is the ratio of the CO2 concentration (μmol mol−1) in the intercellular space of leaves to that in the atmosphere] of the trees were constant or increased slightly before the 20th century, but changed more rapidly in the 20th century; some increased, some decreased, and some stayed constant. In contrast, the CO2 concentration inside plant leaves increased monotonically for all trees. Received: 12 June 1997 / Accepted: 29 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号