首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[6,7-3H,35S]Estrone 3-sulfate (E13S) of 3H/35S = 3.57 was incubated with female guinea pig liver slices. Small amounts of free steroid and estrone-3-glucuronide, each containing 3H, were found. In addition, E13S, 17beta-estradiol 3-sulfate, and a 'disulfate' fraction, with 3H/35S = 4.4, 4.3, and 4.7, respectively, were also isolated from the incubated tissue. The latter fraction was a major metabolite and about 45% of it consisted of 'disulfates' of 16alpha-hydroxyestrone and estriol, thus providing strong evidence for 16alpha-hydroxylation in guinea pig liver slices.  相似文献   

2.
Whole kidney tissue from mouse was incubated with labelled estrone 3-sulfate (E13S), 17beta-estradiol 3-sulfate (17betaE23S), estrone (E1), and 17beta-estradiol (17betaE2). Considerable reduction of E13S and E1 occurred. E13S gave rise primarily to 17alpha-estradiol 3-sulfate (17 alphaE23S) together with lesser amounts of 17betaE23S. By incubating [3H-35S]E13S with the tissue it was confirmed that formation of the diol sulfates was direct, without accompanying hydrolysis and reconjugation. Conversion of E1 was mainly to 17betaE2 with, on the average, lesser amounts of 17alphaE2. A small degree of direct conversion of 17betaE23S to E13S was found. 17beta-Estradiol was converted to a limited extent to E1 and to much smaller amounts of 17alphaE2.  相似文献   

3.
Slices of whole kidney and kidney cortex from the female guinea pig catalyzed a marked reduction of estrone 3-sulfate (E13S) and estrone (E1) to 17beta-estradiol 3-sulfate (E23S) and 17beta-estradiol (E2), respectively, as well as the reverse (dehydrogenation) reactions. Slices of medulla did not appear active in E23S-E13S interconversion but did possess the ability to interconvert E2 and E1, besides possessing considerable sulfatase activity. The use of [3H-55S]E13S and [3H-55S]E23S as substrates, together with a demonstrated lack of estrogen sulfate synthesis by the tissue slices, provided ample evidence that the intact sulfates were involved in direct oxidoreduction. Slices of human kidney cortex catalyzed the reduction of E13S to a very limited extent. Slices of whole kidney and of cortex from guinea pig formed small amounts of estrogen glucuronide(s).  相似文献   

4.
Estradiol metabolism in Ishikawa endometrial cancer cells   总被引:1,自引:0,他引:1  
Estrogen-responsive human cells derived from a specimen of well differentiated endometrial adenocarcinoma (Ishikawa line) were incubated with [3H]estradiol (E2) at various concentrations and the medium was sampled at 3, 6 and 24 h to evaluate the kinetics of removal of the hormone and the formation of unconjugated or sulfated metabolites. The detectable products of metabolism were estrone and the conjugate estradiol-3-sulfate. The latter was identified by high pressure chromatography, before and after acetylation, oxidation, and hydrolysis. The disappearance of [3H]E2 from the medium was found to follow first order kinetics between 3 and 24 h, with half-lives increasing from 4.7 to 53 h as the initial concentrations of the hormone were raised from 10(-8) to 10(-6)M. At the lowest concentration, practically all of the [3H]E2 added to the cultures was converted to estradiol-3-sulfate in 24 h, whereas at 10(-6)M oxidation to estrone was quantitatively more important than sulfation. These results indicate the presence in Ishikawa cells of an estrogen sulfotransferase of low Michaelis constant for E2, and 17 beta-oxidoreductase activity that significantly contributes to the metabolism of E2 only at higher concentrations of substrate.  相似文献   

5.
Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics.  相似文献   

6.
Radiolabelled disaccharide substrates for alpha-L-iduronidase, beta-D-glucuronidase, and sulfoiduronate sulfatase have been prepared from dermatan sulfate by application in sequence of N-deacetylation, deaminative cleavage, and reduction with NaBT4. The yield of disaccharides was approximately 87% of the total oligosaccharide fraction. Five disaccharides were isolated and tentatively identified. The major disaccharide, O-(alpha-L-idopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (IdoA-anT4S), represented approximately 75% of the total disaccharide fraction. The other disaccharides were O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (IdoA2S-anT4S), O-(beta-D-glucopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (GlcA-anT4S), O-(beta-D-glucopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 6-sulfate (GlcA-anT6S), and O-(alpha-L-idopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol (IdoA-anT), which represented approximately 4.5, 11.2, 1.0, and 1.8%, respectively, of the total disaccharide fraction. When incubated with cultured skin-fibroblasts from normal controls, IdoA-anT4S was shown to be a sensitive substrate for alpha-L-iduronidase to produce 2,5-anhydro-D-talitol 4-sulfate (anT4S). Activity toward IdoA-anT4S was not observed with fibroblast homogenates from alpha-L-iduronidase-deficient patients (Mucopolysaccharidosis Type I). Similarly, normal-fibroblast homogenates degraded GlcA-anT6S to anT6S, and GlcA-anT4S to anT4S, at a rate 6 to 8 times greater than found for fibroblasts from beta-D-glucuronidase-deficient patients (Mucopolysaccharidosis Type VII). IdoA-anT4S was hydrolysed by alpha-L-iduronidase at a rate 365 times greater than that for IdoA-anT. Sulfation of the anhydro-D-[1-3H]talitol residues is an important structural determinant in the mechanism of action of alpha-L-iduronidase on disaccharide substrates. IdoA2S-anT4S was degraded to IdoA-anT4S and then to anT4S by normal-fibroblast homogenates, whereas fibroblasts from alpha-L-iduronidase-deficient and sulfoiduronate sulfatase-deficient (Mucopolysaccharidosis Type II) patients produced considerably decreased levels of anT4s and IdoA-anT4S (and anT4S), respectively.  相似文献   

7.
Bovine aortic endothelial cells were cultured in medium containing [3H]glucosamine and concentrations of [35S]sulfate ranging from 0.01 to 0.31 mM. While the amount of [3H]hexosamine incorporated into chondroitin sulfate and heparan sulfate was constant, decreasing concentrations of sulfate resulted in lower [35S]sulfate incorporation. Sulfate concentrations greater than 0.11 mM were required for maximal [35S]sulfate incorporation. Chondroitin sulfate was particularly affected so that the sulfate to hexosamine ratio in [3H]chondroitin [35S]sulfate dropped considerably more than the sulfate to hexosamine ratio in [3H] heparan [35S]sulfate. Sulfate concentration had no effect on the ratio of chondroitin 4-sulfate to chondroitin 6-sulfate. The ratios of sulfate to hexosamine in cell-associated glycosaminoglycans were essentially identical with the ratios in media glycosaminoglycans at all sulfate concentrations. DEAE-cellulose chromatography confirmed that sulfation of chondroitin sulfate was particularly sensitive to low sulfate concentrations. While cells incubated in medium containing 0.31 mM sulfate produced chondroitin sulfate which eluted later than heparan sulfate, cells incubated in medium containing less than 0.04 mM sulfate produced chondroitin sulfate which eluted before heparan sulfate and near hyaluronic acid, indicating that many chains were essentially unsulfated. At intermediate concentrations of sulfate, chondroitin sulfate was found in very broad elution patterns suggesting that most did not fit an "all or nothing" mechanism. Heparan sulfate produced at low concentrations of sulfate eluted with narrower elution patterns than chondroitin sulfate, and there was no indication of any "all or nothing" sulfation.  相似文献   

8.
ABCG2 transports sulfated conjugates of steroids and xenobiotics   总被引:11,自引:0,他引:11  
The mechanism for the cellular extrusion of sulfated conjugates is still unknown. In the present study, we investigated whether human wild type ABCG2 transports estrone 3-sulfate (E1S) using membrane vesicles from cDNA-transfected mouse lymphoma cell line (P388 cells). The uptake of [3H]E1S into ABCG2-expressing membrane vesicles was stimulated by ATP, and the Km value for [3H]E1S was determined to be 16.6 microm. The ABCG2-mediated transport of [3H]E1S was potently inhibited by SN-38 and many sulfate conjugates but not by glucuronide and glutathione conjugates or other anionic compounds. Other sulfate conjugates such as [3H]dehydroepiandrosterone sulfate (DHEAS) and [35S]4-methylumbelliferone sulfate (Km = 12.9 microm) and [35S]6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl)benzothiazole (E3040) sulfate (Km = 26.9 microm) were also transported by ABCG2. Although [3H]methotrexate, [3H]17beta-estradiol-17beta-D-glucuronide, [3H]2,4-dinitrophenyl-S-glutathione, and [14C]4-methylumbelliferone glucuronide were transported by ABCG2, this took place to a much lesser extent compared with [3H]E1S. It was suggested that ABCG2 preferentially transports sulfate conjugates and that E1S and DHEAS are the potential physiological substrates for this transporter.  相似文献   

9.
The embryonic rat parietal yolk sac has been previously shown to synthesize a number of basement membrane glycoconjugates including type IV procollagen, laminin, and entactin. In this study, parietal yolk sacs were isolated from 14.5-day rat embryos and incubated in organ culture for 4-7 h with [35S]sulfate, [3H] glucosamine, and/or 3H-labeled amino acids, and the newly synthesized proteoglycans were characterized. The major [35S]sulfate-labeled macromolecule represented approximately 90% of the medium and 80% of the tissue radioactivity. It also represented nearly 80% of the total [3H]glucosamine-labeled glycosaminoglycans. After purification by sequential ion-exchange chromatography and isopycnic CsCI density gradient ultracentrifugation, size-exclusion high-performance liquid chromatography showed a single species with an estimated Mr of 8-9 X 10(5). The intact proteoglycan did not form aggregates in the presence of exogenous hyaluronic acid or cartilage aggregates. Alkaline borohydride treatment released glycosaminoglycan chains with Mr of 2.0 X 10(4) which were susceptible to chondroitinase AC II and chondroitinase ABC digestion. Analysis by high-performance liquid chromatography of the disaccharides generated by chondroitinase ABC digestion revealed that chondroitin 6-sulfate was the predominant isomer. The uronic acid content of the glycosaminoglycans was 92% glucuronic acid and 8% iduronic acid, and the hexosamine content was 96% galactosamine and 4% glucosamine. No significant amounts of N- or O-linked oligosaccharides were detected. Deglycosylation of the proteoglycan with chondroitinase ABC in the presence of protease inhibitors revealed a protein core with an estimated Mr of 1.25-1.35 X 10(5). These results indicated that the major proteoglycan synthesized by the 14.5-day rat embryo parietal yolk sac is a high-density chondroitin sulfate containing small amounts of copolymeric dermatan sulfate. Hyaluronic acid and minor amounts of heparan sulfate proteoglycan were also detected.  相似文献   

10.
The formation of L-iduronic acid during biosynthesis of dermatan sulphate has been studied in culture human fibroblasts and in microsomes from the same cells. The cells were incubated with D-[14C]glucose and D-[5-3H]glucose for 72 h. The [14C,3H]dermatan sulphate was hydrolysed and the disaccharides obtained were acetylated and separated by ion-exchange chromatography. The ratio of 3H/14C was 0.36 for N-acetyldermosine and 1.36 N-acetylchondrosine. A microsomal preparation from the fibroblasts was incubated with UDP-D-[5-3H]glucuronic acid, UDP-D-[14C]glucuronic acid, UDP-N-acetyl-D-galactosamine and 3'-phospho-5'-adenylyl sulphate. The polymeric products were separated into nonsulphated and sulphated components which had 3H/14C ratios of 0.51 and 0.20 and contained 9% and 70% of their uronosyl residues in the L-ido-configuration, respectively. Chondroitinase-AC digestion of these polymers liberated all of the remaining 3H activity. Hydrolysis and N-acetylation followed by paper chromatography showed that the L-iduronic acid-containing products were devoid of 3H. The data obtained indicate that the epimerization of D-glucuronosyl to L-iduronosyl residues during biosynthesis of dermatan sulphate involves an abstraction of the C-5 hydrogen of the uronosyl residue.  相似文献   

11.
[3H,35S]Dermatan/chondroitin sulfate glycosaminoglycans produced during culture of fibroblasts in medium containing varying concentrations of sulfate were tested for their susceptibility to chondroitin ABC lyase and chondroitin AC lyase. Chondroitin ABC lyase completely degraded [3H]hexosamine-labeled and [35S] sulfate-labeled dermatan/chondroitin sulfate to disaccharides. Chondroitin AC lyase treatment of the labeled glycosaminoglycans produced different results. With this enzyme, dermatan/chondroitin sulfate formed at high concentrations of sulfate yielded small glycosaminoglycans and larger oligosaccharides but almost no disaccharide. This indicated that the dermatan/chondroitin sulfate co-polymer contained mostly iduronic acid with only an occasional glucuronic acid. As the medium sulfate concentration was progressively lowered, there was a concomitant increase in the susceptibility to degradation by chondroitin AC lyase. Thus, the labeled glycosaminoglycans formed at the lowest concentration of sulfate yielded small oligosaccharides including substantial amounts of disaccharide. The smaller chondroitin AC lyase-resistant [3H,35S]dermatan/chondroitin sulfate oligosaccharides were analyzed by gel filtration. Results indicated that, in general, the iduronic acid-containing disaccharide residues present in the undersulfated [3H,35S]glycosaminoglycan were sulfated, whereas the glucuronic acid-containing disaccharide residues were non-sulfated. This work confirms earlier reports that there is a relationship between epimerization and sulfation. Moreover, it demonstrates that medium sulfate concentration is critical in determining the proportions of dermatan to chondroitin (iduronic/glucuronic acid) produced by cultured cells.  相似文献   

12.
The metabolism of [4-(14)C]oestrone and of [6,7-(3)H(2)]oestrone sulphate was studied during cyclic perfusion and once-through perfusion of the isolated rat liver. The following results were obtained. 1. As shown by once-through perfusion, the two steroids are metabolized differently during the first passage through the organ. [4-(14)C]Oestrone was taken up by the liver and partly delivered as oestradiol-17beta and oestriol into the medium. After uptake of [6,7-(3)H(2)]oestrone sulphate, only oestrone, liberated by hydrolysis, was delivered into the medium; no oestradiol-17beta or oestriol could be detected in the medium after one passage through the organ. This indicates that intracellular oestrone, which was taken up as such, and oestrone, which derived from intracellular hydrolysis, may be metabolized in different compartments of the liver cell. 2. The results of the cyclic perfusion showed that intracellular oestrone is preferentially conjugated with glucuronic acid, and subsequently excreted into the bile. Intracellular oestrone sulphate is preferably reduced to oestradiol sulphate, thus indicating that oestrone sulphate is a better substrate for the 17beta-hydroxy steroid oxidoreductase than is oestrone. 3. Albumin-bound oestrone sulphate acts as a large reservoir, and in contrast with free oestrone is protected from enzyme attack by its strong binding to albumin. 4. Oestrone sulphate is partly converted into the hormonally active oestrone by liver tissue. This suggests that liver not only inactivates oestrogens, but also provides the organism with oestrone, which is subsequently readily taken up by other organs.  相似文献   

13.
Sheep pituitary cells prelabelled with radioactive [35S] sulfate (35SO4(2-)) were incubated with different concentrations of LH-RH and the release of LH (lutropin) into the medium was monitored in terms of immunoprecipitable [35S] sulfated LH radioactivity and estimation of LH in the same sample by radioimmunoassay. A dose dependent response was obtained with a maximum of a 16 fold increase in immunoprecipitable 35SO4(2-) -labelled LH radioactivity in the medium which was confirmed by radioimmunoassay. Similar results were also obtained for Buserelin, a well known superactive analogue of LH-RH. However, the half maximal response for Buserelin was obtained at 3-5 nM in comparison to 80.5 nM for LH-RH. After the maximal response to LH-RH as well as Buserelin, a further increase in the concentrations caused a decrease in the release of immunoprecipitable [35S]-sulfate labelled LH into the medium. Differential labelling of stored and newly synthesized LH with radioactive [35S] sulfate and [3H]-labelled leucine revealed that there was a dose dependent increase in the [35S] sulfate labelled LH into the medium whereas the release of [3H]-leucine labelled newly synthesized LH did not show a parallel increase either at different concentrations of LH-RH or at different time intervals. The above observations strongly suggest the possibility of sulfation of LH being the potential signal indicating the storage of LH in sheep pituitary cells. Another important observation in our study was that the dose dependent response of LH-RH in the form of release of [35S]-sulfate labelled LH, which was monitored by immunoprecipitation with specific LH antiserum, can be used in an in vitro bioassay for LH-RH. We believe that a new cheap and sensitive in vitro bioassay could be developed on the basis of this observation.  相似文献   

14.
A wide array of drugs, xenobiotics, and endogenous compounds undergo detoxification by conjugation with glucuronic acid in the liver via the action of UDP-glucuronosyltransferases. The mechanism whereby glucuronides, generated by this enzyme system in the lumen of the endoplasmic reticulum (ER), are exported to the cytosol prior to excretion is unknown. We examined this process in purified rat liver microsomes using a rapid filtration technique and [(3)H]estradiol-17beta-d-glucuronide ([(3)H]E(2)17betaG) as model substrate. Time-dependent uptake of intact [(3)H]E(2)17betaG was observed and shrinkage of ER vesicles by raffinose lowered the steady-state level of [(3)H]E(2)17betaG accumulation. In addition, rapid efflux of [(3)H]E(2)17betaG from rat liver microsomal vesicles suggested that the transport process is bidirectional. Microsomal uptake was saturable with an apparent K(m) and V(max) of 3.29 +/- 0.58 microm and 0.19 +/- 0.02 nmol.min(-1).mg protein(-1), respectively. Transport of [(3)H]E(2)17betaG was inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and probenecid. Specificity of the transport process was investigated by studying the cis-inhibitory effect of anionic metabolites, as well as substrates of the plasma membrane multidrug resistance-associated proteins on the uptake of [(3)H]E(2)17betaG. Collectively, these data are indicative of a novel multifunctional and bidirectional protein carrier for E(2)17betaG and other anionic compounds in the hepatic ER. This intracellular membrane transporter may contribute to the phenomenon of multidrug resistance.  相似文献   

15.
HPLC combined with [35S]-sulfate/[3H]-glucosamine radiolabeling were employed to study the synthesis and secretion of mucous glycoproteins. The secreted radiolabeled glycoproteins were separated from the medium by precipitation with a mixture of trichloroacetic-phosphotungstic acids (TCA/PTA). The redissolved glycoproteins were chromatographed on an anion exchange protein column at varying pH of the mobile phase and fractions were collected for liquid scintillation counting. Varying the pH of the mobile phase from pH 3 to 7 resulted in a decrease of glycoprotein bound [35S] from 69.5 to 0.5% of the total recovered [35S]-sulfate with the remainder recovered as free [35S]-sulfate. The [3H]-labeled glycoprotein recovered under the uV peaks at this pH range was 99.5%. When high performance size exclusion chromatography was performed the change in mobile phase pH did not affect the 100% recovery of either [35S]-or [3H]-labels under the uV peaks. No free [35S]-sulfate was obtained when [35S]-labeled glycoproteins were separated from the medium using dialysis. These data suggest that the standard method of TCA/PTA precipitation of [35S]-labeled glycoproteins may cleave the [35S]-sulfate ester linkages to the oligosaccharide chains. The [35S]-sulfate may then rebind to the macromolecule by a relatively strong noncovalent bond. This may prove critical in anion exchange protein HPLC studies.  相似文献   

16.
The stereochemical course of the aliphatic hydroxylation of gamma-butyrobetaine by calf liver and by Pseudomonas sp AK1 gamma-butyrobetaine hydroxylases has been determined. With [3(RS)-3-3H]-gamma-butyrobetaine or [3(R)-3-3H]-gamma-butyrobetaine as substrate, a rapid and significant loss of tritium to the medium occurred. On the other hand, with [3(S)-3-3H]-gamma-butyrobetaine, only a negligible release of tritium to the aqueous medium was observed. Indeed, on hydroxylation of [3(S)-3-2H]-gamma-butyrobetaine by either the calf liver or bacterial hydroxylase, the isolated product L-carnitine was found to have retained all of the deuterium initially present in the 3(S) position. Since the absolute configuration of the product L-carnitine has been determined to be R, such results are only compatible with a hydroxylation reaction that proceeded with retention of configuration. With [methyl-14C,3(R)-3-3H]-gamma-butyrobetaine as substrate for the calf liver hydroxylase, the percentage of tritium retained in the [methyl-14C]-L-carnitine product was determined as a function of percent reaction. The results of these studies indicated that pro-R hydrogen atom abstraction exceeded 99.9%. Experiments using racemic [methyl-14C,3(RS)-3-3H]-gamma-butyrobetaine as substrate yielded similar results and additionally allowed us to estimate alpha-secondary tritium kinetic isotope effects of 1.10 and 1.31 for the bacterial and calf liver enzymes, respectively. These results are discussed within the context of the radical mechanism for gamma-butyrobetaine hydroxylase previously proposed [Blanchard, J. S., & Englard, S. (1983) Biochemistry 22, 5922], and the required topographical arrangement of enzymic oxidant and substrate is illustrated.  相似文献   

17.
17beta-[6,7-3H]Estradiol (E2) was incubated with slices and homogenates of adult human renal tissue. The metabolites formed were identified by chromatography on DEAE-Sephadex, thin layer chromatography and crystallization with carrier steroids or steroid derivatives. The major metabolites formed by slices were estradiol-17-glucuronide (E217G), estrone sulfate and estradiol-3-sulfate. This is the first report of in vitro synthesis of estrogen sulfates by adult renal tissue. Minor quantities of the 3-glucuronides of estrone and estradiol were also found. An oxygen atmosphere appeared to stimulate the production of E217G. A time study with tissue slices showed similarities between the in vitro pattern of glucuronide synthesis and the excretion pattern of these compounds seen in earlier in vivo studies. Homogenates fortified with uridine diphosphoglucuronic acid formed the same pattern of glucuronide products but in lesser amounts. No sulfates were formed under these conditions. Testosterone did not act as a substrate in the experimental conditions used.  相似文献   

18.
The levels of progesterone receptors (PR [cytosol (Cy) and nuclear (N)] and estrogen receptors (ER) [cytosol and nuclear; occupied and unoccupied specific binding sites] were evaluated in the MCF-7 cancer cell line incubated with estriol (E3), estriol-3-sulfate (E3-3-S) or estriol-17-sulfate (E3-17-S) for 7 days in culture. Cells were grown in MEM medium containing 2 mM glutamine, 10% v/v dialysed calf serum and penicillin-streptomycin (100 U/ml) in the absence (control) or in the presence of 5 X 10(-8) M E3, E3-3-S or E3-17-S. The total PR (Cy + N) concentration which was 0.47 +/- 0.10 (SE) pmol/mg DNA in the non-treated cells, increased to 1.95 +/- 0.48 in the E3 and to 1.55 +/- 0.26 in the E3-3-S treated cells. No effect (PR: 0.47 +/- 0.15 pmol/mg DNA) was observed with the E3-17-S treatment. Total ER (Cy + N, occupied + unoccupied binding sites) in pmol/mg DNA +/- SE, were as follows: control 0.79 +/- 0.17; + E3: 0.33 +/- 0.09; +E3-3-S: 0.90 +/- 0.18 and +E3-17-S: 1.82 +/- 0.58. The measurement by radioimmunoassay of unconjugated estriol in the culture medium indicated that after incubation with E3-3-S, a fraction (0.5-1%) of the sulfate was hydrolyzed but no hydrolysis was observed in the incubations with E3-17-S. It is concluded that in the MCF-7 human mammary cancer cell line E3 and E3-3-S stimulate PR very significantly, but it is suggested that E3-3-S acts through the hydrolyzed E3. On the other hand, E3-17-S is inactive because it is not hydrolyzed. Consequently, E3-3-S can play an important role in the biological responses of this mammary cancer cell line.  相似文献   

19.
Monolayers of Caco-2 cells, a human enterocyte cell line, were incubated separately with 3H8-labeled preparations of three different lipid mediators of inflammation: 5-hydroxyeicosatetraenoic acid, 12-hydroxyeicosatetraenoic acid, and leukotriene B4. Both [3H8]5-hydroxyeicosatetraenoic and [3H8]12-hydroxyeicosatetraenoic acids were taken up and metabolized by Caco-2 cells, but [3H]leukotriene B4 remained unmetabolized in the incubation medium. [3H]5-hydroxyeicosatetraenoic acid was esterified into cellular phospholipids (15%) and triglycerides (4%) but did not undergo beta-oxidation. When [3H]12-hydroxyeicosatetraenoic acid was incubated with Caco-2 cells, 14% underwent two cycles of beta-oxidation to form [3H]8-hydroxyhexadecatrienoic acid, and 3% underwent three cycles of beta-oxidation to form [3H]6-hydroxytetradecadienoic acid, both of which were released into the media. [3H]12-Hydroxyeicosatetraenoic acid was also esterified into cellular phospholipids (13%), but none was esterified into cellular triglycerides.  相似文献   

20.
The principal in vivo oxygenase products of arachidonic acid and linoleic acid in psoriatic skin scales are 12-hydroxyeicosatetraenoic acid (R/S ratio = 5.7), 13-hydroxyoctadecadienoic acid (S/R = 1.9), and 9-hydroxyoctadecadienoic acid (R/S = 2.4). Definition of the enzymatic origin of these fatty acid derivatives is an important step in assessing their possible role in the pathogenesis of psoriasis. Psoriatic skin scales were incubated with radiolabeled arachidonic acid and linoleic acid and the monohydroxylated derivatives produced in vitro were characterized. The products of incubation with [3H]arachidonic acid were an enantiopure 15(S)-[3H]hydroxyeicosatetraenoic acid and a nonracemic mixture of the 12-[3H]hydroxyeicosatetraenoic acid steroisomers (R/S ratio = 4.5). An enantiopure 13(S)-[14C]hydroxyoctadecadienoic acid was produced from [14C]linoleic acid. No radiolabeled products were derived from incubations with heat-denatured scales. These results provide evidence for two distinct oxygenase activities that are preserved in psoriatic skin scales. One is that of an omega-6 oxygenase with strict (S) stereospecificity, consistent with the activity of a lipoxygenase. This enzyme activity appears to be similar to that of the 15-lipoxygenase which has been described in cultured human keratinocytes. The second activity is that of an arachidonic acid 12(R)-oxygenase that has not been observed in normal human epidermis but which appears to be expressed in psoriatic epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号