首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Myelin oligodendrocyte glycoprotein (MOG) is an antigen of the myelin sheath, which may trigger immune cell responses and the production of auto‐antibodies in multiple sclerosis (MS). In this study, we used MOG35‐55‐induced experimental autoimmune encephalomyelitis (EAE), a model of human MS, to assess the production of catalytically active immunoglobulin G (IgG) antibodies or abzymes which have been shown to be present in sera of patients with several autoimmune diseases. Here, we show that IgGs from the sera of control C57BL/6 mice are catalytically inactive. During development of EAE, a specific reorganization of the immune system of mice occurred leading to a condition which was associated with the generation of catalytically active IgGs hydrolysing DNA, myelin basic protein (MBP) and MOG which was associated with increased proteinuria, changes in differentiation of mice bone marrow hematopoietic stem cells (HSCs) and an increase in proliferation of lymphocytes in bone marrow, spleen and thymus as well as a significant suppression of cell apoptosis in these organs. The strongest alterations were found in the early disease phase (18–24 days after immunization) and were less pronounced in later EAE stages (40 days after EAE induction). We conclude that a significant increase in DNase and proteolytic activities of antibodies may be considered the earliest statistically significant marker of MOG‐induced EAE in mice. The possible differences in immune system reorganizations during preclinical phases of the disease, acute and late EAE, leading to production of different auto‐antibodies and abzymes as well other changes are discussed.  相似文献   

2.
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination. We transplanted human Wharton’s jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted OPCs on the functional and pathological manifestations of the disease. Transplanted hWJ-MSC-derived OPCs significantly reduced the clinical signs of EAE. Histological examinations showed that remyelination was significantly increased after transplantation. These results suggest that hWJ-MSC-derived OPCs promote the regeneration of myelin sheaths in the brain.  相似文献   

3.
Changes of NAD content, redox-state, enzyme activity in the brain and liver tissues of Guinea pigs at different stages of development of experimental allergic encephalomyelitis (EAE) were investigated using the model of multiple sclerosis. It was shown, that the most legible changes of the investigated parameters occur on the preclinical stage and the stage of initial neurological symptoms. The increase of the brain NAD level and reduction properties of NAD+/NADH pairs reduction properties against a background of inhibition of lactatedehydrogenase activity was observed in the early terms of EAE development (7-15 day). The liver lactatedehydrogenase activity is increased at an initial stage. NAD-ase activity is increased in the medium term (18-21 day) that correlates with changes of this enzyme activity in the blood serum. In the term of strongly expressed neurological signs (26-33 day) the sharp drop of NAD content in the brain and liver is observed. The role of the obtained results at different stages of EAE development is discussed.  相似文献   

4.
Innate immune responses provide the host with its first line of defense against infections. Signals generated by subsets of lymphocytes, including NK cells, NKT cells, and APC during this early host response determine the nature of downstream adaptive immune responses. In the present study, we have examined the role of innate NK cells in an autoimmune model through the use of primary immunization with the myelin oligodendrocyte glycoprotein peptide to induce experimental autoimmune encephalomyelitis (EAE). Our studies have shown that in vivo depletion of NK cells can affect the adaptive immune responses, because NK cells were found to regulate the degree of clinical paralysis and to alter immune adaptive responses to the myelin oligodendrocyte glycoprotein peptide. The requirement for NK cells was reflected by changes in the T cell responses and diminished clinical disease seen in mice treated with anti-NK1.1, anti-asialo GM1, and selected Ly49 subtype-depleted mice. In addition to alteration in T cell responses, the maturational status of dendritic cells in lymph nodes was altered both quantitatively and qualitatively. Finally, examination of TCR Vbeta usage of the brain lymphocytes from EAE mice indicated a spectra-type change in receptor expression in NK- depleted mice as compared with non-NK-depleted EAE mice. These findings further establish a recently postulated link between NK cells and the generation of autoreactive T cells.  相似文献   

5.

One of the most substantial and established environmental risk factors for neurological and psychiatric disorders is stress exposure, whose detrimental consequences hinge on several variables including time. In this regard the gestational period is known to present an intrinsic vulnerability to environmental insults and thus stressful events during pregnancy can lead to severe consequences on the offspring’s brain development with long-term repercussions throughout adulthood. On this basis, we investigated the long-lasting impact of prenatal stress exposure on the susceptibility to the experimental autoimmune encephalomyelitis (EAE), a well-established murine model of multiple sclerosis. Although stress is considered a triggering factor for this chronic, progressive, autoimmune disease, little is known about the underlying mechanisms. To this end, EAE was induced by immunization with MOG35-55/CFA and pertussis toxin administration in adult female C57BL/6 mice born from control or stressed dams exposed to restraint stress during the last days of gestation. Our results demonstrate that gestational stress induces a marked increase in the severity of EAE symptoms in adulthood. Further, we highlight an altered maturation of oligodendrocytes in the spinal cord of prenatally stressed EAE mice, as indicated by the higher levels of GPR17, a marker of immature oligodendrocyte precursor cells. These behavioral and molecular alterations are paralleled by changes in the expression and signaling of the neurotrophin BDNF, an important mediator of neural plasticity that may contribute to stress-induced impaired remyelination. Since several already marketed drugs are able to modulate BDNF levels, these results pave the way to the possibility of repositioning these drugs in multiple sclerosis.

  相似文献   

6.
7.
The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain.  相似文献   

8.
目的:研究组织型纤溶酶原激活剂(t-PA)对实验性自身免疫性脑脊髓炎(EAE)小鼠病理性淋巴细胞与血脑屏障粘附的影 响。方法:用MOG35-55 肽段免疫C57BL/6小鼠建立EAE 动物模型,于发病高峰期取淋巴细胞用MOG35-55 肽段进行刺激得到 抗原特异性T淋巴细胞。通过尾静脉给予t-PA 的方法对EAE 小鼠进行干预,临床评分评价小鼠的发病情况。体外培养小鼠血脑 屏障内皮细胞系bEnd.3,应用不同浓度的t-PA 进行处理。用荧光标记MOG35-55 特异性T 细胞进行细胞粘附实验,用Transwell 小室建立体外血脑屏障模型进行细胞迁移实验。用免疫荧光化学方法检测ICAM-1 的表达情况。结果:t-PA处理可以使血脑屏障 内皮细胞与T 淋巴细胞粘附和迁移作用增强。在体外细胞培养模型中检测到t-PA诱导ICAM-1 表达升高。经过t-PA 处理的小 鼠,其血管内皮表面ICAM-1 的表达也有所上升。经t-PA 处理的EAE 小鼠发病高峰提前,症状加重。结论:t-PA 处理可以使EAE 病理性淋巴细胞与血脑屏障内皮的粘附性增加,浸润能力增强;t-PA 所引起的粘附性增加可能与bEnd.3 表面ICAM-1表达升高 有关。  相似文献   

9.
多发性硬化是人类常见的中枢神经系统自身免疫性炎症致脱髓鞘疾病.流行病学研究发现,女性患者多于男性,其平均发病时间早于男性.实验性自身免疫性脑脊髓炎(EAE)与多发性硬化症有相似的临床症状和病理特征,是被广泛应用于人类疾病研究的动物模型.本实验利用髓鞘少突胶质糖蛋白MOG33-35免疫C57BL/6小鼠建立EAE模型,观察29天.通过疾病评分发现雌雄小鼠在发病率、起病时间上均无明显差别,但雄鼠的发病症状明显比雌鼠严重.在其病理切片HE染色中观察到雄性小鼠中枢浸润的炎性细胞多于雌性小鼠,并且在LFB染色中同样观察到雄鼠脱髓鞘区域明显增大.对其发病高峰期中枢浸润细胞的染色分析时,可以发现雄性小鼠中浸润的CD4 T细胞及其亚群TH-1和TH-17细胞均有明显增加.这些都表明MOG33-35免疫C57BL/6小鼠建立的EAE模型存在着性别差异的影响,这一发现为今后建立多发性硬化症的动物模型中动物性别的选择提供了一定的参考依据.  相似文献   

10.
Alzheimer’s disease is the most common form of dementia and is structurally characterized by brain atrophy and loss of brain volume. Aβ is one of the widely accepted causative factors of AD. Aβ deposition is positively correlated with brain atrophy in AD. In the present study, structural brain imaging techniques such as Magnetic Resonance Imaging (MRI) were used to measure neuroanatomical alterations in Alzheimer’s disease brain. MRI is a non-invasive method to study brain structure. The objective of the present study was to elucidate the role of Aβ on brain structure in the aged rabbit brain. Among 20 aged rabbits, one batch (n = 10) rabbits was injected chronically with Aβ(1-42) and another batch (n = 10) with saline. The MRI was conducted before Aβ(1-42)/saline injection and after 45 days of Aβ(1-42)/saline injection. All the aged rabbits underwent MRI analysis and were euthanized after 45 days. The MRI results showed a significant reduction in thickness of frontal lobe, hippocampus, midbrain, temporal lobe and increases in the lateral ventricle volume. We also conducted an MRI study on AD (n = 10) and normal (n = 10) cases and analyzed for the thicknesses of frontal lobe, hippocampus, midbrain, temporal lobe and lateral ventricle lobe. We found significant reductions in thickness of the frontal lobe and the hippocampus. However, no significant reduction in the thickness of midbrain, temporal lobe or increase in the lateral ventricle volume was observed compared to normal. Correlations in brain atrophy changes between rabbit brain and human AD brain were found for frontal lobe and hippocampal regions. In contrast, other regions such as midbrain, temporal lobe, and lateral ventricles were not correlated with rabbit brain atrophy changes in the corresponding regions. The relevance of these changes in AD is discussed.  相似文献   

11.
Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE), an animal model for multiple sclerosis, using wild-type (WT) and Panx1 knockout (KO) mice. Panx1 KO mice displayed a delayed onset of clinical signs of EAE and decreased mortality compared to WT mice, but developed as severe symptoms as the surviving WT mice. Spinal cord inflammatory lesions were also reduced in Panx1 KO EAE mice during acute disease. Additionally, pharmacologic inhibition of Panx1 channels with mefloquine (MFQ) reduced severity of acute and chronic EAE when administered before or after onset of clinical signs. ATP release and YoPro uptake were significantly increased in WT mice with EAE as compared to WT non-EAE and reduced in tissues of EAE Panx1 KO mice. Interestingly, we found that the P2X7 receptor was upregulated in the chronic phase of EAE in both WT and Panx1 KO spinal cords. Such increase in receptor expression is likely to counterbalance the decrease in ATP release recorded from Panx1 KO mice and thus contribute to the development of EAE symptoms in these mice. The present study shows that a Panx1 dependent mechanism (ATP release and/or inflammasome activation) contributes to disease progression, and that inhibition of Panx1 using pharmacology or gene disruption delays and attenuates clinical signs of EAE.  相似文献   

12.
We have previously shown that naive SJL (H-2(s)) mice, which are highly susceptible to myelin proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE), have a very high frequency (1/20,000 CD4 T cells) of PLP(139-151)-reactive T cells in the naive repertoire. In this study, we examine the function of this endogenous PLP(139-151)-reactive repertoire in vivo and find that this repertoire encompasses the precursors of pathogenic T cells. Because SJL mice do not develop spontaneous EAE, we have explored the mechanisms that keep this autopathogenic repertoire in check and prevent the development of spontaneous autoimmunity. We crossed IL-4 and IL-10 deficiency onto the SJL background and analyzed the roles of these two immunoregulatory cytokines in regulating the size and effector function of the endogenous PLP(139-151)-reactive repertoire and development of autoimmune disease. We find that IL-10 is important in the homeostatic regulation of the endogenous PLP(139-151)-reactive repertoire in that it both limits the size of the repertoire and prevents development of effector autoaggressive T cells. SJL IL-10(-/-) mice with high numbers of PLP(139-151)-specific precursors in the repertoire did not develop spontaneous EAE, but when they were injected with pertussis toxin, they showed atypical clinical signs of EAE with small numbers of typical mononuclear cell infiltrates predominantly in the meninges. EAE could be inhibited by prior tolerization of the mice with soluble PLP(139-151) peptide. These findings indicate that IL-10 may contribute to the regulation of the endogenous autoimmune repertoire.  相似文献   

13.
目的比较不同剂量髓鞘少突胶质细胞糖蛋白(myelin oligodendrocyte glycoprotein,MOG35-55)免疫诱导C57BL/6小鼠实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)的作用。方法将C57BL/6小鼠分为正常组和三组不同剂量MOG35-55诱导的EAE模型组,共4组。模型组分别以每只200、100、50μg的MOG35-55与完全弗氏佐剂(complete Freund s adjuvant,CFA)混合的乳化抗原皮下注射免疫诱导EAE模型,正常组以生理盐水替代。观察不同剂量MOG35-55对C57BL/6小鼠体重、发病率以及神经功能评分等影响,同时取小鼠脑和脊髓,利用光镜和透射电镜观察小鼠病理组织学改变。结果三组不同剂量MOG35-55均能诱导EAE模型,发病率为100%,呈慢性单相病程,病理学观察发现小鼠脑和脊髓有炎性细胞浸润、脱髓鞘及轴突损伤等改变。但小剂量组在体重减轻、临床症状评分及病理学改变等方面均较中、大剂量组明显。结论用MOG35-5550μg剂量免疫诱导的C57BL/6小鼠EAE模型稳定,可在今后的研究中应用。  相似文献   

14.
In vivo treatment with anti-IA antibodies has been shown to induce a haplotype-specific inhibition of EAE when the disease was following passive transfer of MBP-sensitized T cells. In order to determine the mechanism by which anti-IA antibody prevents passively transferred EAE, the homing of radiolabeled cells to the brain following anti-IA therapy was studied. Administration of anti-IA antibodies at the earliest onset of clinical signs of EAE prevented the homing of radio-labeled cells to the brain. In F1 (Balb/c x SJL/J) mice that developed EAE and received anti-IAs antibody there was a decreased homing of radiolabeled cells when compared to animals that received anti-IAd antibody. In addition, there was preferential expression of IAs antigen, over IAd antigen on capillary endothelium of the brain. The differential expression of IA antigens and the homing of radiolabeled cells in F1 (SJL x Balb/c) mice could in part explain the haplotype-specific suppression of disease following treatment with anti-IA antibodies.  相似文献   

15.
Several studies have reported that low vitamin D levels are associated with an increased risk of developing multiple sclerosis (MS). As MS is an inflammatory disorder with degeneration of axons and neurons, we examined whether the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), could protect against the T cell-mediated killing of human neurons in culture, and the axonal loss seen in mice with experimental autoimmune encephalomyelitis (EAE). Human neurons were exposed to activated human T lymphocytes and the loss of neurons was documented 24 hours later by counting the number of microtubule-associated protein-2 positive cells. Mice with EAE were harvested for counts of axonal profiles in the spinal cord. 1,25D3 was exposed to T cells in culture or administered to mice from peak EAE clinical severity when axonal loss was already evolving. Activated T lymphocytes killed human neurons prominently within 24 hours but toxicity was significantly attenuated when T cells were exposed to 1,25D3 prior to the co-culture. In EAE, 1,25D3 treatment initiated from peak clinical severity reduced the extent of clinical disability and mitigated the progressive loss of axons. The reduction of axonal and neuronal loss by 1,25D3 in the context of an inflammatory assault to the central nervous system is a potential contributor to the putative benefits of vitamin D in MS.  相似文献   

16.
The mechanisms by which the vertebrate brain develops its characteristic three-dimensional structure are poorly understood. The brain ventricles are a highly conserved system of cavities that form very early during brain morphogenesis and that are required for normal brain function. We have initiated a study of zebrafish brain ventricle development and show here that the neural tube expands into primary forebrain, midbrain and hindbrain ventricles rapidly, over a 4-hour window during mid-somitogenesis. Circulation is not required for initial ventricle formation, only for later expansion. Cell division rates in the neural tube surrounding the ventricles are higher than between ventricles and, consistently, cell division is required for normal ventricle development. Two zebrafish mutants that do not develop brain ventricles are snakehead and nagie oko. We show that snakehead is allelic to small heart, which has a mutation in the Na+K+ ATPase gene atp1a1a.1. The snakehead neural tube undergoes normal ventricle morphogenesis; however, the ventricles do not inflate, probably owing to impaired ion transport. By contrast, mutants in nagie oko, which was previously shown to encode a MAGUK family protein, fail to undergo ventricle morphogenesis. This correlates with an abnormal brain neuroepithelium, with no clear midline and disrupted junctional protein expression. This study defines three steps that are required for brain ventricle development and that occur independently of circulation: (1) morphogenesis of the neural tube, requiring nok function; (2) lumen inflation requiring atp1a1a.1 function; and (3) localized cell proliferation. We suggest that mechanisms of brain ventricle development are conserved throughout the vertebrates.  相似文献   

17.
Experimental allergic encephalomyelitis (EAE) is an autoimmune syndrome that can be induced in Lewis rats by myelin basic protein (BP) in complete Freund's adjuvant (CFA). Rats that have recovered from a primary episode of EAE display paradoxical long-term resistance to EAE reinduction by BP-CFA. Previous observations indicated, however, that clinical disease could be reinduced in convalescent rats by a concomitant secondary challenge with BP-CFA + Bordetella pertussis extract (PERT). Vascular permeability changes in the central nervous system (CNS) paralleled disease reinduction. To further probe the relationship between disease reinduction and vascular permeability, convalescent rats were treated with the vasoactive amine antagonist cyproheptadine (CYP) prior to a secondary challenge with BP-CFA + PERT. Data presented here indicate that CYP treatment results in substantial protection of convalescent rats from clinical disease reinduction by BP-CFA + PERT. CYP did not, however, prevent the development of new CNS lesions. CYP therapy also altered the clinical course of EAE induced by a primary injection of BP-CFA + PERT. In these rats, there was a delay in the onset of clinical signs as well as in the appearance of CNS lesions. Nevertheless, both CYP-treated and untreated naive rats challenged with BP-CFA + PERT eventually developed severe and usually lethal EAE. The effect of CYP on EAE induced in naive rats without including PERT in the sensitization protocol was also evaluated. In contrast to the mitigating effect of CYP on EAE induced or reinduced by BP-CFA + PERT, CYP treatment did not affect the clinical course or the development of CNS lesions in rats challenged with BP-CFA alone. Likewise, the passive transfer of EAE, mediated by mitogen-stimulated cells obtained from BP-CFA-sensitized donors, was not affected by CYP treatment. Collectively, these data indicate that CYP therapy altered the expression of EAE induced by regimens that included PERT, but did not affect EAE induced without PERT. In view of the opposing effects of PERT and CYP on vascular permeability, these data are consistent with the hypothesis that alterations in vascular permeability may play a crucial role in controlling the expression of autoimmune neurological diseases.  相似文献   

18.
Since the basic mechanisms behind the beneficial effects of IFN-beta in multiple sclerosis (MS) patients are still obscure, here we have investigated the effects of IFN-beta gene disruption on the commonly used animal model for MS, experimental autoimmune encephalomyelitis (EAE). We show that IFN-beta knockout (KO) mice are more susceptible to EAE than their wild-type (wt) littermates; they develop more severe and chronic neurological symptoms with more extensive CNS inflammation and demyelination. However, there was no discrepancy observed between wt and KO mice regarding the capacity of T cells to proliferate or produce IFN-gamma in response to recall Ag. Consequently, we addressed the effect of IFN-beta on encephalitogenic T cell development and the disease initiation phase by passive transfer of autoreactive T cells from KO or wt littermates to both groups of mice. Interestingly, IFN-beta KO mice acquired a higher incidence and augmented EAE regardless of the source of T cells. This shows that the anti-inflammatory effect of endogenous IFN-beta is predominantly exerted on the effector phase of the disease. Histopathological investigations of CNS in the effector phase revealed an extensive microglia activation and TNF-alpha production in IFN-beta KO mice; this was virtually absent in wt littermates. This coincided with an increase in effector functions of T cells in IFN-beta KO mice, as measured by IFN-gamma and IL-4 production. We suggest that lack of endogenous IFN-beta in CNS leads to augmented microglia activation, resulting in a sustained inflammation, cytokine production, and tissue damage with consequent chronic neurological deficits.  相似文献   

19.
It is becoming increasingly evident that type 2 diabetes mellitus can have effects on global and regional brain morphology. Ventricular enlargement reflecting cerebral atrophy has been reported particularly in elderly type 2 diabetes patients. However, little is known about its timing through the disease course and morphological variability. Using the combined volumetric and advanced three-dimensional morphological approach, we identified differences in size and shape of the lateral ventricles between recent-onset type 2 diabetes patients and healthy individuals. High-resolution T1-weighted images were obtained from 23 type 2 diabetes patients whose illness duration was less than 1 year and 23 carefully matched healthy individuals. By volume measurement, we found enlarged lateral and third ventricles in type 2 diabetes patients, relative to healthy individuals (F 1,41 = 7.96, P = 0.007; F 1,41 = 11.16, P = 0.002, respectively). Morphological analysis revealed that the expansion of lateral ventricles in the diabetic brain was prominent in the bilateral frontal horns. The current findings suggest that atrophic changes particularly of the anterior frontal lobe can occur as early as the first year after the clinical diagnosis of type 2 diabetes mellitus.  相似文献   

20.
Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme required for prostaglandin E2 (PGE2) biosynthesis. In this study, we examined the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We induced EAE with myelin oligodendrocyte glycoprotein35–55 peptide in mPGES-1-deficient (mPGES-1−/−) and wild-type (WT) mice. First, we examined the histopathology in the early and late phases of EAE progression. Next, we measured the concentration of PGE2 in the spinal cord and investigated the expression of mPGES-1 using immunohistochemistry. In addition, we examined the progression of the severity of EAE using an EAE score to investigate a correlation between pathological features and paralysis. In this paper, we demonstrate that WT mice showed extensive inflammation and demyelination, whereas mPGES-1−/− mice exhibited significantly smaller and more localized changes in the perivascular area. The mPGES-1 protein was induced in vascular endothelial cells and microglia around inflammatory foci, and PGE2 production was increased in WT mice but not mPGES-1−/− mice. Furthermore, mPGES-1−/− mice showed a significant reduction in the maximum EAE score and improved locomotor activity. These results suggest that central PGE2 derived from non-neuronal mPGES-1 aggravates the disruption of the vessel structure, leading to the spread of inflammation and local demyelination in the spinal cord, which corresponds to the symptoms of EAE. The inhibition of mPGES-1 may be useful for the treatment of human MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号