首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neglected works of Robert Townson (1799) anticipated the establishment of the basic features in the physiology of amphibian water economy by about a century and a half. A re-examination of Townson's published journals on water balance in tree frogs (Hyla arborea) acclimated to a simulated terrestrial habitat with free access to water substantially widened the scope of the work. The tree frogs, and other terrestrial anurans, did not void urine on land, but the water was reabsorbed from the bladder to substitute water lost by evaporation. The tree frogs mostly took in water by absorption through the abdominal skin (cutaneous drinking) before they became dehydrated, indicating that drinking was anticipatory. After a drinking episode, water was stored in the bladder in amounts corresponding to 25–50% of the body mass. Townson's pioneering contributions to the adaptational physiology of amphibians were disregarded by contemporary animal physiology, which basically served to elucidate functions in higher animals and ultimately humans.  相似文献   

2.
ABSTRACT

The systematic classification of tree frogs (Hyla) inhabiting different regions of the country of Turkey is unclear. Recordings of natural advertisement calls of individual male tree frogs in different locations in Turkey were analyzed to determine variation in acoustic features that may be related to taxonomic status. Multivariate analysis of covariance showed that call duration, intercali interval and number of pulses per call varied significantly between frogs in different locales. Call duration, intercall interval, and number of pulses per call were related to air temperature. Dominant frequency differed significantly between different groups of frogs, and was temperature-independent. These data are consistent with the hypothesis that tree frogs in Turkey represent two distinct species, Hyla arborea and Hyla savignyi.  相似文献   

3.
200 YEARS OF AMPHIBIAN WATER ECONOMY: FROM ROBERT TOWNSON TO THE PRESENT   总被引:3,自引:0,他引:3  
In the 1790s, Robert Townson established the main features of the water economy of terrestrial amphibians: rapid evaporative water loss in dry surroundings,‘drinking’ by absorption of water through the abdominal skin pressed against moist substrates, and use of the urinary bladder as a reservoir from which water is reabsorbed on land. This knowledge was of little interest to the establishment in the first half of the nineteenth century of experimental physiology as a basic medical discipline, when frogs became models in the elucidation of general physiological processes. Townson's pioneer contributions to amphibian physiology were forgotten for 200 years (Jørgensen 1994 b). Durig (1901) and particularly Overton (1904) restored knowledge about amphibian water economy to the level reached by Townson, but the papers had little impact on the young science of animal physiology because they primarily aimed at elucidating the transport of fluids across membranes. Frog skin remained a model preparation in such studies throughout the century. With the establishment of terrestrial ecology early in the century, the relations of animals, including amphibians, to water became a central theme. Concurrently with comparative studies of amphibian water economy in an ecological setting, the subject proceeded as an aspect of animal osmoregulation. Adolph (1920-1930) and Rey (1937 a) established the highly dynamic nature of water balance in amphibians in water and on land. Their observations indicated functional links between environment, skin and kidneys, the nature of which remained to be explored. Thorson & Svihla (1943) reopened the ecological approach in a comparative study of the relations between amphibian habitat and tolerance of dehydration. By mid-century, the central themes of amphibian adaptations to terrestrial modes of life were re-established, except for the function of the bladder as a water-depot. During the following decades, a rich literature appeared, particularly focusing on adaptations of amphibians to arid environments. Thus, in the 1970s, it was found that ‘waterproofing’ of the highly permeable skins by means of skin secretions had evolved independently in several families of tropical arboreal frogs, and that a number of amphibians that aestivate whilst burrowed in dry soil could reduce evaporation by forming cocoons from shed strata cornea. In 1950–1970 the role of bladder urine as a water depot in terrestrial amphibians was recognized: this did not change the established view of water balance in terrestrial amphibians as alternating between dehydration on land and rehydration in response to the deficit in body water. Amphibians may, however, maintain normal water balance whether the ambient medium is water or air by means of little understood integrated mechanisms in control of cutaneous drinking behaviour, water permeability of the skin and bladder wall, and urine production.  相似文献   

4.
Abstract

Leiopelma hochstetteri, the most widespread of New Zealand's native frogs, is recognised as threatened, and is fully protected by legislation. As a first step to characterise the diet and trophic level of L. hochstetteri within streams in the Waitakere Ranges, Auckland, stable carbon and nitrogen isotope analyses were undertaken on a variety of sympatric terrestrial and aquatic plant and animal species, including adult frogs. These results show that: (1) aquatic and terrestrial food webs are linked by terrestrial inputs into the stream; (2) invertebrate and vertebrate predators separate well into distinct trophic groups, and (3) L. hochstetteri occupies an intermediate trophic position among predators, with a diet, at least as an adult, comprising terrestrial invertebrates. Shortfin eels and banded kokopu are identified as potential predators of L. hochstetteri, but data for rats are inconclusive. These results have important implications for the conservation of New Zealand native frog species and riparian stream habitat.  相似文献   

5.
6.
While the increasing vehicular traffic is widely suspected to play a role in the worldwide amphibian population decline, the research of amphibian road mortality is scarce, fragmented, fraught with methodological problems, and largely inconclusive. As the first attempt at a synthesis, we analyzed all available data on amphibian mortality in Europe and combined them with four previously unpublished surveys conducted by us. Based on our recalculation of road-kill counts in terms of species-specific road-kill recordability, we conclude that, in lowland Central Europe, the common toads, Bufo bufo, are the most common victims of vehicular traffic in suburban landscapes, while the common frogs, Rana temporaria and Triturus newts, prevail in rural landscapes. The green frogs also tend to be more frequent in rural areas. Common tree frogs, Hyla arborea, are unexpectedly rare in the road-kill record despite their terrestrial and migratory habits. In consideration of problems with obtaining accurate amphibian population estimates, we further propose the road kills-to-spawners ratio (R/S) as a working measure of the impact of road mortality on a local population. While the R/S ratio may not reflect the losses to an entire local amphibian population, it is free of the errors of whole-population estimates, which are notoriously difficult for amphibians. When corrected for species-specific road-kill recordability, most results suggest that the impact of roads on newts may have been underestimated and that the impact on common frog populations may be higher than on those of common toads. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Communicated by H. Kierdorf  相似文献   

7.
Habitat loss is causing amphibian population declines worldwide, so there is increased attention to forces that degrade remaining habitats. Terrestrial habitats surrounding wetlands are critical foraging areas for temperate anurans. We investigated plant community changes in two old fields invaded by Japanese knotweed (Fallopia japonica) and the foraging success of Green frogs (Rana clamitans) in invaded and non-invaded portions of those fields. Within each field, vegetation data were recorded in quadrats located along two transects bisecting the invasion fronts. We placed frogs in ‘foraging buckets’ along transects and measured their change in mass over a 38 h period. There were significant changes in vegetation structure and composition associated with Japanese knotweed invasion. Diverse assemblages of native plants that covered non-invaded plots were absent from areas invaded by Japanese knotweed. There was also a significant change in vegetation architecture between invaded and non-invaded habitats. Change in frog mass declined significantly along transects, with most frogs in non-invaded plots gaining mass and no frogs in invaded plots gaining mass. Most frogs from non-invaded plots but only two from invaded plots defecated shortly after removal from foraging buckets (verification of recent feeding). We hypothesize that Japanese knotweed invasions degrade terrestrial habitat quality for frogs by indirectly reducing arthropod abundance. Nonnative plant invasions may be another factor contributing to amphibian population declines.  相似文献   

8.
In adult amphibian skin, Na+ crosses from outside to inside. This Na+ transport can be measured as the amiloride-blockable short-circuit current (SCC) across the skin. We investigated the effects of arginine vasotocin (AVT) and mesotocin (MT), and those of antagonists of the vasopressin and oxytocin receptors, on the SCC across Hyla japonica skin. (1) Both AVT (100 pmol/L or more) and MT (1 nmol/L or more) increased the SCC. (2) The AVT- and MT-induced increases in SCC recovered with time (downregulation). (3) These AVT/MT-induced effects were blocked by application of OPC-31260 (vasopressin V2-receptor antagonist). (4) The OPC-31260 concentration needed to block the AVT-induced response was lower upon post-application (after application of agonist) than upon pre-application (before application of agonist), suggesting the number of receptors may have decreased after AVT application. (5) Upon repeated application of AVT (100 pmol/L), the induced SCC increase did not differ significantly between the 1st and 2nd applications. (6) The time to reach the half-maximum value of the AVT-induced or MT-induced increase in SCC was not significantly different between washout and post-application of OPC-31260, suggesting that post-application of OPC-31260 cleared AVT and MT from their receptors. The effects of AVT, MT, and their antagonists in H. japonica, which is adapted to a terrestrial habitat, are compared with our previously published data on Rana catesbeiana (=Lithobates catesbeianus), which is adapted to a semiaquatic habitat.  相似文献   

9.
We present a novel method for imaging acoustic communication between nocturnal animals. Investigating the spatio-temporal calling behavior of nocturnal animals, e.g., frogs and crickets, has been difficult because of the need to distinguish many animals’ calls in noisy environments without being able to see them. Our method visualizes the spatial and temporal dynamics using dozens of sound-to-light conversion devices (called “Firefly”) and an off-the-shelf video camera. The Firefly, which consists of a microphone and a light emitting diode, emits light when it captures nearby sound. Deploying dozens of Fireflies in a target area, we record calls of multiple individuals through the video camera. We conduct two experiments, one indoors and the other in the field, using Japanese tree frogs (Hyla japonica). The indoor experiment demonstrates that our method correctly visualizes Japanese tree frogs’ calling behavior. It has confirmed the known behavior; two frogs call synchronously or in anti-phase synchronization. The field experiment (in a rice paddy where Japanese tree frogs live) also visualizes the same calling behavior to confirm anti-phase synchronization in the field. Experimental results confirm that our method can visualize the calling behavior of nocturnal animals in their natural habitat.  相似文献   

10.
Hylarana is a well established frog genus coming under the family Ranidae. An increasing number of antimicrobial peptides have been isolated and characterized from the skin of frogs of this genus. This review covers the antimicrobial peptides reported so far from the frogs of Hylarana genus and to propose a consistent system of nomenclature for amphibian skin peptides. Multiple sequence alignment of the skin peptides from Hylarana genus has grouped them into six peptide families, and three bioactive peptides. Existing nomenclature of amphibian antimicrobial peptides is species centered with no implication to the genus which can lead to disparities, when frogs with same species name belonging to different genus have to be named. As per the proposed system the peptide should have the parent peptide name (e.g. Brevinin-1) followed by two uppercase letter of the genus, if two genera begin with the same letter–first letter should be the same followed by an appropriate second letter (e.g. HU for Huia and HM for Humenerana). This is succeeded by species name in lower case-orthologous peptides from different species may be characterized by the initial letter of that species, when two species begin with the same initial letter, second letter should be used appropriately (e.g. HLat for Hylarana aurata and HLan for Hylarana aurantiaca). Paralogs belonging to the same peptide family are assigned by numbers.  相似文献   

11.
The effects of producer diversity on predators have received little attention in arboreal plant communities, particularly in the tropics. This is particularly true in the case of tree diversity effects on web‐building spiders, one of the most important groups of invertebrate predators in terrestrial plant communities. We evaluated the effects of tree species diversity on the community of weaver spiders associated with big‐leaf mahogany (Swietenia macrophylla) in 19, 21 × 21‐m plots (64 plants/plot) of a tropical forest plantation which were either mahogany monocultures (12 plots) or polycultures (seven plots) that included mahogany and three other tree species. We conducted two surveys of weaver spiders on mahogany trees to evaluate the effects of tree diversity on spider abundance, species richness, diversity, and species composition associated with mahogany. Our results indicated that tree species mixtures exhibited significantly greater spider abundance, species richness, and diversity, as well as differences in spider species composition relative to monocultures. These results could be due to species polycultures providing a broader range of microhabitat conditions favoring spider species with different habitat requirements, a greater availability of web‐building sites, or due to increased diversity or abundance of prey. Accordingly, these results emphasize the importance of mixed forest plantations for boosting predator abundance and diversity and potentially enhancing herbivore pest suppression. Future work is necessary to determine the specific mechanisms underlying these patterns as well as the top‐down effects of increased spider abundance and species richness on herbivore abundance and damage.  相似文献   

12.
In Japan, the density of Japanese tree frogs (Hyla japonica) may not be necessary high in traditional rice fields compared to modern fields because the modernization of drainage systems from shallow earthen ditches to deep concrete-line ones reduces the abundance of predators/competitors for tadpoles, such as dojo loach (Misgurnus anguillicaudatus). This hypothesis was tested using two approaches. First, laboratory experiments revealed that the presence of the loach significantly reduced the survival of tree frog eggs and tadpoles. Second, observational studies in rice fields showed that the direct effect of modernization on tadpoles was not significant but the indirect (and thus total) effects were weakly positive due to the reduction in the density of dojo loach. Our study suggests that recent agricultural intensification in rice fields does not negatively impact all aquatic species but that some species may not be affected or can even flourish by having tolerance for the changes and release from potential predators or competitors.  相似文献   

13.
Mu  Lixian  Zhou  Lei  Yang  Juanjuan  Zhuang  Li  Tang  Jing  Liu  Tong  Wu  Jing  Yang  Hailong 《Amino acids》2017,49(9):1571-1585

As of February 2017, approximately 7639 amphibian species have been described in the AmphibiaWeb database. However, only 20 cathelicidin-like antimicrobial peptides have been identified to date from 10 amphibian species. Half of these peptides were identified from genome sequences and have not yet been functionally characterized. In this study, a novel cathelicidin-like peptide designated cathelicidin-PP was purified from the skin of tree frog Polypedates puerensis. Cathelicidin-PP is a 32 residue peptide of sequence ASENGKCNLLCLVKKKLRAVGNVIKTVVGKIA. Circular dichroism spectroscopy indicated that cathelicidin-PP mainly adopts a β-sheet structure in membrane-mimetic solutions. Cathelicidin-PP exhibits potent antimicrobial activity against bacteria and fungi, especially Gram-negative bacteria. Meanwhile, it shows low cytotoxicity toward mammalian cells. Scanning electron microscopy analysis indicated that cathelicidin-PP kills bacteria through the disruption of the bacterial cell membrane integrity. Furthermore, cathelicidin-PP exerts significant anti-inflammatory functions by inhibiting the lipopolysaccharide (LPS)-mediated generation of nitric oxide and pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β, and interleukin-6. The MAPKs (ERK, JNK, and p38) and NF-κB signaling pathways are involved in the anti-inflammatory effect. Cathelicidin-PP caused partial neutralization of LPS in a dose-dependent manner. Quantitative PCR indicated that infection of tree frogs with bacteria causes increased expression of cathelicidin-PP in immune-related tissues. Taken together, cathelicidin-PP is the first identified cathelicidin-like peptide from tree frogs. Our findings demonstrate that in addition to direct bactericidal capacity, cathelicidin-PP also possesses immunomodulatory properties, including partial neutralization of LPS, and inhibiting the production of inflammatory cytokines.

  相似文献   

14.
ABSTRACT Although effects of forest management on amphibians are relatively well studied, few studies have examined how these practices affect egg deposition by adults, which can impact population recruitment. We quantified the effects of 4 canopy tree-retention treatments on amphibian oviposition patterns in clusters of 60-L aquatic mesocosms located in each treatment. We also related aquatic and terrestrial biophysical parameters in treatment plots to oviposition patterns. Cope's gray treefrogs (Hyla chrysoscelis) deposited more egg masses in clear-cut and 25–50% tree-retention treatments than in controls. In contrast, mountain chorus frogs (Pseudacris brachyp***hona) deposited more egg masses in unharvested control and 75% retention treatments than in clear-cut or 25–50% retention treatments. Spotted salamanders (Ambystoma maculatum) only deposited eggs in 75% retention treatments and controls. The number of egg masses deposited by mountain chorus frogs was positively related to canopy cover and negatively related to water temperature, pH, and dissolved oxygen, whereas we noted the opposite relationships for Cope's gray treefrogs. We did not detect a relationship between the number of egg masses deposited by any species and the distance of mesocosms to either the nearest mature closed-canopy forest or to the nearest natural amphibian breeding pool. The impacts of the silvicultural treatments we studied were species-specific and depended on the amount of trees removed. In areas where protection of spotted salamander and mountain chorus frog breeding habitat is a priority, we recommend harvests retain at least 75% of the canopy. Our results also suggest that retention of 25–50% of canopy trees surrounding amphibian breeding pools has little conservation benefit.  相似文献   

15.
Johnson JR  Semlitsch RD 《Oecologia》2003,137(2):205-210
Concern over amphibian population declines and loss of terrestrial and aquatic habitat have emphasized the need to define habitat requirements for each stage in a species' life history. The realization that pond-breeding amphibians spend most of their lives in the terrestrial environment suggests the need to protect terrestrial as well as aquatic habitat. Many studies on amphibian populations have focused on emigration from breeding sites to define habitat use; however these studies do not typically elucidate terrestrial activities of adults within the breeding season. We measured colonization rates of artificial pools by gray treefrogs (Hyla versicolor) at multiple distances from natural breeding ponds. We found a non-random distribution of egg deposition among distances, with 95% of eggs deposited within 15 m of the breeding pond. Additionally, we found that the time to first colonization of artificial pools increased with respect to distance. Our results indicate that adult gray treefrogs may travel up to 200 m within a breeding season, and that multiple breeding ponds may be considered part of a single population. We suggest that a minimum core terrestrial habitat of 60 m surrounding breeding sites is appropriate for protection of local populations of gray treefrogs.  相似文献   

16.
The food habits of the endangered giant water bug, Lethocerus deyrolli, were studied in the rice fields of Nose, in the north of Osaka Prefecture, Japan. Field observations revealed that frogs were the most important prey item. Frogs represented 86.4% and 78.6% in the diet of L. deyrolli in spring and summer, respectively. Among seven species of three families (Hylidae, Rhacophoridae, and Ranidae) exploited by L. deyrolli, the most important food item was adult Hyla japonica in spring and juvenile Rana nigromaculta in summer. Fish and aquatic arthropods were not considered important foods for L. deyrolli. The frog‐dependent food habits indicate that the recovery and conservation of frogs should be prioritized to protect L. deyrolli from extinction.  相似文献   

17.
Rice fields are important substitute wetlands for frogs. Traditionally, rice fields in Japan were supplied with water and drained via shallow earth ditches (old-style). In the last 30 years, however, more than 80% of rice fields have been converted to a new irrigation system in which water is typically supplied through underground pipes via taps and is drained into deep, concrete-sided ditches (new-style). We compared the occurrence of frogs in paired areas of old- and new-style rice fields at six locations in Ibaraki Pref., central Japan, from May to August 1995. The Japanese tree frog (Hyla japonica) did not differ in abundance between the two types of rice fields, but the Japanese brown frog (Rana japonica) and the Tokyo daruma pond frog (Rana porosa porosa) preferred the old-style rice fields. These findings suggest that the status ofRana species has been adversely affected by the conversion of rice fields to the new irrigation system. Modification of the deep, U-shaped concrete ditches and the water management regime during the spawning season is needed to safeguard these species.  相似文献   

18.
The regenerative capacity of limbs was investigated by amputation of limbs at the zeugopodium in postmetamorphic froglets and adults of various sizes in four species of Japanese frogs, all of which showed some regeneration at these ages. In Hyla arborea japonica and Rana brevipoda porosa most young froglets regenerated their limbs well; however, the rate of regeneration decreased with the age of amputation, and the limb became nonregenerative in adults. Limbs of adults in Rana rugosa and R. japonica, on the other hand, exhibited good regeneration. All of the regenerates in the four species were heteromorphic, consisting histologically of well-developed cartilaginous rods surronded by connective tissue and skin. Limited development of muscle was appartment in regenerates of the three ranid species. The relations between body size, innervation of limbs, and regenerative capacity are discussed.  相似文献   

19.
20.

Previous studies of the morphology of the humerus in kangaroos showed that the shape of the proximal humerus could distinguish between arboreal and terrestrial taxa among living mammals, and that the extinct “giant” kangaroos (members of the extinct subfamily Sthenurinae and the extinct macropodine genus Protemnodon) had divergent humeral anatomies from extant kangaroos. Here, we use 2D geometric morphometrics to capture the shape of the distal humerus in a range of extant and extinct marsupials and obtain similar results: sthenurines have humeral morphologies more similar to arboreal mammals, while large Protemnodon species (P. brehus and P. anak) have humeral morphologies more similar to terrestrial quadrupedal mammals. Our results provide further evidence for prior hypotheses: that sthenurines did not employ a locomotor mode that involved loading the forelimbs (likely employing bipedal striding as an alternative to quadrupedal or pentapedal locomotion at slow gaits), and that large Protemnodon species were more reliant on quadrupedal locomotion than their extant relatives. This greater diversity of locomotor modes among large Pleistocene kangaroos echoes studies that show a greater diversity in other aspects of ecology, such as diet and habitat occupancy.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号