首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human type IIA secretory phospholipase A2 (sPLA2-IIA) is induced in association with several immune-mediated inflammatory conditions. We have evaluated the effect of sPLA2-IIA on PG production in primary synovial fibroblasts from patients with rheumatoid arthritis (RA). At concentrations found in the synovial fluid of RA patients, exogenously added sPLA2-IIA dose-dependently amplified TNF-alpha-stimulated PGE2 production by cultured synovial fibroblasts. Enhancement of TNF-alpha-stimulated PGE2 production in synovial cells was accompanied by increased expression of cyclooxygenase (COX)-2 and cytosolic phospholipase A2 (cPLA2)-alpha. Blockade of COX-2 enzyme activity with the selective inhibitor NS-398 prevented both TNF-alpha-stimulated and sPLA2-IIA-amplified PGE2 production without affecting COX-2 protein induction. However, both sPLA2-IIA-amplified PGE2 production and enhanced COX-2 expression were blocked by the sPLA2 inhibitor LY311727. Colocalization studies using triple-labeling immunofluorescence microscopy showed that sPLA2-IIA and cPLA2-alpha are coexpressed with COX-2 in discrete populations of CD14-positive synovial macrophages and synovial tissue fibroblasts from RA patients. Based on these findings, we propose a model whereby the enhanced expression of sPLA2-IIA by RA synovial cells up-regulates TNF-alpha-mediated PG production via superinduction of COX-2. Therefore, sPLA2-IIA may be a critical modulator of cytokine-mediated synovial inflammation in RA.  相似文献   

2.
Phospholipase A(2) (PLA(2))-activating protein (PLAA) is a novel signaling molecule that regulates the production of prostaglandins (PGE(2)) and tumor necrosis factor (TNF)-alpha. To characterize the function of native PLAA in situ, we generated HeLa (Tet-off) cells overexpressing plaa (plaa(high)) and control (plaa(low)) cells, with the plaa gene in opposite orientation in the latter construct. The plaa(high) cells produced significantly more PGE(2) and interleukin (IL)-6 compared to plaa(low) cells in response to TNF-alpha. There was an increased activation and/or expression of cytosolic PLA(2), cyclooxgenase-2, and NF-kappaB after induction of plaa(high) cells with TNF-alpha compared to the respective plaa(low) cells. Microarray analysis of plaa(high) cells followed by functional assays revealed increased production of proinflammatory cytokine IL-32 and a decrease in the production of annexin A4 and clusterin compared to plaa(low) cells. We demonstrated the role of annexin A4 as an inhibitor of PLA(2) and showed that addition of exogeneous clusterin limited the production of PGE(2) from plaa(high) cells. To understand regulation of plaa gene expression, we used a luciferase reporter system in HeLa cells and identified one stimulatory element, with Sp1 binding sites, and one inhibitory element, in exon 1 of the plaa gene. By using decoy DNA oligonucleotides to Sp1 and competitive binding assays, we showed that Sp1 maintains basal expression of the plaa gene and binds to the above-mentioned stimulatory element. We demonstrated for the first time that the induction of native PLAA by TNF-alpha can perpetuate inflammation by enhancing activation of PLA(2) and NF-kappaB.  相似文献   

3.
In order to investigate the mechanism of dipalmitoylphosphatidylcholine (DPPC, L-alpha-lecithin) stimulation of the prostaglandin E (PGE) production of the amniotic membrane, effects of DPPC (50-800 micrograms/ml) on phospholipase A2 (PLA2), phospholipase C (PLC), PG endoperoxide synthase, and PGE synthase activities of human amniotic membrane were studied. Only PLA2 activity was increased by DPPC, suggesting that lecithin, the major surfactant component, increases the PGE production of the amniotic membrane by activating PLA2.  相似文献   

4.
We have recently shown that two distinct prostaglandin (PG) E(2) synthases show preferential functional coupling with upstream cyclooxygenase (COX)-1 and COX-2 in PGE(2) biosynthesis. To investigate whether other lineage-specific PG synthases also show preferential coupling with either COX isozyme, we introduced these enzymes alone or in combination into 293 cells to reconstitute their functional interrelationship. As did the membrane-bound PGE(2) synthase, the perinuclear enzymes thromboxane synthase and PGI(2) synthase generated their respective products via COX-2 in preference to COX-1 in both the -induced immediate and interleukin-1-induced delayed responses. Hematopoietic PGD(2) synthase preferentially used COX-1 and COX-2 in the -induced immediate and interleukin-1-induced delayed PGD(2)-biosynthetic responses, respectively. This enzyme underwent stimulus-dependent translocation from the cytosol to perinuclear compartments, where COX-1 or COX-2 exists. COX selectivity of these lineage-specific PG synthases was also significantly affected by the concentrations of arachidonate, which was added exogenously to the cells or supplied endogenously by the action of cytosolic or secretory phospholipase A(2). Collectively, the efficiency of coupling between COXs and specific PG synthases may be crucially influenced by their spatial and temporal compartmentalization and by the amount of arachidonate supplied by PLA(2)s at a moment when PG production takes place.  相似文献   

5.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1beta, TNFalpha and IFNgamma), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

6.
Enhanced prostaglandin (PG) biosynthesis is a hallmark of inflammation, and interleukin-1 (IL), a proinflammatory cytokine, is a potent stimulus of PG production. We investigated the mechanisms of IL-1 alpha-enhanced PG synthesis in serum-stimulated mesangial cells. The rIL-1-stimulated increase in PGE2 synthesis was dose- and time-dependent and inhibited by both cycloheximide and actinomycin D. Phospholipase (PL) activity was increased 5- to 10-fold in acid extracts of rIL-1-treated cells as measured by arachidonate release from exogenous [14C]arachidonyl-phosphatidyl-ethanolamine. This induced phospholipase activity was Ca(2+)-dependent and inhibited by the PLA2 inhibitors, aristocholic acid, 7,7-dimethyl-5,8-eicosadienoic acid, and p-bromophenacylbromide, but not by the 1,2-diacylglycerol lipase inhibitor RHC 80267. The rIL-1-stimulated PLA2 had an alkaline pH optimum, and phosphatidylethanolamine was preferred over phosphatidylcholine as substrate. The PLA2 activity increased by rIL-1 was inhibited in cells coincubated with cycloheximide and was measurable after 6 h. A sensitive and specific solution hybridization assay demonstrated a coordinate time-dependent induction of non-pancreatic PLA2 mRNA expression which was increased at least 6-fold by 24 h. In whole cells, IL-1 had no effect on basal [3H]arachidonic acid release but vasopressin (1 microM)-stimulated release was potentiated 2- to 3-fold, suggesting that IL-1 may prime cells for increased PG synthesis via increased PLA2 activity. Thus IL-1 directly stimulates, as well as primes cells for, enhanced PG synthesis, in part, by increasing PLA2 activity through new synthesis of a non-pancreatic (Type II) PLA2.  相似文献   

7.
Phospholipases A2 (PLA2) and cyclooxygenases (COX) are important enzymes responsible for production of potent lipid mediators, including prostaglandins (PG) and thromboxane A2. We investigated coupling between PLA2 and COX isoforms by using transient transfection in COS-1 cells. Untransfected cells, incubated with or without phorbol ester + the Ca2+ ionophore ionomycin, generated trivial amounts of PGE2. In cells co-transfected with cytosolic PLA2 (cPLA2) and COX-1 or COX-2, phorbol ester + ionomycin markedly stimulated PGE2 production. There was no preferential coupling of cPLA2 to either of the COX isoforms. In contrast, group IIA secretory PLA2 (sPLA2) co-transfected with COX-1 or COX-2 did not lead to an increase in PGE2 production, despite high levels of sPLA2 enzymatic activity. Transfection of cPLA2 did not affect basal free arachidonic acid (AA) levels. Phorbol ester + ionomycin stimulated release of AA in cPLA2-transfected COS-1 cells, but not in untransfected cells, whereas sPLA2 transfection (without stimulation) led to high basal free AA. Thus, AA released by cPLA2 is accessible to both COX isoforms for metabolism to PG, whereas AA released by sPLA2 is not metabolized by COX.  相似文献   

8.
We have recently reported that cyclooxygenase (COX)-2-deficiency affects brain upstream and downstream enzymes in the arachidonic acid (AA) metabolic pathway to prostaglandin E2 (PGE2), as well as enzyme activity, protein and mRNA levels of the reciprocal isozyme, COX-1. To gain a better insight into the specific roles of COX isoforms and characterize the interactions between upstream and downstream enzymes in brain AA cascade, we examined the expression and activity of COX-2 and phospholipase A2 enzymes (cPLA2 and sPLA2), as well as the expression of terminal prostaglandin E synthases (cPGES, mPGES-1, and - 2) in wild type and COX-1(-/-) mice. We found that brain PGE2 concentration was significantly increased, whereas thromboxane B2 (TXB2) concentration was decreased in COX-1(-/-) mice. There was a compensatory up-regulation of COX-2, accompanied by the activation of the NF-kappaB pathway, and also an increase in the upstream cPLA2 and sPLA2 enzymes. The mechanism of NF-kappaB activation in the COX-1(-/-) mice involved the up-regulation of protein expression of the p50 and p65 subunits of NF-kappaB, as well as the increased protein levels of phosphorylated IkappaBalpha and of phosphorylated IKKalpha/beta. Overall, our data suggest that COX-1 and COX-2 play a distinct role in brain PG biosynthesis, with basal PGE2 production being metabolically coupled with COX-2 and TXB2 production being preferentially linked to COX-1. Additionally, COX-1 deficiency can affect the expression of reciprocal and coupled enzymes, COX-2, Ca2+ -dependent PLA2, and terminal mPGES-2, to overcome defects in brain AA cascade.  相似文献   

9.
We examined brain phospholipase A2 (PLA2) activity and the expression of enzymes metabolizing arachidonic acid (AA) in cytosolic PLA2 knockout () mice to see if other brain PLA2 can compensate for the absence of cPLA2 alpha and if cPLA2 couples with specific downstream enzymes in the eicosanoid biosynthetic pathway. We found that the rate of formation of prostaglandin E2 (PGE2), an index of net cyclooxygenase (COX) activity, was decreased by 62% in the compared with the control mouse brain. The decrease was accompanied by a 50-60% decrease in mRNA and protein levels of COX-2, but no change in these levels in COX-1 or in PGE synthase. Brain 5-lipoxygenase (5-LO) and cytochrome P450 epoxygenase (cyp2C11) protein levels were also unaltered. Total and Ca2+-dependent PLA2 activities did not differ significantly between and control mice, and protein levels of type VI iPLA2 and type V sPLA2, normalized to actin, were unchanged. These results show that type V sPLA2 and type VI iPLA2 do not compensate for the loss of brain cPLA2 alpha, and that this loss has significant downstream effects on COX-2 expression and PGE2 formation, sparing other AA oxidative enzymes. This suggests that cPLA2 is critical for COX-2-derived eicosanoid production in mouse brain.  相似文献   

10.
8-Bromo cyclic AMP inhibited A23187-stimulated PGE2 production in adherent resident rat peritoneal macrophages by 50% when this was assessed by radioimmunoassay. In contrast, neither exogenous 8-bromo cyclic AMP nor elevation of endogenous cyclic AMP with cholera toxin inhibited 14C-arachidonic acid release or labelled prostaglandin formation by [1-14C]-arachidonic acid-prelabelled macrophages stimulated with either A23187 or melittin. Inhibition by cyclic AMP appears to be confined to PGE2 originating from a pool of endogenous phosphoglyceride that does not readily exchange with isotopically-labelled arachidonic acid. Phospholipase A2 activity, assessed as calcium-dependent [1-14C]-arachidonic acid release from exogenous 1-stearoyl, 2-[1-14C]-arachidonyl phosphatidyl choline at pH 8.6, was activated by melittin but not by A23187 in 1000 x g supernates from sonicated cells. Neither melittin nor calcium activation of phospholipase A2 was inhibited by preincubation of the cells prior to breakage with 8-bromo-cyclic AMP, nor by inclusion of either 8-bromo cyclic AMP or the catalytic subunit of cyclic AMP-dependent kinase in the assay. The results are inconsistent with the hypothesis that inhibition of A23187-stimulated PGE2 production by cyclic AMP in peritoneal macrophages is due to inhibition of a calcium-stimulated phospholipase A2.  相似文献   

11.
Group V secretory phospholipase A2 (sPLA2) rather than Group IIA sPLA2 is involved in short term, immediate arachidonic acid mobilization and prostaglandin E2 (PGE2) production in the macrophage-like cell line P388D1. When a new clone of these cells, P388D1/MAB, selected on the basis of high responsivity to lipopolysaccharide plus platelet-activating factor, was studied, delayed PGE2 production (6-24 h) in response to lipopolysaccharide alone occurred in parallel with the induction of Group V sPLA2 and cyclooxygenase-2 (COX-2). No changes in the level of cytosolic phospholipase A2 (cPLA2) or COX-1 were observed, and Group IIA sPLA2 was not detectable. Use of a potent and selective sPLA2 inhibitor, 3-(3-acetamide 1-benzyl-2-ethylindolyl-5-oxy)propanesulfonic acid (LY311727), and an antisense oligonucleotide specific for Group V sPLA2 revealed that delayed PGE2 was largely dependent on the induction of Group V sPLA2. Also, COX-2, not COX-1, was found to mediate delayed PGE2 production because the response was completely blocked by the specific COX-2 inhibitor NS-398. Delayed PGE2 production and Group V sPLA2 expression were also found to be blunted by the inhibitor methylarachidonyl fluorophosphonate. Because inhibition of Ca2+-independent PLA2 by an antisense technique did not have any effect on the arachidonic acid release, the data using methylarachidonyl fluorophosphonate suggest a key role for the cPLA2 in the response as well. Collectively, the results suggest a model whereby cPLA2 activation regulates Group V sPLA2 expression, which in turn is responsible for delayed PGE2 production via COX-2.  相似文献   

12.
Lee SC  Han JS  Seo JK  Cha YN 《Molecules and cells》2003,15(3):320-326
Lipopolysaccharide (LPS) enhances the expression of cyclooxygenase 2 (COX-2) in macrophages, and stimulates production of prostaglandins that cause endothelial dysfunction in septic shock. In an effort to identify strategies for reducing LPS-inducible expression of COX-2, inhibitors of the phospholipases involved in LPS dependent over-expression of COX-2 were studied. LPS enhances expression of COX-2 mRNA and protein by activating sequentially phosphatidylcholine-specific phospholipase C (PC-PLC), protein kinase C (PKC) and phosphatidylcholine-specific phospholipase D (PC-PLD). This stimulates production of phosphatidic acid (PA), which increases expression of COX-2 mRNA and protein. Inhibition of PC-PLC by D609 (tricyclodecanoyl xanthogenate), and of PC-PLD activity by 1-butanol, reduced LPS-dependent over-production of PA and suppressed the increase of COX-2 mRNA and protein. Activation of PKC, normally seen in LPS-treated cells, was mimicked with phorbol myristic acid (PMA), and this also increased PA production and enhanced COX-2 expression. Propranolol inhibition of phosphatidic acid phosphohydrolase (PPH) increased PA accumulation and enhanced LPS-dependent COX-2 protein synthesis. These results suggest that inhibitors of PC-PLC, PKC and PC-PLD, or activators of PPH could be useful in the management of LPS-induced overproduction of prostaglandins and of vascular dysfunction in septic shock.  相似文献   

13.
Removal of apoptotic cells by phagocytes is considered a pivotal immune regulatory process. Although considerable knowledge has been obtained on the postphagocytic macrophage phenotype, there is little information on molecular mechanisms, which provoke macrophage polarization. In this study, we show that human apoptotic Jurkat cells (AC) or AC-conditioned medium (CM) rapidly induces cyclooxygenase-2 (COX-2) expression in mouse RAW264.7 macrophages via sphingosine-1-phosphate (S1P). Pharmacological inhibition of S1P release from AC or using CM from cells with a knockdown of sphingosine kinase 2 in human MCF-7 cells abrogates this effect. Expression of COX-2 resulted from an increase in mRNA stability via its 3'-untranslated region (UTR), shown by COX-2-3'-UTR and AU-rich element-driven reporter assays. Western analysis corroborated increased nucleocytoplasmic shuttling of the RNA-binding protein HuR after CM treatment. RNA EMSA analysis revealed an S1P- and CM-mediated increase in HuR-RNA binding to a COX-2-specific UTR, whereas HuR knockdown pointed to its importance for S1P in CM-induced COX-2 expression. Immunofluorescence microscopy of phospholipase A2 (PLA2) and ELISA analysis of PGE2 revealed activation of PLA2 and production of PGE2 in response to CM but not S1P. S1P, released from AC, uses HuR to stabilize COX-2 mRNA and thus to increase COX-2 protein expression. However, only CM also activates PLA2 to provide the substrate for COX-2. Our data underscore the importance of S1P in AC-mediated immune regulation, by stabilizing COX-2 mRNA in macrophages, a prerequisite for PGE2 formation.  相似文献   

14.
Goldfish preovulatory ovarian follicles (prior to germinal vesicle breakdown) were utilized for studies investigating the actions of activators of different signal transduction pathways on prostaglandin (PG) production. The protein kinase C (PKC) activators phorbol 12-myristate 13-acetate (PMA; 100-400 nM), 1-oleoyl-2-acetylglycerol (5 and 25 micrograms/ml), and 1,2-dioctanoylglycerol (10 and 50 micrograms/ml) stimulated PGE production; the inactive phorbol 4 alpha-phorbol didecanoate, which does not activate PKC, had no effect. Calcium ionophore A23187 (0.25-4.0 microM) stimulated PGE production and acted in a synergistic manner with activators of PKC. Although produced in lower amounts than PGE, PGF was stimulated by PMA and A23187. The direct activator of phospholipase A2, melittin (0.1-1.0 microM), stimulated a dose-related increase in PGE production, whereas chloroquine (100 microM), a putative inhibitor of phospholipase A2, blocked basal and PMA + A23187-stimulated PGE production. Several drugs known to elevate intracellular levels of cAMP including the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.1-1.0 mM), forskolin (10 microM), and dibutyryl cAMP (dbcAMP; 5 mM) attenuate PMA + A23187-stimulated PGE production. Melittin-stimulated production of PGE was inhibited by dbcAMP, suggesting that the action of cAMP was distal to the activation of phospholipase A2. In summary, these studies demonstrate that activation of PKC and elevation of intracellular calcium levels stimulate PG production, in part, through activation of phospholipase A2. The adenylate cyclase/cAMP signalling pathway is inhibitory to PG production by goldfish ovarian follicles.  相似文献   

15.
Transforming growth factor (TGF)-alpha and interleukin (IL)-1beta are responsible for the healing of gastric lesions through, in part, prostaglandin (PG) generation. We examined the contribution of cytosolic and secretory phospholipase A(2)s (cPLA(2) and sPLA(2)) to the PG generation by rat gastric epithelial cells in response to both stimuli. Stimulation with TGF-alpha for 24 h increased cPLA(2) and cyclooxygenase (COX)-2 markedly, PGE(2) slightly, and type IIA sPLA(2) and COX-1 not at all, whereas IL-1beta increased sPLA(2) only. Both stimuli synergistically increased PGE(2), sPLA(2), and the two COXs but not cPLA(2). The onset of the PGE(2) generation paralleled the sPLA(2) release but was apparently preceded by increases in cPLA(2) and the two COXs. The increase in PGE(2) was impaired by inhibitors for sPLA(2) and COX-2 but not COX-1. cPLA(2) inhibitors suppressed PGE(2) generation by TGF-alpha alone but not augmentation of PGE(2) generation or sPLA(2) release by IL-1beta in combination with TGF-alpha. Furthermore, despite an increase in cPLA(2) including its phosphorylated form (phosphoserine), -induced arachidonic acid liberation was impaired in the TGF-alpha/IL-1beta-stimulated cells, in which p11, a putative cPLA(2) inhibitory molecule, was also increased and co-immunoprecipitated with cPLA(2). These results suggest that synergistic stimulation of sPLA(2) and COX-2 expression by TGF-alpha and IL-1beta results in an increase in PGE(2). Presumably, the preceding cPLA(2) expression is not involved in the PGE(2) generation, because of impairment of its hydrolytic activity in the stimulated cells.  相似文献   

16.
Atherosclerotic plaque formation is a dynamic process involving repeated injury and inflammation of the endothelium. We have demonstrated previously that thrombin and tryptase stimulation of human coronary artery endothelial cells (HCAEC) leads to increased phospholipase A(2) (PLA(2)) activity and generation of membrane phospholipid derived inflammatory metabolites, including eicosanoids and platelet activating factor. Thus, our hypothesis is that selective PLA(2) inhibitors have therapeutic potential as anti-inflammatory agents. Stimulation of confluent HCAEC monolayers with thrombin or tryptase resulted in a concentration and time-dependent increase in both prostaglandin E(2) (PGE(2)) and prostacyclin (PGI(2)) production. Pretreatment with PX-18 to inhibit secretory PLA(2) or BEL to inhibit calcium-independent PLA(2) prior to thrombin or tryptase stimulation resulted in a significant inhibition of both PGI(2) and PGE(2) release. However, pretreatment with methyl arachidonyl fluorophosphonate (MAFP), a widely used inhibitor of cytosolic PLA(2) isoforms, resulted in a significant potentiation of both thrombin and tryptase stimulated PGI(2) and PGE(2) release as a consequence of increased free arachidonic acid production. We conclude that the use of selective PLA(2) inhibitors may be of therapeutic benefit in the development and progression of atherosclerosis, however, the development of such an agent requires rigorous screening.  相似文献   

17.
The products of arachidonic acid metabolism are key mediators of inflammatory responses in the central nervous system, and yet we do not know the mechanisms of their regulation. The phospholipase A(2) enzymes are sources of cellular arachidonic acid, and the enzymes cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) are essential for the synthesis of inflammatory PGE(2) in the brain. These studies seek to determine the function of cytosolic phospholipase A(2)alpha (cPLA(2)alpha) in inflammatory PGE(2) production in the brain. We wondered whether cPLA(2)alpha functions in inflammation to produce arachidonic acid or to modulate levels of COX-2 or mPGES-1. We investigated these questions in the brains of wild-type mice and mice deficient in cPLA(2)alpha (cPLA(2)alpha(-/-)) after systemic administration of LPS. cPLA(2)alpha(-/-) mice had significantly less brain COX-2 mRNA and protein expression in response to LPS than wild-type mice. The reduction in COX-2 was most apparent in the cells of the cerebral blood vessels and the leptomeninges. The brain PGE(2) concentration of untreated cPLA(2)alpha(-/-) mice was equal to their wild-type littermates. After LPS treatment, however, the brain concentration of PGE(2) was significantly less in cPLA(2)alpha(-/-) than in cPLA(2)alpha(+/+) mice (24.4 +/- 3.8 vs. 49.3 +/- 11.6 ng/g). In contrast to COX-2, mPGES-1 RNA levels increased equally in both mouse genotypes, and mPGES-1 protein was unaltered 6 h after LPS. We conclude that cPLA(2)alpha regulates COX-2 levels and modulates inflammatory PGE(2) levels. These results indicate that cPLA(2)alpha inhibition is a novel anti-inflammatory strategy that modulates, but does not completely prevent, eicosanoid responses.  相似文献   

18.
beta-Bungarotoxin (beta-BuTX) and notexin cause an irreversible blockade of neurotransmitter release through specific and potent effects at the presynaptic nerve terminal, however, the mechanism of action is uncertain. We examined the effects of beta-BuTX and notexin on LT and PG production in rat cerebrocortical synaptosomes in order to determine if eicosanoid production might mediate or regulate the pharmacological actions of these phospholipase A2 (PLA2) neurotoxins. The effects of the PLA2 enzymes isolated from Naja naja atra and Naja nigricollis snake venoms (which are not presynaptic selective) on LT and PG production were compared with the effects of beta-BuTX and notexin. N. n. atra PLA2, beta-BuTX, and notexin (all 50 nM) produced a time dependent rise in free fatty acids as measured in synaptic plasma membranes isolated from treated synaptosomes. Both the PLA2 neurotoxins and enzymes stimulated LTC4, LTB4, and PGE2 production, as measured by radioimmunoassay. In all cases, the PLA2 enzymes were more potent than the PLA2 neurotoxins. This observation correlates with their relative enzymatic potencies, as measured by free fatty acid generation. EDTA and BSA antagonized PLA2 induced LTB4 production and BSA also antagonized PLA2 induced PGE2 production. These results suggest that stimulation of eicosanoid production does not mediate the potent and specific presynaptic actions of beta-BuTX and notexin.  相似文献   

19.
Although numerous studies have demonstrated the ability of intestinal epithelial cells to produce PGs after infection with wild-type strains of Salmonella, few studies have focused on Salmonella-induced prostanoids in mucosal lymphoid tissues. This is surprising in view of the profound effects PGs can have on the host response. To begin to address PG production at mucosal sites, mice were orally inoculated with Salmonella, and at varying times postinfection cyclooxygenase-2 (COX-2) mRNA expression and PGE(2) synthesis were investigated. COX-2 mRNA expression was highly inducible in the mesenteric lymph nodes, whereas COX-1 mRNA levels were constitutive. PGE(2) production also increased significantly in the mesenteric lymph nodes following exposure to viable Salmonella, but not after exposure to killed bacteria. This increased PGE(2) response could be blocked by treatment of mice with the selective COX-2 inhibitor, celecoxib. Treatment of mice with celecoxib during salmonellosis resulted in increased viable bacteria in the mesenteric lymph nodes by day 3 postinfection. However, celecoxib treatment prolonged the survival of lethally infected animals. In vitro studies demonstrated Salmonella-induced up-regulation of COX-2 mRNA expression and PGE(2) secretion by both macrophages and dendritic cells, which could also be blocked in the presence of celecoxib. Interestingly, exposure of these cultured APCs to viable Salmonella was a much greater stimulus for induction of PGE(2) synthesis than exposure to Salmonella-derived LPS. The present study demonstrates induction of PGE(2) synthesis in mesenteric lymph nodes, macrophages, and dendritic cells after infection with wild-type salmonella.  相似文献   

20.
Comprehensive studies of prostaglandin (PG) synthesis in murine resident peritoneal macrophages (RPM) responding to bacterial lipopolysaccharide (LPS) revealed that the primary PGs produced by RPM were prostacyclin and PGE(2). Detectable increases in net PG formation occurred within the first hour, and maximal PG formation had occurred by 6-10 h after LPS addition. Free arachidonic acid levels rose and peaked at 1-2 h after LPS addition and then returned to baseline. Cyclooxygenase-2 (COX-2) and microsomal PGE synthase levels markedly increased upon exposure of RPM to LPS, with the most rapid increases in protein expression occurring 2-6 h after addition of the stimulus. RPM constitutively expressed high levels of COX-1. Studies using isoform-selective inhibitors and RPM from mice bearing targeted deletions of ptgs-1 and ptgs-2 demonstrated that COX-1 contributes significantly to PG synthesis in RPM, especially during the initial 1-2 h after LPS addition. Selective inhibition of either COX isoform resulted in increased secretion of tumor necrosis factor-alpha (TNF-alpha); however, this effect was much greater with the COX-1 than with the COX-2 inhibitor. These results demonstrate autocrine regulation of TNF-alpha secretion by endogenous PGs synthesized primarily by COX-1 in RPM and suggest that COX-1 may play a significant role in the regulation of the early response to endotoxemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号