首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tall fescue (Festuca arundinacea Schreb.), a highly competitive European grass that invades US grasslands, is reportedly allelopathic to many agronomic plants, but its ability to inhibit the germination or growth of native grassland plants is unknown. In three factorial glasshouse experiments, we tested the potential allelopathic effects of endophyte-infected (E+) and uninfected (E−) tall fescue on native grasses and forbs from Midwestern tallgrass prairies. Relative to a water control, at least one extract made from ground seed, or ground whole plant tissue of E+ or E− tall fescue reduced the germination of 10 of 11 species in petri dishes. In addition, the emergence of two native grasses in potting soil was lower when sown with E+ and E− tall fescue seedlings than when sown with seeds of conspecifics or tall fescue. However, when seeds of 13 prairie species were sown in sterilized, field-collected soil and given water or one of the four tall fescue extracts daily, seedling emergence was lower in one extract relative to water for only one species, and subsequent height growth did not differ among treatments for any species. We conclude that if tall fescue is allelopathic, its inhibitory effects on the germination and seedling growth of native prairie plants are limited, irrespective of endophyte infection. On the other hand, the apparent inability of these plants to detect tall fescue in field soil could hinder prairie restoration efforts if germination near this strong competitor confers fitness consequences. We propose that lack of chemical recognition may be common among resident and recently introduced non-indigenous plants because of temporally limited ecological interactions, and offer a view that challenges the existing allelopathy paradigm. Lastly, we suggest that tall fescue removal will have immediate benefits to the establishment of native grassland plants.  相似文献   

2.
Although prominent examples exist of non-native species causing substantial ecological harm, many have neutral or positive effects, including filling surrogate roles once performed by extinct native organisms. We tested the ecological roles of two non-native mammals as seed dispersers or seed predators in Guåhan, which, due to invasive brown tree snakes (Boiga irregularis), is devoid of native seed dispersers–birds and bats. We conducted feeding trials with captive rats (Rattus spp.), which are present but uncommon due to predation by snakes, and pigs (Sus scrofa), which are abundant. We examined if and how they interacted with common forest fruits. We then compared how any gut-passed or animal-handled seeds germinated compared to seeds left in whole fruit or depulped seeds. Rats and pigs interacted with most of the fruits and seeds (>80%) that they were fed. Of those, most seeds were destroyed—78% for rats and 90% for pigs, across both native and non-native plant species. Compared to seeds germinating within whole fruits, rats improved germination of the seeds that they handled without ingesting, while pigs diminished the germination of seeds that they handled. The small percentage of seeds (approximately 1.5% for rats and 5% for pigs) that survived gut passage germinated in higher proportions than those in whole fruits. Percentages of seed survival to germination are lower than found in similar studies with native avian frugivores. Our results indicate that pigs and rats have mixed effects on seeds, but are not suitable surrogates for native seed dispersers.  相似文献   

3.
Species-rich native grasslands in western Victoria, Australia, are often small, have a high perimeter to area ratio and are surrounded by non-native species. Few non-native species, however, have invaded them. A feature of species-rich grasslands is the presence of a bryophyte mat (composed of mosses and liverworts) that carpets the intertussock spaces. I assessed the role of these mats in plant invasions by sowing three non-native species (Briza maxima, Hypochoeris radicata, Plantago lanceolata) in replicated disturbed (mats removed) and undisturbed (mats intact) microsites at three grassland remnants (two recently burnt, one unburnt for 3 years) and followed seedling emergence, survival and growth for 5 months. Three native species were also sown for comparison. The rate of germination and total percent germination of non-native species were significantly enhanced at both burnt sites when the mat was disturbed. The large-seeded Briza maxima failed to germinate at both burnt sites in the absence of soil disturbance. The native species generally did not show a strong germination or growth response to soil disturbance in burnt areas. At the unburnt site, where monthly percent soil moisture was highest, final percent germination of the non-native and native species was greatest of any site in both microsites, and germination was not significantly affected by soil disturbance. Differences in the seed morphology of native and non-native species may play an important role in their ability to establish on bryophyte mats in moisture-limiting environments. Any activity that disrupts the mats in the frequently burnt, species-rich grassland remnants is likely to significantly enhance the germination and subsequent growth by non-natives. However, where burning is infrequent, germination of some non-native species may be expected, regardless of disturbance, although growth will likely be favoured in disturbed areas.  相似文献   

4.
A fundamental goal of restoration is the re-establishment of plant diversity representative of native vegetation. However, many prairie restorations or Conservation Reserve Program sites have been seeded with warm-season grasses, leading to grass-dominated, low-diversity restorations not representative of native grasslands. These dominant grasses are strongly mycotrophic, while many subordinate forb species appear to be less dependent on mycorrhizal symbiosis. Therefore, manipulating arbuscular mycorrhizal fungi (AMF) may be useful in promoting establishment and growth of forb species in grass-dominated prairie restorations. To assess the potential role of mycorrhizae in affecting the productivity and community composition of restored tallgrass prairie, we conducted a 4-year field experiment on an 8-year-old grassland restoration at the Konza Prairie in northeastern Kansas, USA. At the initiation of our study, seeds of 12 forb species varying in degree of mycorrhizal dependence were added to established grass-dominated plots. Replicate plots were treated bi-weekly with a soil drench of fungicide (Topsin-M®) over four growing seasons and compared to non-treated control plots to assess the role of AMF in affecting plant species composition, productivity, leaf tissue quality, and diversity in restored tallgrass prairie. Topsin applications successfully reduced mycorrhizal colonization of grass roots to approximately 60–80% relative to roots in control plots. Four years of mycorrhizal suppression reduced productivity of the dominant grasses and increased plant species richness and diversity. These results highlight the importance of mycorrhizae as mediators of plant productivity and community dynamics in restored tallgrass prairie and indicate that temporarily suppressing AMF decreases productivity of the dominant C4 grasses and allows for establishment of seeded forb species.  相似文献   

5.
The extreme species richness of native shrubland vegetation (kwongan) near Eneabba, Western Australia, presents a major problem in the restoration of sites following mineral sand mining. Seed sources available for post-mining restoration and those present in the native kwongan vegetation were quantified and compared. Canopy-borne seeds held in persistent woody fruits were the largest seed source of perennial species in the undisturbed native vegetation and also provided the most seeds for restoration. In undisturbed vegetation, the germinable soil seed store (140–174 seeds · m?2) was only slightly less than the canopy-borne seed store (234–494 seeds · m?2), but stockpiled topsoil provided only 9% of the germinable seeds applied to the post-mining habitat. The age of stockpiled soil was also important. In the three-year-old stockpiled topsoil, the seed bank was only 10.5 seeds · m?2 in the surface 2.5 cm, compared to 56.1 to 127.6 seeds · m?2 in fresh topsoil from undisturbed vegetation sites. In the stockpiled topsoil, most seeds were of annual species and 15–40% of the seeds were of non-native species. In the topsoil from undisturbed vegetation, over 80% of the seeds were of perennial species, and non-native species comprised only 2.7% of the seed bank. Additional seeds of native species were broadcast on restoration areas, and although this represented only 1% of the seed resources applied, the broadcast seed mix was an important resource for increasing post-mining species richness. Knowledge of the life-history characteristics of plant species may relate to seed germination patterns and assist in more accurate restoration where information on germination percentages of all species is not available.  相似文献   

6.
The ability of some invasive plant species to produce biochemical compounds toxic to native species, called allelopathy, is thought to be one of the reasons for their success when introduced to a novel range, an idea known as the Novel Weapons Hypothesis. However, support for this hypothesis mainly comes from bioassays and experiments conducted under controlled environments, whereas field evidence is rare. In a field experiment, we investigated whether three plant species invasive in Europe, Solidago gigantea, Impatiens glandulifera and Erigeron annuus, inhibit the germination of native species through allelopathy more than an adjacent native plant community. At three sites for each invasive species, we compared the germination of native species that were sown on invaded and non-invaded plots. Half of these plots were amended with activated carbon to reduce the influence of potential allelopathic compounds. The germination of sown seeds and of seeds from the seedbank was monitored over a period of 9 weeks. Activated carbon generally enhanced seed germination. This effect was equally pronounced in invaded and adjacent non-invaded plots, indicating that invasive species do not suppress germination more than a native plant community. In addition, more seeds germinated from the seedbank on invaded than on non-invaded soil, probably due to previous suppression of germination by the invasive species. Our field study does not provide evidence for the Novel Weapons Hypothesis with respect to the germination success of natives. Instead, our results suggest that if invasive species release allelopathic compounds that suppress germination, they do so to a similar degree as the native plant community.  相似文献   

7.
Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree (Tridacia sebifera) are present surrounding a native woody plant (Myrica cerifera); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid‐dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20–30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.  相似文献   

8.
Eastern red cedar (Juniperus virginiana) establishment increased dramatically in the tallgrass prairie biome of North America during the last 30 years. Since many of the remaining remnant prairies occur on steep, dry, and nutrient poor sites, threatened by the invasion of native and non-native woody species, it is important to understand how an invasive species such as eastern red cedar influences key environmental factors that may determine the future trajectory of these systems and whether abiotic and biotic components of the system are resilient following cedar removal. To address these issues we: (1) investigated the influence of eastern red cedar on micro-environmental factors; (2) evaluated how these micro-environmental factors responded to eastern red cedar removal; and (3) assessed the effect of eastern red cedar on herbaceous species germination and distribution. The invasion of eastern red cedar was associated with lower surface light availability and soil temperature, as seen in prior studies, but otherwise had effects distinct from those observed in prior studies. There was no effect of cedar on soil pH, and unlike prior studies, cedar patches had higher soil moisture compared to native C4 prairie grass plots. Moreover, these effects had strong spatial signatures, with impacts of invasion on micro-environment and native vegetation differing dramatically with slope position and aspect. Three years after eastern red cedar was removed, micro-environmental factors and species composition became similar to the tree-free grass-dominated plots, indicating a significant capacity for recovery following possible cedar control. In a broader context, this study sheds light on the pathways and mechanisms driving the impacts of this biological invasion on dry, steep, nutrient poor systems and illustrates the capability of these systems to recover once the invading species is removed.  相似文献   

9.
In tallgrass prairie reconstruction, the way desired seeds are arranged on the landscape may affect species establishment, species persistence, and the establishment and persistence of undesired (nonseeded) species from the local propagule pool. To test effects of species seeding pattern on how grasslands develop spatially, we seeded 20—4 × 4–m bare soil plots with 16 tallgrass prairie species. Treatment plots were divided into 16—1 × 1–m subplots, 64—0.5 × 0.5–m subplots, 256—0.25 × 0.25–m subplots, or 1,024—0.125 × 0.125–m subplots. Each species was hand broadcast into separate subplots (1 m2 total area/species) within each plot. An additional treatment included uniformly mixing and broadcasting all seeds across a plot. We recorded species cover at the 0.125 × 0.125–m scale within each plot at the beginning of the second and third growing seasons. While species persistence was greatest within plots seeded with larger subplots, plots with smaller subplots were more spatially diverse and less occupied by nonseeded species over time than larger subplot and mixed plots. As is common in reconstruction efforts, establishment was variable among species and seeding with monospecific subplots enhanced colonization of desired rhizomatous species (e.g., Heliopsis helianthoides, Monarda fistulosa, Elymus virginicus) into unoccupied locations at the expense of species from the local propagule pool. Results suggest that seeding species in smaller, monospecific patches could result in grasslands with a more balanced native species composition than those established with a seed mixture approach.  相似文献   

10.
After removing invasive plants, whether by herbicides or other means, typical restoration design focuses on rebuilding native plant communities while disregarding soil microbial communities. However, microbial–plant interactions are known to influence the relative success of native versus invasive plants. Therefore, the abundance and composition of soil microorganisms may affect restoration efforts. We assessed the effect of herbicide treatment on phytosymbiotic pink‐pigmented facultative methylotrophic (PPFM) bacteria and the potential consequences of native and invasive species establishment post‐herbicide treatment in the lab and in a coastal sage scrub (CSS)/grassland restoration site. Lab tests showed that 4% glyphosate reduced PPFM abundance. PPFM addition to seeds increased seedling length of a native plant (Artemisia californica) but not an invasive plant (Hirschfeldia incana). At the restoration site, methanol addition (a PPFM substrate) improved native bunchgrass (Nassella pulchra) germination and size by 35% over controls. In a separate multispecies field experiment, PPFM addition stimulated the germination of N. pulchra, but not that of three invasive species. Neither PPFM nor methanol addition strongly affected the growth of any plant species. Overall, these results are consistent with the hypothesis that PPFMs have a greater benefit to native than invasive species. Together, these experiments suggest that methanol or PPFM addition could be useful in improving CSS/grassland restorations. Future work should test PPFM effects on additional species and determine how these results vary under different environmental conditions.  相似文献   

11.
We surveyed the prevalence and amount of leaf damage related to herbivory and pathogens on 12 pairs of exotic (invasive and noninvasive) and ecologically similar native plant species in tallgrass prairie to examine whether patterns of damage match predictions from the enemy release hypothesis. We also assessed whether natural enemy impacts differed in response to key environmental factors in tallgrass prairie by surveying the prevalence of rust on the dominant C4 grass, Andropogon gerardii, and its congeneric invasive exotic C4 grass, A. bladhii, in response to fire and nitrogen fertilization treatments. Overall, we found that the native species sustain 56.4% more overall leaf damage and 83.6% more herbivore-related leaf damage when compared to the exotic species. Moreover, we found that the invasive exotic species sustained less damage from enemies relative to their corresponding native species than the noninvasive exotic species. Finally, we found that burning and nitrogen fertilization both significantly increased the prevalence of rust fungi in the native grass, while rust fungi rarely occurred on the exotic grass. These results indicate that reduced damage from enemies may in part explain the successful naturalization of exotic species and the spread of invasive exotic species in tallgrass prairie.  相似文献   

12.
More attention is currently being focused on earthworm invasions; however, in many ecosystems the relative abundance of native and invasive earthworm species is unknown. We characterized earthworm populations of two grassland types within the Palouse region: native prairie remnants and Conservation Reserve Program (CRP) set asides planted with exotic grasses. The earthworm community in both grassland types was completely dominated by the exotic-invasive Aporrectodea trapezoides. Only one individual of a native species, Driloleirus americanus (the giant Palouse earthworm), was found in a prairie remnant. No differences were found between prairie remnants and CRP sites for mean earthworm density (24–106 individuals m−2) or fresh weight (12–45 g m−2). Our results suggest that the combined effects of land-use change, habitat fragmentation and competitive interactions have resulted in the decimation of native earthworm populations and dominance of invasive earthworms in native and non-native grasslands of the Palouse region.  相似文献   

13.
Invasions of non-native species are considered to have significant impacts on native species, but few studies have quantified the direct effects of invasions on native community structure and composition. Many studies on the effects of invasions fail to distinguish between (1) differential responses of native and non-native species to environmental conditions, and (2) direct impacts of invasions on native communities. In particular, invasions may alter community assembly following disturbance and prevent recolonization of native species. To determine if invasions directly impact native communities, we established 32 experimental plots (27.5 m2) and seeded them with 12 native species. Then, we added seed of a non-native invasive grass (Microstegium vimineum) to half of the plots and compared native plant community responses between control and invaded plots. Invasion reduced native biomass by 46, 64, and 58%, respectively, over three growing seasons. After the second year of the experiment, invaded plots had 43% lower species richness and 38% lower diversity as calculated from the Shannon index. Nonmetric multidimensional scaling ordination showed a significant divergence in composition between invaded and control plots. Further, there was a strong negative relationship between invader and native plant biomass, signifying that native plants are more strongly suppressed in densely invaded areas. Our results show that a non-native invasive plant inhibits native species establishment and growth following disturbance and that native species do not gain competitive dominance after multiple growing seasons. Thus, plant invaders can alter the structure of native plant communities and reduce the success of restoration efforts.  相似文献   

14.
Invasive species are a common problem in restoration projects. Manipulating soil fertility and species arrival order has the potential to lower their abundance and achieve higher abundances of seeded native species. In a 7‐year experiment in Missouri, United States, we tested how nutrient addition and the timing of arrival of the invasive legume Lespedeza cuneata and seeded native prairie grass and forb species influenced overall community composition. Treatments that involved early arrival of seeded forb and grass species and late arrival of L. cuneata were most successful at creating community structure that fulfilled our restoration goals, displaying high abundance of seeded native forb species, low abundances of L. cuneata, and non‐native species. There were few treatment interactions, with the exception that timing seeded native forbs and timing of L. cuneata arrival interactively influenced the abundance of seeded native forbs. This suggests that the individual treatments are supporting the restoration goals, such as creating a community with low abundance of L. cuneate or high abundance of native seeded species, without restricting each other. This study demonstrates the importance of priority effects in disturbed habitats prone to invasion, the lasting effects of initial seeding on long‐term community composition, and the potential for fertilization to positively benefit restoration of degraded grasslands.  相似文献   

15.
Attempting to control invasive plant species in tallgrass prairie restorations is time-consuming and costly, making improved approaches for predicting and reducing invasion imperative. Both biotic and abiotic factors mediate plant invasions, and can potentially be used by restoration managers to reduce invasion rates. Biotic factors such as plant species richness and phylogenetic diversity of the native community may impact invasion. Relatedness of invading species to those in recipient communities has also been shown to influence invasion success. However, the direction of this influence is variable, reflecting Darwin’s Naturalization Conundrum. Abiotic factors such as fire regime and soil factors may impact invasion by selecting against invasive species or indicating suitable habitats for them. We surveyed 17 tallgrass prairie restorations in Illinois, USA, to investigate the effects of biotic and abiotic factors on invasion by non-native plant species at two different scales. We predicted we would find support for Darwin’s Naturalization Hypothesis at the plot (neighborhood) scale with invasion by distantly related species, and find support for the Pre-adaptation Hypothesis at the site scale. We hypothesized that biotic factors would exert more influence at the neighborhood scale, while abiotic factors would be more influential at a coarser site scale. Contrary to our expectations, at the neighborhood scale we found that closely related invasive species are more likely to invade, supporting the Pre-adaptation Hypothesis. We found that native species richness and age of restoration were negatively correlated with invasion. At the site scale, soil organic matter [SOM] concentrations and heterogeneity in SOM were positively associated with the number of invasive species while pH heterogeneity was negatively associated. Restoration practitioners may be able to reduce plant invasions by increasing native species richness, and non-native species most closely related to the resident community should potentially be prioritized as those most likely to be highly invasive.  相似文献   

16.
Landscape context and site history, including antecedent site conditions, may constrain restoration potential despite the efforts of restoration practitioners. However, few experimental studies have investigated the relative importance of antecedent site conditions and the intensity of on‐site management in driving restoration outcomes. We established small‐scale prairie restoration experiments within the Lost Mound Unit of the Upper Mississippi River National Wildlife and Fish Refuge in Illinois, U.S.A. We investigated the effectiveness of two restoration treatments, herbicide application and seeding of native plants, on removal of invasive crown‐vetch (Securigera varia) and recovery of sand prairie plant communities. We replicated treatment plots across 15 locations with three levels of antecedent condition and fire treatment (burned, undegraded; burned, degraded; and unburned, degraded) to determine whether antecedent condition constrained the effectiveness of on‐site restoration. Two years after initial herbicide application crown‐vetch cover was significantly reduced relative to untreated controls. This effect was more pronounced in plots treated twice with herbicide. However, removal of crown‐vetch facilitated invasion by Kentucky bluegrass (Poa pratensis). Addition of native prairie seed had little effect on restoration outcomes, regardless of herbicide application. Native community recovery was greater in plots restored in less degraded locations. Herbicide application tended to increase native species cover, but importantly, this effect was significant only in the least degraded locations. Intensive restoration management conducted in degraded landscapes can result in undesirable outcomes such as secondary species invasion. Reestablishment of native species following restoration is more likely where the surrounding remnant communities are intact.  相似文献   

17.
Old World Bluestems (OWB), introduced from Europe and Asia in the 1920s, recently have begun to raise concerns in the Great Plains. Despite suggestion in the late 1950s that OWB were weedy and negatively impacted biological diversity, they were widely introduced throughout the Great Plains for agricultural purposes. Anecdotal evidence suggests that OWB exhibit invasive characteristics that promote competitive exclusion of native species. The objective of our study was to quantify the competitive abilities of two OWB species (Caucasian bluestem; Bothriochloa bladhii (Retz.) S.T. Blake (= Bothriochloa caucasica (Trin.) C.E. Hubb.) and yellow bluestem; Bothriochloa ischaemum (L.) Keng) with three native grass species (big bluestem (Andropogon gerardii Vitman), little bluestem (Schizachyrium scoparium (Michx.) Nash), and sideoats grama (Bouteloua curtipendula (Michx.) Torr.)). A greenhouse target-neighbor study was conducted to assess both interspecific and intraspecific competition. A total of 480 pots (4.4 l) filled with native soil was used with all pair-wise combinations of species and four density treatments (six replications). Vegetative tiller height, above- and belowground biomass were measured at the end of 16 weeks. Both of the OWB significantly inhibited at least one growth parameter of the three native grass species, while most of the native species did not inhibit growth of either OWB species. Growth of B. ischaemum was enhanced when grown in association with S. scoparium. Based upon the results of our study of OWB competitive superiority and previous research, many of the characteristics possessed by OWB are found to be in common with known invasive species. Hence, we propose that two OWB are competitively superior to three common native prairie species providing them with the ability to invade and threaten the native grasslands of the Central and Southern Great Plains.  相似文献   

18.
Chang CC  Smith MD 《Oecologia》2012,168(4):1091-1102
To improve the understanding of how native plant diversity influences invasion, we examined how population and community diversity may directly and indirectly be related to invasion in a natural field setting. Due to the large impact of the dominant C4 grass species (Andropogon gerardii) on invasion resistance of tallgrass prairie, we hypothesized that genetic diversity and associated traits within a population of this species would be more strongly related to invasion than diversity or traits of the rest of the community. We added seeds of the exotic invasive C4 grass, A. bladhii, to 1-m2 plots in intact tallgrass prairie that varied in genetic diversity of A. gerardii and plant community diversity, but not species richness. We assessed relationships among genetic diversity and traits of A. gerardii, community diversity, community aggregated traits, resource availability, and early season establishment and late-season persistence of the invader using structural equation modeling (SEM). SEM models suggested that community diversity likely enhanced invasion indirectly through increasing community aggregated specific leaf area as a consequence of more favorable microclimatic conditions for seedling establishment. In contrast, neither population nor community diversity was directly or indirectly related to late season survival of invasive seedlings. Our research suggests that while much of diversity–invasion research has separately focused on the direct effects of genetic and species diversity, when taken together, we find that the role of both levels of diversity on invasion resistance may be more complex, whereby effects of diversity may be primarily indirect via traits and vary depending on the stage of invasion.  相似文献   

19.
  1. Both mutualistic and pathogenic soil microbes are known to play important roles in shaping the fitness of plants, likely affecting plants at different life cycle stages.
  2. In order to investigate the differential effects of native soil mutualists and pathogens on plant fitness, we compared survival and reproduction of two annual tallgrass prairie plant species (Chamaecrista fasciculata and Coreopsis tinctoria) in a field study using 3 soil inocula treatments containing different compositions of microbes. The soil inocula types included fresh native whole soil taken from a remnant prairie containing both native mutualists and pathogens, soil enhanced with arbuscular mycorrhizal (AM) fungi derived from remnant prairies, and uninoculated controls.
  3. For both species, plants inoculated with native prairie AM fungi performed much better than those in uninoculated soil for all parts of the life cycle. Plants in the native whole prairie soil were either generally similar to plants in the uninoculated soil or had slightly higher survival or reproduction.
  4. Overall, these results suggest that native prairie AM fungi can have important positive effects on the fitness of early successional plants. As inclusion of prairie AM fungi and pathogens decreased plant fitness relative to prairie AM fungi alone, we expect that native pathogens also can have large effects on fitness of these annuals. Our findings support the use of AM fungi to enhance plant establishment in prairie restorations.
  相似文献   

20.
To test whether plant growth–promoting bacteria might be useful in facilitating the growth of Phragmites australis, the common reed, in the presence of metals and organic compounds, P. australis seeds were treated with plant growth–promoting bacteria. The bacterium Pseudomonas asplenii AC was genetically transformed to express a bacterial gene encoding the enzyme 1-aminocyclopropane-1-carboxylate deaminase, and both the native and transformed bacteria were tested in conjunction with P. australis. Inoculation of seeds, which were subsequently grown in the presence of copper or creosote, with transformed P. asplenii AC significantly increased seed germination. Moreover, the addition of either native or transformed P. asplenii AC to P. australis seeds enabled the plants (shoots and roots) to attain a greater size than noninoculated plants after growth in soil in the presence of either copper or creosote.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号