首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Abstract: Using the highly sensitive HPLC-fluorophotometry technique, anterograde and retrograde axonal transport of carboxypeptidase H (CPH), a putative pro-hormone processing enzyme that removes a basic amino acid from the C-terminus of a precursor peptide, was measured 12–72 h after double ligations of rat sciatic nerves. CPH-like activity in rat sciatic nerves was 60-fold lower than that in the pituitary gland. CPH-like enzyme activity was rapidly accumulated in the proximal segment and peaked 48 h after ligation. The axonal flow was 100 mm/day, indicating that CPH in rat sciatic nerves is rapidly transported to the nerve terminals as an active form. The properties of the enzyme were similar to those of CPH in the brain: The pH optimum is at 5.5, and the molecular mass is ∼50 kDa. These results suggest that active CPH in the PNS is transported by a rapid anterograde axonal flow and may play a role in converting proneuropeptides to active neuropeptides under the axonal transport.  相似文献   

2.
The effects of systemically introduced neurotoxic solvents 2,5-hexanedione (2,5-HD) and 3,4-dimethyl-2,5-hexanedione (DMHD) on retrograde axonal transport (RT) of125I-labeled tetanus toxin (TT) was studied in rat and mouse sciatic nerves. The rate of retrograde transport of TT in control rat sciatic nerves was slightly higher (6.8±0.4 mm/h) than in mouse sciatic nerves (5.4±0.5 mm/h). A single high dose of 2,5-HD (1,000 mg/kg, i.p.) produced a time-dependent effect on RT in mouse sciatic nerves. 2,5-HD caused a gradual decrease in the velocity of RT (approximately 65% inhibition between 2.0–2.5 h) with a reversal to normal rate 3–5 h after the toxin administration. The effect of DMHD on RT was examined following semi-chronic treatment in rats. DMHD caused a significant decrease (approximately 50%) in the rate of TT transport, in addition, it produced weight loss and hind-limb paralysis.I had the good opportunity of being a member of Professor Alan N. Davison' research team during 1971–1977. This research paper is dedicated to his retirement.  相似文献   

3.
The effect of ACTH/MSH peptides on fast axonal transport along intact or regenerating sciatic nerve was examined following injection of tritiated leucine into the rat lumbar spinal cord. The rate of fast axonal transport was not significantly changed by treatment with ACTH/MSH(4-10), the ACTH(4-9) analog ORG 2766, hypophysectomy, or adrenalectomy. Fast axonal transport was unchanged in regenerating nerves and in regenerating, ACTH(4-10)-treated nerves. However, treatment with ORG 2766 in dosages of either 1 or 10 micrograms/kg/day IP for seven days significantly reduced (62% and 64%, respectively) the crest height of the fast axonal transport curve of intact sciatic nerve. The results suggest that the reported peptide-induced enhancement of nerve regeneration is not due to changes in the rate of fast axonal transport.  相似文献   

4.
Axonal transport of Boc-Arg-Val-Arg-Arg-MCA hydrolyzing enzyme activity was studied in rat sciatic nerves from 12 to 120 h after double ligations. The anterograde axonal transport increased and peaked 72 h after ligation. The optimum pH for Boc-Arg-Val-Arg-Arg-MCA hydrolyzing enzyme activity was 6.5 to 6.9 and did not require Ca(2+) for the activity. Two molecular forms with enzyme activity were identified by size-exclusion chromatography and the molecular masses of the two enzymes were estimated to be 98 and 52 kDa. Two enzyme activities were strongly inhibited by Hg(2+), Cu(2+) and trypsin inhibitors such as TLCK, antipain and leupeptin. It cleaved the substrate, Boc-Arg-Val-Arg-Arg-MCA, between the dibasic sequence Arg-Arg, and needed a support of aminopeptidase B-like enzyme activity for the liberation of 7-amino-4-methylcoumarin. These results suggest that the enzyme is transported in rat sciatic nerves and involved in the post-translational processing of precursor proteins under the anterograde axonal transport. But there is absolutely no evidence for a role in precursor processing and such a putative role is purely speculative.  相似文献   

5.
Axonal transport of endopeptidase 24.15 (EP24.15), a putative neuropeptide degrading-enzyme, was examined in the proximal, middle, and distal segments of rat sciatic nerves using a double ligation technique. At 48h after ligation, a significant amount of the axonal transport of EP24.15 activity was found in the proximal segment, while axonal transport of deamidase activity, a lysosomal enzyme, increased in both proximal and distal segments. Western blot analysis of EP24.15 showed that EP24.15 immunoreactivity in the proximal segment was 1.8-fold higher than that in the middle segment. The immunohistochemical analysis of the segments also showed an increase in the immunoreactive EP24.15 in the proximal segment in comparison with that in the middle segment. In the distal segment, no axonal transport of EP24.15 was found in all methods examined, indicating that EP24.15 is mainly transported by an anterograde axonal flow. These observations suggest that EP24.15 may be involved in the metabolism of neuropeptides in nerve terminals or synaptic clefts.  相似文献   

6.
7.
Abstract— The axoplasmic transport rate and distribution of acetylcholinesterase (AChe, EC 3.1.1.7) was studied in the sciatic nerves of normal rats and those with a neuropathy due to acrylamide, by measuring the accumulation of the enzyme proximal to single and double ligatures. The single ligature experiments showed that the apparent transport rate of AChE was decreased in acrylamide neuropathy. The double ligature experiments indicated that only 8.1% of AChE was mobile in normal rat sciatic nerve. The mobility of the enzyme in acrylamide-treated rat sciatic nerves was altered to 11.8%. The absolute transport rate of AChE in normal rat sciatic nerve was 567 mm/24 h, and in acrylamide neuropathy it was decreased to 287 mm/24 h.
The amount of AChE activity transported in normal rat sciatic nerve was 2.64 μmol/24 h. The rats with acrylamide neuropathy showed a decrease in the amount of AChE activity moving in the orthograde direction (2.03 μmol/24 h).
The colchicine-binding properties of tubulin protein from sciatic nerves of normal and acrylamide-treated rats were studied. In rats with acrylamide neuropathy, a marked decrease of 75% in tubulin-colchicine binding was observed.  相似文献   

8.
Aging in the sciatic nerve of the rat is characterized by various alterations, mainly cytoskeletal impairment, the presence of residual bodies and glycogen deposits, and axonal dystrophies. These alterations could form a mechanical blockade in the axoplasm and disturb the axoplasmic transports. However, morphometric studies on the fiber distribution indicate that the increase of the axoplasmic compartment during aging could obviate this mechanical blockade. Analysis of the axoplasmic transport, using acetylcholinesterase (AChE) molecular forms as markers, demonstrates a reduction in the total AChE flow rate, which is entirely accounted for by a significant bidirectional 40-60% decrease in the rapid axonal transport of the G4 molecular form. However, the slow axoplasmic flow of G1 + G2 forms, as well as the rapid transport of the A12 form of AChE, remain unchanged. Our results support the hypothesis that the alterations observed in aged nerves might be related either to the impairment in the rapid transport of specific factor(s) or to modified exchanges between rapidly transported and stationary material along the nerves, rather than to a general defect in the axonal transport mechanisms themselves.  相似文献   

9.
beta,beta'-Iminodipropionitrile (IDPN), a neurotoxin, causes redistribution of neurofilaments in axons followed by the development of proximal axonal swellings and, in chronic intoxication, a distal decrease in axonal caliber. The latter changes are caused by a selective impairment in the slow anterograde axonal transport of neurofilament proteins. To assess the role of retrograde axonal transport in IDPN toxicity, we used [3H]N-succinimidyl propionate ([3H]NSP) to label covalently endogenous axonal proteins in sciatic nerve of the rat and measured the accumulation of radioactively labeled proteins in the cell bodies of motor and sensory neurons over time. IDPN was injected intraneurally 6 h or intraperitoneally 1 day before subepineurial injection of [3H]NSP into the sciatic nerve, and the animals were killed 1, 2, and 7 days after [3H]NSP injection. Neurotoxicity was assessed by electron microscopic observation of the nerves of similarly treated animals. Both intraneural and intraperitoneal injection of IDPN caused an acute reduction in the amount of labeled proteins transported back to the cell bodies. The early appearance of these changes suggests that alterations in retrograde transport may play a role in the production of the neuropathic changes.  相似文献   

10.
Dystonia musculorum (dt) mice suffer from a severe sensory neuropathy caused by mutations in the gene encoding the cytoskeletal cross-linker protein dystonin/bullous pemphigoid antigen 1 (Bpag1). Loss of function of dystonin/Bpag1 within neurons leads to a loss in the maintenance of cytoskeletal organization and to the development of focal axonal swellings prior to death of the neuron. In the present study, we demonstrate that neurons within the sciatic nerves of dt27J mice undergo axonal degeneration as has been previously reported for the dorsal roots. Furthermore, ultrastructural studies reveal a perturbed organization of the neurofilament and microtubule networks within the axons of sciatic nerves in dt27J mice. The disrupted cytoskeletal organization suggested that axonal transport is affected in dt mice. To address this, we assessed fast axonal transport by measuring the rate of accumulation of acetylcholinesterase (AChE) proximal and distal to a surgically introduced ligature on the sciatic nerves of normal and dt27J mice. Our findings demonstrate that axonal transport of AChE in both orthograde and retrograde directions is markedly affected, and allow us to conclude that axonal transport defects do exist in the sciatic nerves of dt27J mice.  相似文献   

11.
The rates of axonal regeneration and initial delay in motor and sensory axons of cyclophosphamide-treated and control rat sciatic nerves after cold injury were determined by using fast axoplasmic transport. The rates in motor and sensory nerves were not significantly different between the two groups. The difference of initial delay in motor nerve was not significant, but in sensory nerve the drug-treated group showed a longer initial delay than the control. These results suggest that the enhancement of motor function recovery by cyclophosphamide is not due directly to an increased rate of axonal regeneration, nor to a decreased initial delay.  相似文献   

12.
Axonal transport of tripeptidyl peptidase II, a putative cholecystokinin inactivating serine peptidase, was examined in the proximal, middle, and distal segments of rat sciatic nerves using a double ligation technique. Enzyme activity significantly increased not only in the proximal segment but also in the distal segment 12-72h after ligation, and the maximal enzyme activity was found in the proximal and distal segments at 72h. Western blot analysis of tripeptidyl peptidase II showed that its immunoreactivities in the proximal and distal segments were 3.1- and 1.7-fold higher than that in the middle segment. The immunohistochemical analysis of the segments also showed an increase in immunoreactive tripeptidyl peptidase II level in the proximal and distal segments in comparison with that in the middle segment, indicating that tripeptidyl peptidase II is transported by anterograde and retrograde axonal flow. The results suggest that tripeptidyl peptidase II may be involved in the metabolism of neuropeptides in nerve terminals or synaptic clefts.  相似文献   

13.
Abstract— The distribution of DBH activity between soluble and sedimentable fractions of hypotonic homogenates was examined in rat sympathetic ganglia and nerves after interruption of axonal transport. Local application of colchicine to superior cervical ganglia caused an increase mainly in particulate DBH activity, which was presumably bound to membranes. Likewise, in sciatic nerves, particulate DBH activity accumulated on both sides of a ligature and disappeared from a region well below a ligature much faster than did soluble activity. On the other hand, 18 h after simultaneous application of two ligatures to the nerve, neither total DBH activity nor subcellular distribution of this activity changed in the isolated nerve region. More detailed analysis showed that ligation affected the distribution of DBH activity within a fraction that sedimented at 140,000 g after homogenization of nerves in isotonic sucrose. Just above a ligature, osmotically releasable DBH activity was a smaller proportion of the sedimentable activity than in control nerves. However, as compared to controls, osmotically releasable DBH activity was a larger proportion of the activity in the sedimentable fraction from a region well below a ligature. A model was developed which accounts for some of these results by postulating that DBH is associated with different compartments in sciatic nerve which have different rates of transport and different proportions of soluble and bound enzyme.  相似文献   

14.
Muscarinic receptors that accumulated above a ligature in rat sciatic nerves were labelled in vitro under isotonic conditions with N-[3H]methylscopolamine. The addition of 0.005% of digitonin doubled the binding in proximal segments above and close to the ligature but not in the intermediary segments between two ligatures. Osmotic shock and freeze-thawing treatments also enhanced the binding. Digitonin did not affect the affinity of muscarinic receptors but revealed a greater number of sites by increasing the membrane permeability to the hydrophilic ligand. We conclude that presynaptic muscarinic receptors that undergo fast axonal transport in rat sciatic nerves exist under a latent form because they are associated with vesicles. This is the first demonstration of a structure-linked latency for receptors.  相似文献   

15.
Anterograde slow and fast axonal transport was examined in rats intoxicated with 2,5-hexanedione (1 g/kg/week) for 8 weeks. Distribution of radioactivity was measured in 3-mm segments of the sciatic nerve after labelling of proteins with [35S]methionine or [3H]leucine and glycoproteins with [3H]fucose. The axonal transport of the anterograde slow components was examined after 25 (SCa) and 10 days (SCb), in motor and sensory nerves. SCa showed an increased transport velocity in motor (1.25 +/- 0.08 mm/day versus 1.01 +/- 0.05 mm/day) and in sensory nerves (1.21 +/- 0.13 mm/day versus 1.06 +/- 0.07 mm/day). The relative amount of labelled protein in the SCa wave in both fiber systems was also increased. SCb showed unchanged transport velocity in motor as well as in sensory nerves, whereas the amount of label was decreased in the motor system. Anterograde fast transport in motor nerves was examined after intervals of 3 and 5 h, whereas intervals of 2 and 4 h were used for sensory nerves. Velocities and amounts of labelled proteins of the anterograde fast component remained normal. We suggest that the increase in protein transport in SCa reflects axonal regeneration.  相似文献   

16.
This report describes the fast axonal transport of [3H]-leucine-labeled proteins in regenerating rat sciatic motor nerves. A normal rate of fast transport (383 ± 33 mm/day) was present in the regenerating sprouts, as well as in the central stumps. The rapidly transported proteins passed the level of axotomy without impediment, and accumulated in the endings of the regenerating sprouts, as shown by electron microscope autoradiography. In addition, transported proteins accumulated in terminal neuromas. The relative amount of protein-incorporated radioactivity in the crest of fast transport in the regenerating nerves was increased compared to control nerves. These results are interpreted to suggest that the mechanism of fast transport is the same in regenerating sprouts as in normal axons; during regeneration fast transport appears to add newly synthesized materials to the growing tip.  相似文献   

17.
Axonal transport of the 16S Molecular form of acetylcholinesterase (16S-AChE) in doubly ligated rat sciatic nerves was studied by means of velocity sedimentation analysis on sucrose gradients. This form of AChE was selectively confined to motor, and not to sensory, fibers in the sciatic nerve, where it represented 3--4% of total AChE. Its activity increased linearly with time (4--20 hr) in nerve segments (7 mm) proximal to the central ligature (4.5 mU/24hr) and distal to the peripheral ligature (2.0 mU/24 hr). From the linear rates of accumulation of 16S-AChE, we conclude that the enzyme is conveyed by anterograde and retrograde axonal transport at velocities close to those previously defined for the movement of total AChE (410 mm/day, anterograde; 220 mm/day, retrograde). The transport of AChE molecular forms, other than the 16S form, could not be resolved presumably due to their presence in blood as well as at extraaxonal sites. The present findings are consistent with the view that in rat sciatic nerve most, if not all, of the small portion of total AChE (approximately 3%) which is transported may be accounted for by 16S-AChE.  相似文献   

18.
Abstract— Orthograde and retrograde axonal transport were studied in rat sciatic nerves which had been crushed and either allowed to regenerate, or prevented from doing so by tightly ligaturing the nerve. At various intervals after crushing the nerve. L-[3H]leucine was injected into the lumbosacral spinal cord. and the subsequent transport of labeled protein in motoneuron axons was quantitated by measuring the accumulation of labeled protein at collection crushes made proximal to the original nerve crush. Accumulations proximal to the collection crushes (orthograde transport) 9-11 h after injection (p.i.). decreased within I day of nerve injury, but returned to normal values as regeneration proceeded. In non-regenerating nerves accumulations remained depressed for at least 30 days. Accumulations distal to the collection crushes (retrograde transport) 9-11 h pi. increased over the first 5 days following injury but returned to normal values as regeneration proceeded. In non-regenerating nerves accumulations remained elevated. The time-course of retrograde transport of newly-synthesized protein also returned to normal during nerve regeneration. It is suggested that changes in retrograde transport during regeneration may inform the neuron cell body of the progress of regeneration and elicit appropriate metabolic responses. among which may be the changes in orthograde transport that follow axotomy.  相似文献   

19.
Reversal of axonal transport at a nerve crush.   总被引:5,自引:0,他引:5  
Abstract— —We have compared retrograde axonal transport of 3H-labeled protein in normal rat motor and sensory axons, and axons which were injured by a distal ligation of the sciatic nerve. After injection of L-[3H]leucine into the vicinity of the neuron cell bodies, labeled protein was transported into the axons. A premature return of protein towards the cell bodies occurred in the injured axons, which we interpret as a reversal of axonal transport occurring at the site of injury. We estimate that reversal of transport occurred within 1.9–2.4 h of the arrival of labeled protein at the injury, and that the minimum velocity of the subsequent retrograde transport was 112–133 mm day?1. The ability of the injured axons to reverse transport developed about 0.8 h after making the injury. A large fraction of the orthograde transported protein was returned towards the cell body: it is estimated that by 28 h after labeled protein in sensory axons reached the injury, 46% of the3H-labeled protein originally transported to the injury site had been returned. In intact sensory nerves at this time only 15% of the transported protein had returned. It is suggested that axonal injury produces a sudden increase in the return of newly synthesized protein to the cell body, and that this might serve as a signal for chromatolysis.  相似文献   

20.
Although autoradiography has demonstrated local incorporation of [3H]inositol into axonal phospholipids after intraneural injection, retrograde axonal transport of phosphatidylinositol has only been demonstrated after injection of lipid precursor into the cell body regions (L4 and L5 dorsal root ganglia) of the sciatic nerve. We now report the retrograde axonal transport of inositol phospholipids synthesized locally in the axons. Following microinjection of myo-[3H]inositol into the rat sciatic nerve (50-55 mm distal to L4 and L5 dorsal root ganglia), a time-dependent accumulation of 3H label occurred in the dorsal root ganglia ipsilateral to the injection site. The ratio of dpm present in the ipsilateral dorsal root ganglia to that in the contralateral dorsal root ganglia was not significantly different from unity between 2 and 8 h following isotope injection but increased to 10-12-fold between 24 and 72 h following precursor injection. By 24 h following precursor injection, the ipsilateral/contralateral ratio of the water-soluble label in the dorsal root ganglia still remained approximately 1.0, whereas the corresponding ratio in the chloroform/methanol-soluble fraction was approximately 20. The time course of appearance of labeled lipids in the ipsilateral dorsal root ganglia after injection of precursor into the nerve at various distances from the dorsal root ganglia indicated a transport rate of at least 5 mm/h. Accumulation of label in the dorsal root ganglia could be prevented by intraneural injection of colchicine or ligation of the sciatic nerve between the dorsal root ganglia and the isotope injection site. These results demonstrate that inositol phospholipids synthesized locally in the sciatic nerve are retrogradely transported back to the nerve cell bodies located in the dorsal root ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号