首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermoluminescence (TL) measurements were carried out on europium (Eu) doped magnesium pyrophosphate (Mg2P2O7) nanopowders using gamma irradiation in the dose range of 0.1 to 3 kGy. The powder samples were successfully synthesized by chemical co‐precipitation synthesis route. The formation and crystallinity of the compound was confirmed by powder X‐ray diffraction (PXRD) pattern. The estimated particle size was found to be in nanometer scale by using Debye Scherer's formula. A scanning electron microscopy (SEM) study was carried out for the morphological characteristics of as synthesized Mg2P2O7:Eu phosphor. Photoluminescence (PL) study was carried out to confirm the presence of the rare‐earth ion and its valence state. The TL analysis of synthesized samples were performed after the irradiation of Mg2P2O7:Eu with cobalt‐60 (60Co) gamma rays. The high and low intensity peaks of TL glow curve appeared at around 400 K, 450 K, 500 K and 596 K respectively. The appreciable shift in peak positions has been observed for different concentrations of Eu ion. The trapping parameters, namely activation energy (E), order of kinetics (b) and frequency factor (s) have been determined using thermal cleaning process, peak shape (Chen's) method and glow curve deconvolution (GCD) functions.  相似文献   

2.
Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm?1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation.  相似文献   

3.
Thermoluminescence (TL) materials are widely used in radiation measurements. The best‐known applications of TL materials are in the dosimetry of ionizing radiation, and in CTV screen phosphors, scintillators, X‐ray laser materials, etc. The TL glow curve and its kinetic parameters for annealed LaPO4 at different constant temperatures and for Dy3+‐doped LaPO4 phosphors irradiated by gamma‐rays are reported here. The samples were irradiated using a 60Co gamma‐ray source at a dose of 10 Gy and the heating rate used for TL measurements was 5ºC/s. The samples were characterized using X‐ray diffraction (XRD), Fourier transform infrared, transmission electron microscopy and TL techniques. The XRD pattern shows that the prepared phosphor has a good crystalline structure with an average crystallite size of ~ 18 nm. The samples show good TL peaks for 0.05, 0.1 and 0.2 mole % doping concentrations of Dy3+ ions and anneal above 400ºC. The TL glow curve characteristics of annealed LaPO4 and Dy3+‐doped LaPO4 were analyzed and trapping parameters calculated using various methods. All TL glow curves obey the second‐order kinetics with a single glow peak, which reveals that only one set of trapping parameter is set for a particular temperature. The TL sensitivity was found to depend upon the annealing temperature and Dy3+ doping concentration. The prepared sample may be a new nano phosphor and be useful in TL dosimetry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, the thermoluminescence (TL) characteristics of Ag‐doped and undoped lithium tetraborate (Li2B4O7, LTB) materials, grown using the Czochralski method, were reported. The TL properties of LTB:Ag, such as glow curve structure, dose response, fading and reproducibility, were investigated. The glow curve of the Li2B4O7:Ag single crystal consists of four peaks located at approximately 75, 130, 190 and 275°C; in undoped LTB, the single crystal shows a broad glow curve with peaks at 65, 90, 125, 160 and 190°C using a heating rate of 5°C/s in the 50–350°C temperature region. The high temperature peak of Ag‐doped sample at 275°C has a nonlinear dose response within the range from 33 mGy to 9 Gy. There is a linear response in the range of 33–800 mGy; after which, a sublinear region appears up to 9 Gy for Ag‐doped LTB single crystal. For undoped single crystal, the dose response is supralinear for low doses and linear for the region between 1 and 9 Gy. The thermal fading ratio of the undoped material is almost 60% for the high temperature peak after 7 days. Ag‐doped LTB single crystal exhibits different behaviour over a period of 7 days.  相似文献   

5.
The photoluminescence (PL) and thermoluminescence (TL) displayed by Dy‐activated strontium haloborate (Sr2B5O9Cl) were studied. A modified solid‐state reaction was employed for the preparation of the phosphor. Photoluminescence spectra showed blue (484 nm) and yellow (575 nm) emissions due to incorporation of Dy3+ into host matrix. The Dy‐doped (0.5 mol%) Sr2B5O9Cl was studied after exposure to γ‐irradiation and revealed a prominent glow curve at 261°C with a small hump around 143°C indicating that two types of traps were generated. The glow peak at the higher temperature side (261°C) was more stable than the lower temperature glow peak. The TL intensity was 1.17 times less than that of the standard CaSO4:Dy thermoluminescence dosimetry (TLD) phosphor, the phosphor showed a linear dose–response curve for different γ‐ray irradiation doses (0.002–1.25 Gy) and fading of 5–7% was observed for higher temperature peaks upon storage. Trapping parameters and their estimated error values have been calculated by Chen's peak shape method and by the initial rise method. Values of activation energies estimated by both these techniques were comparable. The slight difference in activation energy values calculated by Chen's peak shape method indicated the formation of two kinds of traps Furthermore, slight differences in frequency values are due to various escaping and retrapping probabilities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Zr1−xCexO2 with x = 0.005, 0.01, 0.02, and 0.03 samples were synthesized using a combustion technique. The X-ray diffraction results revealed that Ce-doped ZrO2 nanoparticles were in a monoclinic structure up to 1 mol% Ce concentration. The increase in the Ce concentration caused more distortion in the monoclinic structure of zirconia. The samples showed a mixed phase (monoclinic + tetragonal) beyond 1 mol% Ce content. The crystallite size (D) and strain (ε) were calculated from the Williamson–Hall equation. The D decreased from 25 ± 1 to 20 ± 1 nm and ε increased from 0.03 to 0.28% with an increase in Ce concentration. Photoluminescence (PL) spectra of Zr1−xCexO2 showed emission in the blue region under an excitation wavelength of 290 nm. Zr0.995Ce0.005O2 showed the highest PL intensity with an average lifetime of 0.93 μs, and the PL intensity decreased with the increase in the Ce concentration. Thermoluminescence (TL) glow curves of Zr1−xCexO2 were measured after gamma irradiation (500 Gy) with a heating rate of 5 K s−1. The TL curve of Zr0.995Ce0.005O2 showed two prominent peaks at 412 K (peak 1) and 600 K (peak 2). The first TL glow peak was shifted towards a higher temperature at 440 K above 1 mol% Ce concentration. Repetitive TL measurements on the same aliquot exhibited excellent repeatability. Kinetic parameters associated with the TL peaks were calculated using the curve fitting method. Peak 1 followed non-first-order kinetics. The value of the activation energy of the 440 K peak was found to be 0.95 ± 0.01 eV for Zr0.99Ce0.01O2. These findings showed that Zr1−xCexO2 might be used in lighting and radiation dosimeter applications.  相似文献   

7.
The present paper reports the impulsive excitation of mechanoluminescence (ML) in Sr0.97Al2O4:Eu0.01,Dy0.02 nanophosphors prepared using a combustion technique. The phosphors are characterized using X‐ray powder diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM) and photoluminescence (PL). The XRD results show that the samples exhibit a monoclinic α‐phase in the crystal structure. The space group of SrAl2O4:Eu,Dy nanophosphors is monoclinic P21. The PL and ML spectra of SrAl2O4:Eu,Dy nanophosphors are excited using light with a wavelength of 365 nm and emission is found at 516 nm. The prepared nanophosphors exhibits an intense ML that can be seen in daylight with the naked eye. When a sample powder is deformed impulsively by the impact of a moving piston, the ML intensity initially increases linearly with time, attains a peak value, Im, at time tm, and then decreases with time. The peak ML intensity, Im, and total ML intensity, IT, increase linearly with applied pressure and impact velocity. The ML intensity decreases with successive impacts of load onto the phosphors, and the diminished ML intensity can be approximately recovered by UV irradiation. The activation energy using thermoluminescence is found to be 0.57 eV for SrAl2O4:Eu,Dy nanophosphors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Luminescent tetragonal-ZrO2 (t-ZrO2) nanocrystals were synthesized using an optimized combustion method without post-synthesis annealing and characterized using X-ray diffraction, electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, UV–Vis. spectroscopy, photoluminescence spectroscopy, thermoluminescence (TL), and vibrating sample magnetometry. The as-synthesized t-ZrO2 nanocrystals have a bandgap of 4.65 eV and exhibit defect-assisted blue emission (Commission Internationale de I'Elcairage coordinates 0.2294, 0.1984) when excited at 270 nm. The defect states were qualitatively and quantitatively analyzed using TL after irradiating nanocrystals with γ- and UV radiations at various doses. The TL glow curves show intense emission in the high-temperature region from 523 to 673 K for both UV- and γ-irradiated samples; however, another less-intense TL peak was also observed in the low-temperature region from 333 to 453 K with γ irradiation at higher doses, indicating the formation of shallow trapping states. The activation energies, frequency factor, and order of kinetics were estimated using the computerized glow curve deconvolution method for the shallow and deep traps for γ- and UV-irradiated samples. The present study shows that phase-stabilized t-ZrO2 nanocrystals are potential candidates for luminescence-based applications.  相似文献   

9.
We report the synthesis and structural characterization of Er3+,Yb3+‐doped Gd2O3 phosphor. The sample was prepared using the conventional solid‐state reaction method, which is the most suitable method for large‐scale production. The prepared phosphor sample was characterized using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er3+ and Yb3+ were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light‐emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er3+ and Yb3+‐doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu2+‐doped and Eu2+,Dy3+‐co‐doped Ba2MgSi2O7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid‐state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X‐ray diffraction (XRD), transmission electron microscopy (TEM) and energy‐dispersive X‐ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba2MgSi2O7:Eu2+ showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba2MgSi2O7:Eu2+Dy3+ showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f6 5d1 to 4f7 transition of Eu2+. TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu2+ doping in Ba2MgSi2O7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy3+ ions were co‐doped in Ba2MgSi2O7:Eu2+ and maximum TL intensity was observed for 2 mol% of Dy3+. TL emission spectra of Ba1.95MgSi2O7:0.05Eu2+ and Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co‐doping. The trap depths were calculated to be 0.54 eV for Ba1.95MgSi2O7:0.05Eu2+ and 0.54 eV and 0.75 eV for Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors. It was observed that co‐doping with small amounts of Dy3+ enhanced the thermoluminescence properties of Ba2MgSi2O7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The following parts of the abstract have been edited for consistency. '4f65d1' has been corrected to '4f6 5d1', '4f7' has been corrected to '4f7', 'Ba1.95' has been corrected to 'Ba1.95' and 'Ba1.93' has been corrected to 'Ba1.93' respectively.]  相似文献   

11.
Calcium aluminate phosphors activated by Dy3+ have been prepared by a combustion method at a temperature of 600°C. Photoluminescence (PL) and thermoluminescence (TL) properties of gamma‐irradiated Dy‐doped calcium aluminate were investigated. The PL spectrum shows a broad peak around 488 nm and 573 nm, under 347 nm excitation. Thermoluminescence studies were performed for different concentrations of Dy. Optimum intensity of photoluminescence was found for 0.02 mol% concentration of Dy. It was found that initially the peak TL intensity increases with increasing concentration of Dy in the CaAl2O4 host, attains a maximum value for 0.05 mol% concentration and decreases with further increase in the doping concentration due to concentration quenching. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A series of ZnB2O4 phosphors doped with different concentrations of Eu and Dy (0.05 0.1, 0.2, 0.5, 1.0 mol%) and co-doped with Ce (1, 2, 5, 7, 10 mol%) respectively was prepared via the solid-state reaction technique and the thermoluminescence (TL) behaviour of gamma ray-irradiated samples was studied. The synthesized samples were irradiated with γ-rays for the dose range 0.03–1.20 kGy. The TL intensity variations with dose, dopant concentration, and the effect of co-doping were studied. The TL response curves for ZnB2O4:Eu3+ and ZnB2O4:Dy3+, ZnB2O4:Eu3,Ce3+ and ZnB2O4:Dy3+,Ce3+ phosphor were observed. It was revealed that ZnB2O4:Eu3+ showed a linear TL behaviour for the dose 0.03–1.20 kGy and ZnB2O4:Dy3+ showed linearity for the gamma dose range 0.03–0.10 kGy. Furthermore, fading for all the samples was observed to be less than 10% for a storage period of 30 days. In addition to this, the trapping parameters, especially activation energies were evaluated using the Ilich method and the initial rise method. The activation energy values obtained from both methods were in complete agreement with each other.  相似文献   

13.
Eu doped ZnAl2O4 phosphors were synthesized by the solution combustion technique using carbohydrazide as a fuel. Mechanoluminescence (ML) was excited impulsively by dropping a piston of 0.7 kg onto the phosphors. Two distinct peaks were observed in the ML glow curve of the γ‐ray irradiated ZnAl2O4:Eu phosphors. Dependence of ML on various parameters as impact velocity of the piston dropped on to it, mass of the sample, gamma ray doses given to the sample and ML spectra have been studied. ML emission spectrum showed the characteristic emission of Eu3+ ion in this system. ML is observed to be optimum for the sample having 0.2 mol% of Eu in the ZnAl2O4 phosphor. XRD result confirms formation of the phosphors. SEM characterization shows its surface morphology. This novel phosphor may be a potential candidate for dosimetric use due to its linear dose response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A blue CaMgSi2O6:Eu2+ phosphor was prepared by the solid‐state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X‐ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu2+‐doped CaMgSi2O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu2+ phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity‐induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu2+ phosphors are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We report synthesis of a cerium‐activated strontium pyrophosphate (Sr2P2O7) phosphor using a high‐temperature combustion method. Samples were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), photoluminescence (PL) and thermoluminescence (TL). The XRD pattern reveals that Sr2P2O7 has an α‐phase with crystallization in the orthorhombic space group of Pnam. The IR spectrum of α‐Sr2P2O7 displays characteristic bands at 746 and 1190 cm‐1 corresponding to the absorption of (P2O7)‐4. PL emission spectra exhibit a broad emission band around 376 nm in the near‐UV region due to the allowed 5d–4f transition of cerium and suggest its applications in a UV light‐emitting diode (LED) source. PL also reveals that the emission originates from 5d–4f transition of Ce3+ and intensity increases with doping concentration. TL measurements made after X‐ray irradiation, manifest a single intense glow peak at around 192°C, which suggests that this is an outstanding candidate for dosimetry applications. The kinetic parameters, activation energy and frequency factor of the glow curve were calculated using different analysis methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Luminescent nanoparticles of Y2O3 doped with europium (Eu) and/or titanium (Ti) were synthesized using modified sol–gel routes. The crystalline cubic phase was confirmed using X‐ray powder diffraction (XRD). Particle morphology and size were evaluated using scanning and transmission electron microscopy. High‐resolution transmission electron microscopy showed that the synthesis method affected the average particle size and the Fourier transform of the images showed the lattice plane distances, indicating that the samples presented high crystallinity degree in accordance with the XRD pattern. The Ti valence was investigated using X‐ray absorption near edge spectroscopy and the tetravalent form was the dominant oxidizing state in the samples, mainly in Eu and Ti co‐doped Y2O3. Optical behaviour was investigated through X‐ray excited optical luminescence and photoluminescence under ultraviolet–visible (UV–vis) and vacuum ultraviolet (VUV) excitation. Results indicated that Eu3+ is the emitting centre in samples doped with only Eu and with both Eu and Ti with the 5D07F2 transition as the most intense, indicating Eu3+ in a noncentrosymmetric site. Finally, in the Eu,Ti‐doped Y2O3 system, Ti3+ (or TiIV) excitation was observed but no Ti emission was present, indicating a very efficient energy transfer process from Ti to Eu3+. These results can aid the development of efficient nanomaterials, activated using UV, VUV, or X‐rays.  相似文献   

17.
Rare‐earth ions play an important role in eco‐friendly solid‐state lighting for the lighting industry. In the present study we were interested in Eu3+ ion‐doped inorganic phosphors for near ultraviolet (UV) excited light‐emitting diode (LED) applications. Eu3+ ion‐activated SrYAl3O7 phosphors were prepared using a solution combustion route at 550°C. Photoluminescence characterization of SrYAl3O7:Eu3+ phosphors showed a 612 nm emission peak in the red region of the spectrum due to the 5D07F2 transition of Eu3+ ions under excitation at 395 nm in the near‐UV region and at the 466 nm blue excitation wavelength. These red and blue emissions are supported for white light generation for LED lighting. Structure, bonding between each element of the sample and morphology of the sample were analysed using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), which showed that the samples were crystallized in a well known structure. The phosphor was irradiated with a 60Co‐γ (gamma) source at a dose rate of 7.2 kGy/h. Thermoluminescence (TL) studies of these Eu3+‐doped SrYAl3O7 phosphors were performed using a Nucleonix TL 1009I TL reader. Trapping parameters of this phosphor such as activation energy (E), order of kinetics (b) and frequency factor (s) were calculated using Chen's peak shape method, the initial rise method and Ilich's method.  相似文献   

18.
Glassy materials were prepared using two different systems: 50B2O3 – (50 ? x)PbO ? xPbCl2, with x = 0, 2 and 5 in mol % (System BPCl‐I) and 50BO1.5 – (50 ? x)PbO ? xPbCl2 with x = 0, 2, 5 and 7 in cationic % (System BPCl‐II). Structural and optical characterization showed that PbCl when substituted for PbO changed the structure of the glass network by replacing nonbridging oxygens for chlorine ions. This substitution also caused a change in the number of defects responsible for thermoluminescence (TL) emission (electrons and hole trap centres). Thermoluminescence emissions were observed for the first time in lead oxychloroborate glasses after exposure to UV radiation. Sample BPCl‐I‐2 (x = 2 from System I) demonstrated better TL emission compared with other glass samples. One intense peak in the glow curve, centred at ~122°C followed by a shoulder at ~180°C, was highly sensitive to UV radiation. There were also good linear responses at dose range ~0.4 to ~2 J/cm2 for the first peak (low temperature) and ~0.4 to ~4 J/cm2 for the second peak (high temperature).  相似文献   

19.
Sr3B2O6:Eu2+ yellow phosphor was prepared by the combustion method. The crystalline structure, photoluminescence and thermoluminescence properties of Sr3B2O6:Eu2+ were investigated extensively. The X‐ray diffraction result indicates that the Sr3B2O6:Eu2+ phosphor exhibited a rhombohedral crystal structure. The emission spectra under a 435 nm excited wavelength showed an intense broad band peaking at 574 nm, which corresponds to the 4f65d1 → 4f7 transition of Eu2+ ion. There were two different sites of Sr replaced by Eu in host lattice. The concentration quenching process between Eu2+ ions is determined and the corresponding concentration quenching mechanism was verified as dipole‐quadrupole interaction. The glow curve under 3 Gy β‐ ray irradiation had the glow peak at 160°C and the average activation energy was defined as about 0.98 eV. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Characterization of thermoluminescence (TL) properties of lithium borate glass samples doped with different concentrations of dysprosium (Dy) was carried out. Samples were prepared using a melting method at 1100°C and irradiated with β‐particles. The glass samples doped with 0.1% Dy displayed the best TL dosimetric properties compared with other compositions. Deconvoluted analyses of the glow curves displayed five overlapping TL glow peaks located between 392.0 and 510.3 K. A good linear TL dose–response for β‐particles was obtained in the dose range 66.6 mGy to 33.3 Gy. The minimum detectible dose was evaluated to be 205.4 μGy and samples revealed thermal fading in 312 h to 29% of their original value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号