首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Over small spatial scales, coral reefs represent a mosaic of suitable settlement microhabitat patches of varying size for late-stage larval reef fishes. Few studies have specifically examined how variation in patch size influences density of recently settled coral reef fishes (recruits). Using standardized units of coral rubble settlement substrate deployed on sandy bottom, we monitored the concurrent settlement of three reef fish taxa onto differently sized patches (0.28–1.68 m2) at 5-d intervals during a lunar settlement peak. We found marked differences among taxa in how recruit density scaled with patch size. Recruit density of a damselfish and a parrotfish decreased and increased, respectively, with the increase in patch size, while that of a wrasse was similar among patch sizes. Our results highlight the importance of the interaction between taxon-specific settlement behaviour and patch size in establishing initial spatial differences in density within and among coral reef fish taxa in a heterogeneous landscape.

  相似文献   

2.
Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites. Here, we contrast the acoustic characteristics of oyster reef and off-reef soft bottoms, and investigate the effect of habitat-associated estuarine sound on the settlement patterns of an economically and ecologically important reef-building bivalve, the Eastern oyster (Crassostrea virginica). Subtidal oyster reefs in coastal North Carolina, USA show distinct acoustic signatures compared to adjacent off-reef soft bottom habitats, characterized by consistently higher levels of sound in the 1.5–20 kHz range. Manipulative laboratory playback experiments found increased settlement in larval oyster cultures exposed to oyster reef sound compared to unstructured soft bottom sound or no sound treatments. In field experiments, ambient reef sound produced higher levels of oyster settlement in larval cultures than did off-reef sound treatments. The results suggest that oyster larvae have the ability to respond to sounds indicative of optimal settlement sites, and this is the first evidence that habitat-related differences in estuarine sounds influence the settlement of a mollusk. Habitat-specific sound characteristics may represent an important settlement and habitat selection cue for estuarine invertebrates and could play a role in driving settlement and recruitment patterns in marine communities.  相似文献   

3.
Efforts to restore the Eastern oyster (Crassostrea virginica) reef habitats in Chesapeake Bay typically begin with the placement of hard substrata to form three‐dimensional mounds on the seabed to serve as a base for oyster recruitment and growth. A shortage of oyster shell for creating large‐scale reefs has led to widespread use of other materials such as Surf clamshell (Spisula solidissima), as a substitute for oyster shell. Oyster recruitment, survival, and growth were monitored on intertidal reefs constructed from oyster and Surf clamshell near Fisherman’s Island, Virginia, U.S.A. and on a subtidal Surf clamshell reef in York River, Virginia, U.S.A. At the intertidal reefs, oyster larvae settlement occurred at similar levels on both substrate types throughout the monitoring period but higher levels of post‐settlement mortality occurred on clamshell reefs. The oyster shell reef supported greater oyster growth and survival and offered the highest degree of structural complexity. On the subtidal clamshell reef, the quality of the substrate varied with reef elevation. Large shell fragments and intact valves were scattered around the reef base, whereas small, tightly packed shell fragments paved the crest and flank of the reef mound. Oysters were more abundant and larger at the base of this reef and less abundant and smaller on the reef crest. The availability of interstitial space and appropriate settlement surfaces is hypothesized to account for the observed differences in oyster abundance across the reef systems. Patterns observed emphasize the importance of appropriate substrate selection for restoration activities to enhance natural recovery where an underlying habitat structure is destroyed.  相似文献   

4.
Oyster reef restoration has become a principal strategy for ameliorating the loss of natural Crassostrea virginica populations and increasing habitat provision. In 2014, a large‐scale, high‐relief, 23‐ha subtidal C. virginica reef was restored at the historically productive Half Moon Reef in Matagorda Bay, TX, using concrete and limestone substrates. Encrusting and motile fauna were sampled seasonally until 17 months postrestoration at the restored reef and at adjacent unrestored sites. Restored oysters developed rapidly and were most abundant 3 months postrestoration, with subsequent declines possibly due to interacting effects of larval settlement success on new substrate versus post‐settlement mortality due to competitors and predators. Oyster densities were 2× higher than in a restored oyster population in Chesapeake Bay that was reported to be the largest reestablished metapopulation of native oysters in the world. Resident fauna on the restored reef were 62% more diverse, had 433% greater biomass, and comprised a distinct faunal community compared to unrestored sites. The presence of three‐dimensional habitat was the most important factor determining resident faunal community composition, indicating that substrate limitation is a major hindrance for oyster reef community success in Texas and other parts of the Gulf of Mexico. There were only minor differences in density, biomass, and diversity of associated fauna located adjacent (13 m) versus distant (150 m) to the restored reef. The two substrate types compared had little influence on oyster recruitment or faunal habitat provision. Results support the use of reef restoration as a productive means to rebuild habitat and facilitate faunal enhancement.  相似文献   

5.
Srinivasan M 《Oecologia》2003,137(1):76-84
Many coral reef fishes have restricted depth ranges that are established at settlement or soon after, but the factors limiting these distributions are largely unknown. This study examines whether the availability of microhabitats (reef substrata) explains depth limits, and evaluates whether juvenile growth and survival are lower beyond these limits. Depth-stratified surveys of reef fishes at Kimbe Bay (Papua New Guinea) showed that the abundance of new settlers and the cover of coral substrata differed significantly among depths. A field experiment investigated whether settling coral reef fishes preferred particular depths, and whether these depth preferences were dependent on microhabitat. Small patch reefs composed of identical coral substrata were set up at five depths (3, 6, 10, 15 and 20 m), and settlement patterns were compared to those on unmanipulated reef habitat at the same five depths. For all species, settlement on patch reefs differed significantly among depths despite uniform substratum composition. For four of the six species tested, depth-related settlement patterns on unmanipulated habitat and on patch reefs did not differ, while for the other two, depth ranges were greater on the patch reefs than on unmanipulated habitat. A second experiment examined whether depth preferences reflected variation in growth and survival when microhabitat was similar. Newly settled individuals of Chrysiptera parasema and Dascyllus melanurus were placed, separately, on patch reefs at five depths (as above) and their survival and growth monitored. D. melanurus, which is restricted to shallow depths, had highest survival and growth at the shallowest depth. Depth did not affect either survival or growth of C. parasema, which has a broader depth range than D. melanurus (between 6 and 15 m). This suggests that the fitness costs potentially incurred by settling outside a preferred depth range may depend on the strength of the depth preference.  相似文献   

6.
A 9-year study of the structure of assemblages of fish on 20 coral patch reefs, based on 20 non-manipulative censuses, revealed a total of 141 species from 34 families, although 40 species accounted for over 95% of sightings of fish. The average patch reef was 8.5 m2 in surface area, and supported 125 fish of 20 species at a census. All reefs showed at least a two-fold variation among censuses in total numbers of fish present, and 12 showed ten-fold variations. There was also substantial variation in the composition and relative abundances of species present on each patch reef, such that censuses of a single patch reef were on average about 50% different from each other in percent similarity of species composition (Czekanowski's index). Species differed substantially in the degree to which their numbers varied from census to census, and in the degree to which their dispersion among patch reefs was modified from census to census. We characterize the 40 most common species with respect to these attributes. The variations in assemblage structure cannot be attributed to responses of fish to a changing physical structure of patch reefs, nor to the comings and goings of numerous rare species. Our results support and extend earlier reports on this study, which have stressed the lack of persistant structure for assemblages on these patch reefs. While reef fishes clearly have microhabitat preferences which are expressed at settlement, the variations in microhabitat offered by the patch reefs are insufficient to segregate many species of fish by patch reef. Instead, at the scale of single patch reefs, and, to a degree, at the larger scale of the 20 patch reefs, most of the 141 species of fish are distributed without regard to differences in habitat structure among reefs, and patterns of distribution change over time. Implications for general understanding of assemblage dynamics for fish over more extensive patches of reef habitat are considered.  相似文献   

7.
Oysters serve as keystone species and ecosystem engineers in estuaries due to their fundamental role of providing services to the surrounding environment and to humans. Globally, however, oysters have precipitously declined in numbers over the last century. To remedy this drastic decrease, many coastal areas have initiated oyster restoration projects. In the Indian River Lagoon (IRL) of Florida, where oyster loss was primarily the result of recreational boat wake dislodgment, researchers have put in place a unique method to supplement natural recruitment of oysters. This method consists of deploying stabilized shell attached to mesh mats. Larval oysters thus have substrate on which to settle and three‐dimensional reef habitats have been reestablished in historical footprints. This restoration project has proven to be successful, shown by 9 years of data collection on growth, recruitment, and survivability. In this study, we sought to determine the length of time required for newly restored oyster reefs to reach equivalent levels of genetic diversity as undisturbed, natural (reference) oyster reefs. Additionally, we determined if recreational harvesting impacted the genetic diversity of these reference reefs. Using nine microsatellite loci, we found that restored oyster reefs accumulated as much genetic diversity as natural reefs as quickly as 1 month after stabilized shells were deployed. We likewise found that harvesting did not impact genetic diversity in oyster reefs in the IRL. These results are encouraging, and are a valuable addition to understanding the importance of oyster reef restoration on the ecosystem.  相似文献   

8.
Maryland's recently created oyster restored reefs provide us with a unique opportunity to observe the abundance and species composition of macrofauna assemblages on unexploited reefs with high concentrations of mature oysters and undisturbed reef architecture. They might thus be used to better understand the magnitude of losses to reef dwelling macrofauna communities, and the associated loss of ecological functions resulting from reef destruction. We sampled reef macrofaunal assemblages on restored plots at four restored oyster reefs and adjacent non-restored plots located outside restored boundaries. We then compared the effects of study site location, and habitat quality (restored versus non-restored) on macrofaunal density using thirteen response variables. Density of macrofauna was an order of magnitude higher on restored reefs, epifaunal density was more than twice as high on restored reefs and sessile macrofaunal density was two orders of magnitude higher on restored reefs. Three out of the five dominant taxonomic groups were much more abundant on restored plots. Mean amphipod density was 20 times higher on restored plots and densities of xanthid crabs and demersal fish were both four times greater on restored plots. Two out of four functional feeding groups: suspension feeders and carnivore/omnivores, were more abundant on restored plots. Since reef macrofauna include many important fish prey species, oyster reef restoration may have the potential to augment fish production by increasing fish prey densities and fish foraging efficiency.  相似文献   

9.
A limited supply of oyster shell for restoration practices has prompted investigations of alternative substrates used in construction of artificial oyster reefs. The success of oyster reef restoration projects is increasingly focused not only on oyster densities, but also on habitat provisioning for associated fauna. A subtidal oyster reef complex (0.24 km2) was restored in the Mission‐Aransas Estuary, Texas, U.S.A., in July 2013 using replicated mounds of concrete, limestone, river rock, and oyster shell substrates. Oyster and reef‐associated fauna characteristics were quantified quarterly for 15 months, using sampling trays that were deployed 3 months after construction. The highest densities of oyster spat occurred 9 months after tray deployment (July 2014, 1,264/m2), whereas juvenile oyster densities increased throughout the study period to 283/m2. Concrete (1,022/m2) and limestone (939/m2) supported the highest number of oysters over all dates. Oyster shell (1,533/m2) and concrete (1,047/m2) substrates supported the highest densities of associated motile fauna. Faunal diversity (Hill's N1) did not vary by substrate material, but did show seasonal variation. A simple benefit–cost ratio was used to indicate the localized monetary value for each of the substrates. Oyster shell and concrete substrates returned the highest benefit–cost ratio for motile fauna, while concrete yielded the highest benefit–cost ratio for oyster abundance. Incorporating benefit–cost ratios in restoration planning will allow practitioners to better integrate substrate‐specific ecological values with economic considerations and project goals to maximize return on restoration investments.  相似文献   

10.
In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5 years) and old (>6 years) shell and rock substrate reefs. Using crab traps, gill‐nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5 m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.  相似文献   

11.
Artificial reefs are increasingly used worldwide as a method for managing recreational diving since they have the potential to satisfy both conservation goals and economic interests. In order to help maximize their utility, further information is needed to drive the design of stimulating resources for scuba divers. We used a questionnaire survey to explore divers’ perceptions of artificial reefs in Barbados. In addition, we examined reef resource substitution behaviour among scuba divers. Divers expressed a clear preference for large shipwrecks or sunken vessels that provided a themed diving experience. Motives for diving on artificial reefs were varied, but were dominated by the chance of viewing concentrated marine life, increased photographic opportunities, and the guarantee of a ‘good dive’. Satisfaction with artificial reef diving was high amongst novices and declined with increasing experience. Experienced divers had an overwhelming preference for natural reefs. As a management strategy, our results emphasize the capacity of well designed artificial reefs to contribute towards the management of coral reef diving sites and highlight a number of important areas for future research. Suggested work should validate the present findings in different marine tourism settings and ascertain support of artificial reefs in relationship to level of diver specialization.  相似文献   

12.
Synopsis We examined early life history traits and patterns of settlement of the slender filefish, Monacanthus tuckeri, at Calabash Caye, Turneffe Atoll, Belize. A settlement peak was evident at the new moon, and no settlement occurred at the full moon. However, settlement rates at the quarter moons could not be estimated due to sampling gaps. Many reef fishes show new moon settlement peaks, so M. tuckeri shares some characteristics with the primarily perciform species on coral reefs. Pelagic larval duration was long (mean = 42 days) and variable, suggesting that dispersal patterns might be diverse. Size at settlement was large (mean = 32 mm total length) and also variable. Larval duration and size at settlement were outside of the average values exhibited by reef fishes, but are not beyond the extreme end of the range, and might be explained by association with pelagic debris prior to settlement. There were no differences in overall settlement rates on reef and seagrass habitats, and fish settling to either habitat did not differ in larval duration, size at settlement, or larval growth rate. This suggests that settlement to alternative habitats may be random, or driven by availability of suitable microhabitat, rather than habitat quality or individual traits.  相似文献   

13.
Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small‐fetch, gradual‐sloped shoreline), “ramp” (large‐fetch, gradual‐sloped shoreline), and “scarp” (large‐fetch, steep‐sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small‐fetch, gradual‐sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat‐related functions (prey availability and refuge) already present along existing salt marsh borders.  相似文献   

14.
After being ecologically extinct for almost a century, the discovery of a shellfish reef with native European flat oysters (Ostrea edulis) in the Dutch coastal area of the North Sea by the authors of this study called for an extensive survey to better understand some of the key requirements for the return of the native oyster in coastal waters. We assessed habitat conditions, its potential for increasing biodiversity, and the role of substrate provision by other bivalves such as the invasive alien Pacific oyster (Crassostrea gigas). Using underwater visual census, O. edulis size-frequency distributions and attachment substrate was investigated, as well as the composition of the epibenthic community and substrata types inside quadrats that were distributed across the reef. This reef was found to be composed of native European flat oysters, invasive alien Pacific oysters and blue mussels (Mytilus edulis), alternated with sandy patches. The O. edulis population (6.8?±?0.6 oysters m?2) consisted of individuals of different size classes. In quadrats with native and non-native oysters the number of epibenthic species was 60% higher compared to adjacent sand patches within the reef. Notably, our results showed that the native oyster predominantly used shell (fragments) of the invasive Pacific oyster as settlement substrate (81% of individuals). Our results optimistically show that conditions for native oyster restoration can be suitable at a local scale in the coastal North Sea area and suggest that the return of native oysters may be facilitated by novel substrate provided by invasive oysters at sites where their distribution overlap.  相似文献   

15.
Dendropoma maximum is a vermetid gastropod (a sessile tube-forming snail) commonly associated with living corals throughout shallow-water reefs of the Indo-Pacific. Recent work suggests that, once established, this species can adversely affect growth and survival of corals. Here, we test the hypotheses that disturbances to live coral substrates (e.g., creation of bare patches) facilitate successful larval settlement and subsequent population growth of D. maximum, and conversely, that live coral inhibits D. maximum settlement. In the shallow lagoon of Moorea, French Polynesia, we selected patch reefs where D. maximum was either present or absent (to evaluate potential effects of resident adult conspecifics on recruitment) and established focal quadrats on each reef. In each quadrat, we either experimentally removed 50 % of live coral cover or left the quadrat with 100 % live coral cover. In addition, we deployed units of bare substrate (coral rubble) to each reef. We conducted a census of deployed substrates and quadrats after 6 months and found that D. maximum settled irrespective of resident vermetid populations, and only onto nonliving surfaces (i.e., cleared patches in quadrats, coral rubble, and marine epoxy). In laboratory experiments, we exposed larvae of D. maximum to live coral and found species-specific effects on survival of D. maximum larvae. Porites lobata and Pocillopora sp. killed larvae of D. maximum, Porites rus caused weaker mortality, and Millepora sp. had no effect on larval survival. Collectively, these results suggest that D. maximum requires disturbances that create bare patches to successfully settle onto reefs, and that a high cover of living corals contributes resilience to reefs by limiting settlement opportunities of a species known to reduce coral growth and survival.  相似文献   

16.
A portion of the northern Florida Keys reef tract was mapped with the NASA Experimental Advanced Airborne Research Lidar (EAARL) and the morphology of patch reefs was related to variations in Holocene sea level. Following creation of a lidar digital elevation model (DEM), geospatial analyses delineated morphologic attributes of 1,034 patch reefs (reef depth, basal area, height, volume, and topographic complexity). Morphometric analysis revealed two morphologically different populations of patch reefs associated with two distinct depth intervals above and below a water depth of 7.7 m. Compared to shallow reefs, the deep reefs were smaller in area and volume and showed no trend in topographic complexity relative to water depth. Shallow reefs were more variable in area and volume and became flatter and less topographically complex with decreasing water depth. The knoll-like morphology of deep reefs was interpreted as consistent with steady and relatively rapidly rising early Holocene sea level that restricted the lateral growth of reefs. The morphology of shallow “pancake-shaped” reefs at the highest platform elevations was interpreted as consistent with fluctuating sea level during the late Holocene. Although the ultimate cause for the morphometric depth trends remains open to interpretation, these interpretations are compatible with a recent eustatic sea-level curve that hindcasts fluctuating late Holocene sea level. Thus it is suggested that the morphologic differences represent two stages of reef accretion that occurred during different sea-level conditions.  相似文献   

17.
Oyster reefs are dense concentrations of filter-feeding animals in estuarine ecosystems. A flow-through plastic tunnel is a feasible method of determining significant changes in material concentrations in tidal waters passing over an oyster reef. The oyster reef reduces the amplitude of the particulate organic carbon and chlorophyll a signals while increasing the amplitude, of the ammonia signal. The observations suggest that oyster reefs have one of the highest reported release rates of ammonia (1680–7250 μg at.·m?2·h?1), and thus are probably important in material cycles in marsh-estuarine ecosystems. The magnitude of particulate organic carbon removal by the oyster reef is many times greater than that expected from biofiltration alone, suggesting that removal due to physical factors may be important.  相似文献   

18.
Ecological restoration principally seeks to restore lost or degraded ecosystems. Restoration can, however, also deliver a suite of wider ecological, social, and economic benefits. To optimize performance it is, therefore, important to plan the design and placement of restoration initiatives with a view to maximizing joint effects on ecosystems, animal populations, ecological functions, and ecosystem services. We measured the effects of multiple (13) restored oyster reefs on a suite of restoration benefits (oyster settlement and growth, fish diversity and abundance, the ecological functions of scavenging and predation) in the Noosa River estuary, Australia, and used distribution models to identify potential restoration sites with the greatest overall benefits. Oysters recruited to reefs, and reefs enhanced the diversity and abundance of fishes and had higher rates of ecological functions than control sites. However, the growth of oyster reefs was most correlated with the proximity of restoration sites to urbanized shorelines and the estuary mouth, and the area of mangroves around the site. By contrast, fish diversity and abundance, and the rates of ecological functions, were typically negatively correlated with the proximity of reefs to both mangroves and seagrasses. This complex spatial mosaic resulted in distinct areas predicted to achieve all restoration benefits that were significantly smaller than the total area that could be restored. Applying a systematic and defensible method to identify potential restoration sites that maximize multiple benefits while lowering costs is a sensible social, economic, and ecological strategy.  相似文献   

19.
Habitat use by the resident coral reef anemonefish, Amphiprion frenatus, was examined in the complex coral reef landscape of Shiraho Reef, Ishigaki Island, Okinawa, Japan, using an enlarged color aerial photograph processed using image analysis software as an accurate field map. The anemonefish inhabit assemblages of the host sea anemone, Entacmaea quadricolor (clonal type), which inhabit various patch reefs in the back reef moat. We located all patch reefs inhabited by the host in the map based on snorkel observations: 297 anemonefish were found in 93 host assemblages in the study site of 2.9 ha. These patch reefs could be recognized by the reef colors, including the shadows (blackish color) in the photograph. Using image analysis software, the colors of the patch reefs were chosen and pixels with the same color values were regarded as potential habitat patches for the fish (PHPs). PHPs were 3D patch reefs (>0.5 m in height). Total areas (TA) and total perimeters (TP) of PHPs were measured in nine quadrats in the digitized aerial photograph. Host abundance and anemonefish abundance in a quadrat showed stronger correlations with the product of TA and TP of PHPs than TA alone. A site with numerous large 3D patch reefs (≥0.75 m2 in situ) can be a better habitat for the fish than other sites consisting of several huge 3D patch reefs of the same total area. The methodology applied here may be useful for assessing the quality of habitats for small resident animals in shallow subtidal reefs.  相似文献   

20.
Ecosystem engineers are species that influence the abiotic and biotic environment around them and may assist the restoration of associated species, including other habitat‐forming species. We deployed an array of 28 artificial reefs with transplanted Ecklonia radiata, the dominant canopy‐forming kelp species across southern Australia, to investigate how the patch size and density of E. radiata influenced the establishment of the associated communities of plants and animals. Many of the reefs were rapidly colonized by Ostrea angasi, a critically depleted reef‐forming oyster. Over the 24‐month deployment of the reefs, thick oyster mats formed across the entire surface of many of the reefs with estimated biomass densities exceeding 5 kg of live oysters/m2; however, oyster density was dependent on E. radiata patch size and density. Increasing patch size and the presence of kelp resulted in significantly higher densities of oysters 5 months after the reefs were deployed and at the end of the experiment, where oysters were approximately three times more numerous on reefs with kelp compared to those without kelp. E. radiata appeared to facilitate the establishment of O. angasi largely through its capacity to reduce benthic light and thus suppress competition from turfing algae. These results may inform the development of novel approaches to tackle recruitment bottlenecks affecting the restoration of O. angasi reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号