首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA–AuNPs@Tb–AMP (BSA, bovine serum albumin; AMP, adenosine 5′‐monophosphate; AuNPs, Au nanoparticles) metal–organic framework (MOF) nanostructures were synthesized by encapsulating BSA–AuNPs into Tb–AMP MOFs for the detection of 2,6‐pyridinedicarboxylic acid (DPA) and Hg2+. DPA could strongly co‐ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb–AMP MOFs. The fluorescence of BSA–AuNPs at 405 nm remained constant. While the fluorescence of BSA–AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb–AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+. The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545/F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635/F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.  相似文献   

2.
A novel flow injection-chemiluminescence (FI–CL) approach is proposed for the assay of pioglitazone hydrochloride (PG-HCl) based on its enhancing influence on the tris(2,2′-bipyridyl)ruthenium(II)–silver(III) complex (Ru(bipy)32+-DPA) CL system in sulfuric acid medium. The possible CL reaction mechanism is discussed with CL and ultraviolet (UV) spectra. The optimum experimental conditions were found as: Ru(bipy)32+, 5.0 × 10−5 M; sulfuric acid, 1.0 × 10−3 M; diperiodatoargentate(III) (DPA), 1.0 × 10−4 M; potassium hydroxide, 1.0 × 10−3 M; flow rate 4.0 ml min−1 for each flow stream and sample loop volume, 180 μl. The CL intensity of PG-HCl was linear in the range of 1.0 × 10−3 to 5.0 mg L−1 (R2 = 0.9998, n = 10) with limit of detection [LOD, signal-to-noise ratio (S/N= 3] of 2.2 × 10−4 mg L−1, limit of quantification (LOQ, S/N = 10) of 6.7 × 10−4 mg L−1, relative standard deviation (RSD) of 1.0 to 3.3% and sampling rate of 106 h−1. The methodology was satisfactorily used to quantify PG-HCl in pharmaceutical tablets with recoveries ranging from 93.17 to 102.77 and RSD from 1.9 to 2.8%.  相似文献   

3.
A rapid, novel and cost-effective spectrofluorimetric method developed to determine moxifloxacin (MFX) in pharmaceutical preparations because MFX in a pH 10 medium could reduce the fluorescence intensity of l -tryptophan. The maximum fluorescence excitation and emission wavelengths were found to be 280 and 363 nm respectively. A range of factors affecting fluorescence quenching and the effect of co-existing substances were investigated. Fluorescence quenching values (ΔF = FL-tryptophanFMoxi-L-tryptophan) displayed a strong linear relationship with the MFX concentration ranging from 0.2 to 8.0 μg/ml under optimum conditions. The limit of detection was found to be 6.1 × 10−4 μg/ml. The proposed method was shown to be suitable for MFX determination in pharmaceutical tablets and biological fluids by the linearity, recovery and limit of detection. The spectrofluorimetric approach that has been developed is extremely eco-friendly, as evidenced by the fact that all the experimental components and solvents were safe for the environment.  相似文献   

4.
Coptisine (COP), one of the bioactive components in Rhizoma Coptidis, has many pharmacological effects. Meanwhile, the determination of COP is essential in pharmacological and clinical applications. Herein, we prepared carbon quantum dots (CQDs) by one-step oil-thermal method using paper mill sludge (PMS) as precursor, and developed a ratiometric fluorescence method for the determination of COP. The structural and optical properties of PMS-CQDs were evaluated through high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), ultraviolet-visible (UV-vis), fluorescence, zeta potential and fluorescence lifetime experiments. Fluorescence intensity ratio at 550 nm and 425 nm (I550/I425) was recorded as an index for quantitative detection of COP. The detection concentration of COP ranges from 0.1 to 50 μM in good linear correlation (R2 = 0.9974) with a limit of detection of 0.028 μM (3σ/k). The quenching mechanism was deduced to be inner filter effect and static quenching. The ratiometric fluorescent probe showed impressive selectivity and sensitivity towards COP, and was successfully applied to the detection of COP in human urine with expected recoveries (95.22–111.00%) and relative standard deviations (0.46–2.95%), indicating that our developed method has a great application prospect in actual sample detection.  相似文献   

5.
The reduction of nuclear fast red (NFR) stain by sodium tetrahydroboron was catalyzed in the presence of silver ions (Ag+). The fluorescence properties of reduced NFR differed from that of NFR. The product showed fluorescence emission at 480 nm with excitation at 369 nm. Furthermore, the fluorescence intensity of the mixture increased strongly in the presence of Ag+ and Britton–Robinson buffer at pH 4.78. There was a good linear relationship between increased fluorescence intensity (ΔI) and Ag+ concentration in the range 5.0 × 10?9 to 5.0 × 10?8 M. The correlation coefficient was 0.998, and the detection limit (3σ/k) was 1.5 × 10?9 M. The colour of the reaction system changed with variation in Ag+ concentration over a wide range. Based on the colour change, a visual semiquantitative detection method for recognition and sensing of Ag+ was developed for the range 1.0 × 10?8 to 5.0 × 10?4 M, with an indicator that was visible to the naked eye. Therefore, a sensitive, simple method for determination of Ag+ was developed. Optimum conditions for Ag+ detection, the effect of other ions and the analytical application of Ag+ detection of synthesized sample were investigated.  相似文献   

6.
The fluorescence of the prulifloxacin (PUFX)–Al(III) system was investigated . Experiments indicated that the fluorescence intensity of prulifloxacin could be greatly enhanced by Al(III) and sensitized by sodium dodecylbenzene sulphonate (SDBS). Accordingly, a sensitive spectrofluorimetric method for the determination of prulifloxacin was established. While excited at 275 nm, the enhanced fluorescence intensity at 412 nm of the system (ΔF) showed a good linear relationship with the concentration of prulifloxacin within the range 4.0 × 10–8–3.0 × 10–6 mol/L. The regression equation was ΔF = 9.83 + 10.8 × 107c (mol/L); the correlation coefficient and detection limit (3σ/k) were 0.99901 and 2.0 × 10–8 mol/L, respectively. The proposed method has been successfully applied to determine prulifloxacin in real pharmaceutical samples. The luminescence mechanism of the system is also discussed in detail. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, 5,10,15,20-(4-sulphonatophenyl)porphyrin (TPPS4) was selected as a fluorescent probe due to its excellent characteristics including high quantum yield, good water solubility, and exceptional biocompatibility. With an excitation wavelength set at 515 nm, the optimal fluorescence emission wavelength for TPPS4 was measured at 642 nm. At this moment, the fluorescence signal of TPPS4 pink solution was in the ‘ON’ state. The fluorescence intensity of TPPS4 was quenched when ascorbic acid (AA) was introduced, which was due to the electron transfer quenching effect between AA and TPPS4. The colour of the corresponding solution changed from pink to green, and the fluorescence signal was in the ‘OFF’ state. When HPO42− was further introduced into the TPPS4–AA system, the quenched fluorescence intensity of TPPS4 was recovered due to the unique interaction between HPO42− and AA. At this time, the colour of the corresponding solution changed from green to red, and the fluorescence signal was in the ‘ON’ state. Therefore, an ‘ON–OFF–ON’ signal-switchable fluorescent probe was constructed based on TPPS4 to detect HPO42−. The results showed that the linear range of HPO42− was 4.0 × 10−9 to 1.7 × 10−6 M, and the detection limit was 1.3 × 10−9 M (S/N = 3). The sensing system exhibited high accuracy and sensitivity, and it could be used successfully to detect HPO42− in real samples.  相似文献   

8.
A reversible and easy assembled fluorescent sensor based on calix[4]arene and phenolphthalein (C4P) was developed for selective zinc ion (Zn2+) sensing in aqueous samples. The probe C4P demonstrated high selective and sensitive detection towards Zn2+ over other competitive metal ions. Interaction of Zn2+ with a solution of C4P resulted in a considerable increment in emission intensity at 440 nm (λex = 365 nm) due to the suppression of photoinduced electron transfer (PET) process and the restriction of C=N isomerization . The binding constant (Ka) of C4P with Zn2+ was calculated to be 4.50 × 1011 M?2 and also the limit of detection of C4P for Zn2+ was as low as 0.108 μM (at 10?7 M level). Moreover, the fluorescence imaging in the human colon cancer cells suggested that C4P had great potential to be used to examine Zn2+ in vivo.  相似文献   

9.
《Luminescence》2018,33(3):625-629
A simple, sensitive and efficient fluorescence method has been established for the quantitative analysis of bilirubin. The fluorometric determination method was based on the kinetic quenching of ruthenium(II) fluorescence. The quenching effect may be due to the complexation reaction of bilirubin with ruthenium(II). Therefore, the effects of ruthenium concentrations and different surfactants have been studied. Under the optimized experimental parameters, the fluorescence intensity decreased proportionally with the bilirubin concentration and linearity was established in the range of 3.3 × 10−7 to 3.0 × 10−4 M bilirubin. The detection limit calculated from the calibration graph was found to be 5.2 × 10−8 M. The relative standard deviation (RSD) of 10 consecutive measurements of 8.0 × 10−6 M bilirubin was 3.0%, while the recoveries of bilirubin in both human serum and urine samples were obtained in the range 94.0–99.5%. The interference study shows that the developed fluorescence based technique is fast, easy to carry out and shows negligible interference. The developed technique was successfully applied for the analysis of bilirubin in human urine and serum samples. All the experimental results and quality parameters confirmed the sensitivity and reproducibility of the proposed technique for bilirubin determination in human urine and serum samples .  相似文献   

10.
Indolizine derivatives are of great interest as fluorescent emitters for peroxyoxalate chemiluminescence. The reaction of peroxyoxalates such as bis‐(2,4,6‐trichlorophenyl) oxalate (TCPO) with H2O2 can transfer energy to fluorescer via the formation of dioxetanedione intermediate. Four indolizine derivatives were used as a novel fluorescer in the chemiluminescence (CL) systems in this study. The relationship between CL intensity and the concentration of fluorescer, peroxyoxalate, sodium salicylate and hydrogen peroxide was investigated. Optimum conditions were obtained for four fluorescers and it was found that the indolizine can be used as an efficient green fluorescence emitter. Vitamin B6 induces a sharp decrease in the CL intensity of the TCPO–hydrogen peroxide–sodium salicylate system. A simple, rapid and sensitive CL method for the determination of vitamin B6 has been developed. The results showed a linear relationship between vitamin B6 concentration and peroxyoxalate CL intensity in the range 7.0 × 10−8–1.0 × 10−4. A detection limit of 2.3 × 10−8 M and relative standard deviation (RSD) of < 4.5% were obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
As third generation feedstock, microalgae are microorganisms that can grow only in the optimum conditions. There are parameters including the concentration of macro and microelements in nutrient solution, pH, temperature and light intensity that have significant impact on microalgal growth. In recent years, various sensing devices have been developed for sensitive measurement of these parameters during microalgal growth. In this study, a new potentiometric nitrate selective sensor was developed to indicate the nitrate uptake of microalgae and the effect of nitrate nutrient on microalgal growth, specifically, and this sensor was successfully applied to determine nitrate concentration in medium during microalgal growth. Moreover, the effects of nitrate, carbonate and phosphate concentration in the growth medium on biomass production of Chlorella minutissima were investigated by using Box–Behnken design method, and optimum conditions were determined for the highest biomass production of microalgae. As a result of the experiments, it was seen that the highest C. minutissima production was achieved using the medium consist of 2.63 g/L NaNO3, 0.35 g/L Na2CO3 and 0.4 g/L KH2PO4. Statistically, it was observed that there was a proportional relationship between the microalgae production and investigated parameters such as carbon, nitrogen and phosphate amounts of culture mediums. The electrode showed a wide linear range between 1.0 × 10−1 and 5.0 × 10−5 M with a detection limit of the 5 × 10−6 M and the response time was found as 10 s. The results showed that developed nitrate selective sensor could be successfully applied for continuous measurement of nitrate in microalgal productions at reduced cost.  相似文献   

12.
A europium‐sensitized fluorescence spectrophotometry method using an anionic surfactant, sodium dodecyl benzene sulphonate (SDBS), was developed for the determination of gatifloxacin (GFLX). The GFLX–Eu3+–SDBS system was studied and it was found that SDBS significantly enhanced the fluorescence intensity of the GFLX–Eu3+ complex (about 25‐fold). The optimal experimental conditions were determined as follows: excitation and emission wavelengths of 338 and 617 nm, pH 7.5, 3.0 × 10–6 mol/L europium(III), and 5.0 × 10–5 mol/L SDBS. The enhanced fluorescence intensity of the system (ΔIf) showed a good linear relationship with the concentration of GFLX over the range 1.0 × 10–8–8.0 × 10–7 mol/L with a correlation coefficient of 0.9990. The detection limit (S:N = 3) was determined as 1.0 × 10–9 mol/L. This method has been successfully applied for the determination of GFLX in pharmaceuticals and human urine/serum samples. Compared with most other methods reported, the rapid and simple procedure proposed here offered higher sensitivity, wider linear range and good stability. The luminescence mechanism of the system is also discussed in detail. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The production of biogenic palladium nanoparticles (bio-Pd NPs) is widely studied due to their high catalytic activity, which depends on the size of nanoparticles (NPs). Smaller NPs (here defined as <100 nm) are more efficient due to their higher surface/volume ratio. In this work, inductively coupled plasma-mass spectrometry (ICP-MS), flow cytometry (FCM) and transmission electron microscopy (TEM) were combined to obtain insight into the formation of these bio-Pd NPs. The precipitation of bio-Pd NPs was evaluated on a cell-per-cell basis using single-cell ICP-MS (SC-ICP-MS) combined with TEM images to assess how homogenously the particles were distributed over the cells. The results provided by SC-ICP-MS were consistent with those provided by “bulk” ICP-MS analysis and FCM. It was observed that heterogeneity in the distribution of palladium over an entire cell population is strongly dependent on the Pd2+ concentration, biomass and partial H2 pressure. The latter three parameters affected the particle size, ranging from 15.6 to 560 nm, and exerted a significant impact on the production of the bio-Pd NPs. The TEM combined with SC-ICP-MS revealed that the mass distribution for bacteria with high Pd content (144 fg Pd cell−1) indicated the presence of a large number of very small NPs (D50 = 15.6 nm). These results were obtained at high cell density (1 × 105 ± 3 × 104 cells μl−1) and H2 partial pressure (180 ml H2). In contrast, very large particles (D50 = 560 nm) were observed at low cell density (3 × 104 ± 10 × 102 cells μl−1) and H2 partial pressure (10–100 ml H2). The influence of the H2 partial pressure on the nanoparticle size and the possibility of size-tuned nanoparticles are presented.  相似文献   

14.
Extended thio- and selenorhodamines with a linear or angular fused benzo group were prepared. The absorption maxima for these compounds fell between 640 and 700 nm. The extended rhodamines were evaluated for their potential as photosensitizers for photodynamic therapy in Colo-26 cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their dark and phototoxicity toward Colo-26 cells, and for their co-localization with mitochondrial-specific agents in Colo-26 and HUT-78 cells. The angular extended rhodamines were effective photosensitizers toward Colo-26 cells with 1.0 J cm−2 laser light delivered at λmax ± 2 nm with values of EC50 of (2.8 ± 0.4) × 10−7 M for sulfur-containing analogue 6-S and (6.4 ± 0.4) × 10−8 M for selenium-containing analogue 6-Se. The linear extended rhodamines were effective photosensitizers toward Colo-26 cells with 5 and 10 J cm−2 of broad-band light (EC50’s  2.4 × 10−7 M).  相似文献   

15.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of azelastine HCl (AZL) in either its pure state or pharmaceutical dosage form. The proposed method was based on measuring the native fluorescence of the studied drug in 0.2 M H2SO4 at λem = 364 nm after excitation at λex = 275 nm. Different experimental parameters were studied and optimized carefully to obtain the highest fluorescence intensity. The proposed method showed a linear dependence of the fluorescence intensity on drug concentration over a concentration range of 10–250 ng/mL, with a limit of detection of 1.52 ng/mL and limit of quantitation of 4.61 ng/mL. Moreover, the method was successfully applied to pharmaceutical preparations, with percent recovery values (± SD) of 99.96 (± 0.4) and 100.1 (± 0.52) for nasal spray and eye drops, respectively. The results were in good agreement with those obtained by the comparison method, as revealed by Student's t‐test and the variance ratio F‐test. The method was extended to study the stability of AZL under stress conditions, where the drug was exposed to neutral, acidic, alkaline, oxidative and photolytic degradation according to International Conference on Harmonization (ICH) guidelines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A responsive spectrofluorometric method was developed for the determination of sitagliptin phosphate using l -tyrosine as a fluorescence probe. The fluorescence intensity of l -tyrosine was quenched with sitagliptin phosphate. The fluorescence intensity was recorded at 307 nm using a 272 nm excitation wavelength. The calibration plot between fluorescence intensity and the concentration of drug was linear in the range of 0.1 to 2.0 mM with a good correlation value of 0.997. The limit of detection and quantification were established to be 3.7 × 10−4 and 1.23 × 10−3 mM, respectively. Commonly used excipients did not interfere with sitagliptin phosphate measurement. The proposed method was used to measure the sitagliptin phosphate in its standard type, dosage form, and biological samples. The percent recovery ranged from 97.41–103.36%. The static quenching was shown to be responsible for quenching as indicated by the Stern–Volmer plot. The method was validated using ICH guidelines and profitably applied for the content uniformity test, resulting in a high percent recovery and small relative standard deviation. The proposed approach is effortless, susceptible, selective, economic, and provides a high precision and accuracy, and can be used to determine sitagliptin phosphate in the pharmaceutical industry.  相似文献   

17.
In this paper, a new ‘turn‐on' fluorescence probe for the rapid, sensitive, and visual detection of hypochlorite is reported. The push–pull type trianiline–tricyanofuran‐based fluorescent probe was prepared using a condensation reaction between tricyanofuran and the thiophene–trianiline derivative that had high quantum yields and showed aggregation‐induced emission enhanced properties. Upon exposure to hypochlorite, prominent fluorescence enhancement of the probe was observed via the release of the fluorophore from the probe. The probe showed a ratiometric absorption change at 315 nm and 575 nm. Importantly, the probe showed an excellent detection limit for hypochlorite at 1.2 × 10?7 M in solution and it was successfully applied for monitoring hypochlorite in waste water by test strip. This work reports a new fluorescence analytical sensing method for hypochlorite that has potential practical value in environmental monitoring and biological discrimination.  相似文献   

18.
Two novel sensitive sequential injection chemiluminescence analysis and fluorescence methods for trovafloxacin mesylate detection have been developed. The methods were based on the enhancement effect of gold nanoparticles on luminol–ferricyanide–trovafloxacin and europium(III)–trovafloxacin complex systems. The optimum conditions for both detection methods were investigated. The chemiluminescence signal was emitted due to the enhanced effect of gold nanoparticles on the reaction of luminol–ferricyanide–trovafloxacin in an alkaline medium. The response was linear over a concentration range of 1.0 × 10–9 to 1.0 × 10–2 mol/L (%RSD = 1.3), (n = 9, r = 0.9991) with a detection limit of 1.7 × 10–10 mol/L (S/N = 3). The weak fluorescence intensity signal of the oxidation complex of europium(III)–trovafloxacin was strongly enhanced by gold nanoparticles and detected at λex = 330 and λem = 540 nm. Fluorescence detection enabled the determination of trovafloxacin mesylate over a linear range of 1.0 × 10–8 to 1.0 × 10–3 mol/L (%RSD = 1.2), (n = 6, r = 0.9993) with a detection limit of 3.3 × 10–9 mol/L. The proposed methods were successfully applied to the determination of the studied drug in its bulk form and in pharmaceutical preparations. The results were treated statistically and compared with those obtained from other reported methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Proper determination of the temperature dependence of intrinsic tryptophan fluorescence intensity in native and denatured states is an essential prerequisite for extracting the free energy of protein unfolding from the thermal denaturation profile. The most common method employed in determining the temperature dependence of these conformations is through the determination of slopes of pre- and post-transition baselines. However, simulations of protein unfolding profiles suggest that this method does not work for marginally stable proteins. We show herein that the temperature dependence of the fluorescence intensity of N-acetyl tryptophanamide (NATA) in organic solvents and water may be used to represent the temperature dependence of the fluorescence intensity of tryptophan in native and denatured conformations of a protein, respectively. The wavelength of the emission maximum, λ max, of N-acetyl tryptophanamide (NATA) in a particular solvent or tryptophan in proteins is related to the temperature dependence (m) of its fluorescence intensity by the equation: m (K−1) = (−0.000299 ± 2.2 × 10−5 K−1 nm−1) × λ max (nm) + (0.0919 ± 0.0025 K−1).  相似文献   

20.
Developing effective means for detecting contamination in milk during production, processing, and storage is both important and challenging. Tetracycline (TC), due to its use in treating animal infections, is among the most prevalent organic pollutants in milk, posing potential and significant threats to human health. However, efficient and in situ monitoring of TC remains lacking. Nevertheless, we have successfully developed a highly sensitive and selective fluorescence method for detecting TC in milk using a metal–organic framework material made from Yb-TCPP (ytterbium-tetra(4-carboxyphenyl)porphyrin). The calculated Stern–Volmer constant (KSV) was 12,310.88 M−1, and the detection limit was 2.44 × 10−6 M, surpassing previous reports. Crucially, Yb-TCPP fluoresces in the near-infrared region, promising its development into a specific fluorescence detection product for practical TC detection in milk, offering potential application value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号