首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.

Background  

Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig.  相似文献   

4.
Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.  相似文献   

5.
The development of primordial germ cells (PGCs) undergoes epigenetic modifications. The study of histone methylation in regulating PGCs is beneficial to understand the development and differentiation mechanism of germ stem cells. Notably, it provides a theoretical basis for directed induction and mass acquisition in vitro. However, little is known about the regulation of PGC formation by histone methylation. Here, we found the high enrichment of H3K4me2 in the blastoderm, genital ridges, and testis. Chromatin immunoprecipitation sequencing was performed and the results revealed that genomic H3K4me2 is dynamic in embryonic stem cells, PGCs, and spermatogonial stem cells. This trend was consistent with the H3K4me2 enrichment in the gene promoter region. Additionally, narrow region triggered PGC‐related genes (Bmp4, Wnt5a, and Tcf7l2) and signaling pathways (Wnt and transforming growth factor‐β). After knocking down histone methylase Mll2 in vitro and vivo, the level of H3K4me2 decreased, inhibiting Cvh and Blimp1 expression, then repressing the formation of PGCs. Taken together, our study revealed the whole genome map of H3K4me2 in the formation of PGCs, contributing to improve the epigenetic study in PGC formation and providing materials for bird gene editing and rescue of endangered birds.  相似文献   

6.
7.
During development, epigenetic programs are "installed" on the genome that direct differentiation and normal tissue and organ function in adulthood. Consequently, development is also a period of susceptibility to reprogramming of the epigenome. Developmental reprogramming occurs when an adverse stimulus or insult interrupts the proper "install" of epigenetic programs during development, reprogramming normal physiologic responses in such a way as to promote disease later in life. Some of the best examples of developmental reprogramming involve the reproductive tract, where early life exposures to environmental estrogens can increase susceptibility to benign and malignant tumors in adulthood including leiomyoma (fibroids), endometrial, and prostate cancer. Although specific mechanism(s) by which environmental estrogens reprogram the developing epigenome were unknown, both DNA and histone methylation were considered likely targets for epigenetic reprogramming. We have now identified a mechanism by which developmental exposures to environmental estrogens reprogram the epigenome by inducing inappropriate activation of nongenomic estrogen receptor (ER) signaling. Activation of nongenomic ER signaling via the phosphotidylinositol-3-kinase (PI3K) pathway activates the kinase AKT/PKB in the developing reproductive tract, which phosphorylates the histone lysine methyltransferase (HKMT) EZH2, the key "installer" of epigenetic histone H3 lysine 27 trimethylation (H3K27me3). AKT phosphorylation inactivates EZH2, decreasing levels of H3K27 methylation, a repressive mark that inhibits gene expression, in the developing uterus. As a result of this developmental reprogramming, many estrogen-responsive genes become hypersensitive to estrogen in adulthood, exhibiting elevated expression throughout the estrus cycle, and resulting in a "hyper-estrogenized" phenotype in the adult uterus that promotes development of hormone-dependent tumors.  相似文献   

8.
Re-induction of fetal genes and/or re-expression of postnatal genes represent hallmarks of pathological cardiac remodeling, and are considered important in the progression of the normal heart towards heart failure (HF). Whether epigenetic modifications are involved in these processes is currently under investigation. Here we hypothesized that histone chromatin modifications may underlie changes in the gene expression program during pressure overload-induced HF. We evaluated chromatin marks at the promoter regions of the sarcoplasmic reticulum Ca2+ATPase (SERCA-2A) and β-myosin-heavy chain (β-MHC) genes (Atp2a2 and Myh7, respectively) in murine hearts after one or eight weeks of pressure overload induced by transverse aortic constriction (TAC). As expected, all TAC hearts displayed a significant reduction in SERCA-2A and a significant induction of β-MHC mRNA levels. Interestingly, opposite histone H3 modifications were identified in the promoter regions of these genes after TAC, including H3 dimethylation (me2) at lysine (K) 4 (H3K4me2) and K9 (H3K9me2), H3 trimethylation (me3) at K27 (H3K27me3) and dimethylation (me2) at K36 (H3K36me2). Consistently, a significant reduction of lysine-specific demethylase KDM2A could be found after eight weeks of TAC at the Atp2a2 promoter. Moreover, opposite changes in the recruitment of DNA methylation machinery components (DNA methyltransferases DNMT1 and DNMT3b, and methyl CpG binding protein 2 MeCp2) were found at the Atp2a2 or Myh7 promoters after TAC. Taken together, these results suggest that epigenetic modifications may underlie gene expression reprogramming in the adult murine heart under conditions of pressure overload, and might be involved in the progression of the normal heart towards HF.  相似文献   

9.
10.
Lymphocyte development is controlled by dynamic repression and activation of gene expression. These developmental programs include the ordered, tissue-specific assembly of Ag receptor genes by V(D)J recombination. Changes in gene expression and the targeting of V(D)J recombination are largely controlled by patterns of epigenetic modifications imprinted on histones and DNA, which alter chromatin accessibility to nuclear factors. An important component of this epigenetic code is methylation of histone H3 at lysine 9 (H3K9me), which is catalyzed by histone methyltransferases and generally leads to gene repression. However, the function and genetic targets of H3K9 methyltransferases during lymphocyte development remain unknown. To elucidate the in vivo function of H3K9me, we generated mice lacking G9a, a major H3K9 histone methyltransferase, in lymphocytes. Surprisingly, lymphocyte development is unperturbed in G9a-deficient mice despite a significant loss of H3K9me2 in precursor B cells. G9a deficiency is manifest as modest defects in the proliferative capacity of mature B cells and their differentiation into plasma cells following stimulation with LPS and IL-4. Precursor lymphocytes from the mutant mice retain tissue- and stage-specific control over V(D)J recombination. However, G9a deficiency results in reduced usage of Iglambda L chains and a corresponding inhibition of Iglambda gene assembly in bone marrow precursors. These findings indicate that the H3K9me2 epigenetic mark affects a highly restricted set of processes during lymphocyte development and activation.  相似文献   

11.
12.
13.
In the developing kidney, self-renewing progenitors respond to inductive signaling from the adjacent branching ureteric bud by undergoing mesenchyme-to-epithelium transition. Nascent nephrons subsequently undergo elongation, segmentation, and differentiation into a mature renal epithelium with diverse functions. Epigenetic mechanisms have been implicated in impacting cell fate decisions during nephrogenesis; however, the chromatin landscape of nephron progenitors and daughter differentiating cells are largely unknown. Here, we examined the spatiotemporal expression patterns of histone H3 methylation and histone methyltransferases in E15.5 mouse kidneys. Kidney sections were probed with antibodies against histone modifications, enzymes, and markers of progenitors and differentiation. The results revealed that: (1) nephron progenitor cells exhibit a broad histone methylation signature that comprises both “active” and “repressive” marks (H3K4me3/K9me3/K27me3/R2me2/R17me2); (2) nascent nephrons retain high H3K4me3 but show downregulation of H3K9/K27me3 and; (3) maturing epithelial tubules acquire high levels of H3K79me2/3. Consistent with respective histone marks, the H3K4 methyltransferase, Ash2l, is expressed in progenitors and nascent nephrons, whereas the H3K9/K27 methyltransferases, G9a/Ezh2, are more enriched in progenitors than nascent nephrons. We conclude that combinatorial histone signatures correlate with cell fate decisions during nephrogenesis.  相似文献   

14.
15.
《Epigenetics》2013,8(2):222-235
In the developing kidney, self-renewing progenitors respond to inductive signaling from the adjacent branching ureteric bud by undergoing mesenchyme-to-epithelium transition. Nascent nephrons subsequently undergo elongation, segmentation, and differentiation into a mature renal epithelium with diverse functions. Epigenetic mechanisms have been implicated in impacting cell fate decisions during nephrogenesis; however, the chromatin landscape of nephron progenitors and daughter differentiating cells are largely unknown. Here, we examined the spatiotemporal expression patterns of histone H3 methylation and histone methyltransferases in E15.5 mouse kidneys. Kidney sections were probed with antibodies against histone modifications, enzymes, and markers of progenitors and differentiation. The results revealed that: (1) nephron progenitor cells exhibit a broad histone methylation signature that comprises both “active” and “repressive” marks (H3K4me3/K9me3/K27me3/R2me2/R17me2); (2) nascent nephrons retain high H3K4me3 but show downregulation of H3K9/K27me3 and; (3) maturing epithelial tubules acquire high levels of H3K79me2/3. Consistent with respective histone marks, the H3K4 methyltransferase, Ash2l, is expressed in progenitors and nascent nephrons, whereas the H3K9/K27 methyltransferases, G9a/Ezh2, are more enriched in progenitors than nascent nephrons. We conclude that combinatorial histone signatures correlate with cell fate decisions during nephrogenesis.  相似文献   

16.
Environmental exposures during sensitive windows of development can reprogram normal physiologic responses and alter disease susceptibility later in life in a process known as developmental reprogramming. For example, exposure to the xenoestrogen diethylstilbestrol during reproductive tract development can reprogram estrogen-responsive gene expression in the myometrium, resulting in hyperresponsiveness to hormone in the adult uterus and promotion of hormone-dependent uterine leiomyoma. We show here that the environmental estrogens genistein, a soy phytoestrogen, and the plasticizer bisphenol A, differ in their pattern of developmental reprogramming and promotion of tumorigenesis (leiomyomas) in the uterus. Whereas both genistein and bisphenol A induce genomic estrogen receptor (ER) signaling in the developing uterus, only genistein induced phosphoinositide 3-kinase (PI3K)/AKT nongenomic ER signaling to the histone methyltransferase enhancer of zeste homolog 2 (EZH2). As a result, this pregenomic signaling phosphorylates and represses EZH2 and reduces levels of H3K27me3 repressive mark in chromatin. Furthermore, only genistein caused estrogen-responsive genes in the adult myometrium to become hyperresponsive to hormone; estrogen-responsive genes were repressed in bisphenol A-exposed uteri. Importantly, this pattern of EZH2 engagement to decrease versus increase H3K27 methylation correlated with the effect of these xenoestrogens on tumorigenesis. Developmental reprogramming by genistein promoted development of uterine leiomyomas, increasing tumor incidence and multiplicity, whereas bisphenol A did not. These data show that environmental estrogens have distinct nongenomic effects in the developing uterus that determines their ability to engage the epigenetic regulator EZH2, decrease levels of the repressive epigenetic histone H3K27 methyl mark in chromatin during developmental reprogramming, and promote uterine tumorigenesis.  相似文献   

17.
The connections between various nuclear processes and specific histone posttranslational modifications are dependent to a large extent on the acquisition of those modifications after histone synthesis. The reestablishment of histone posttranslational modifications after S phase is especially critical for H3K9 and H3K27 trimethylation, both of which are linked with epigenetic memory and must be stably transmitted from one cellular generation to the next. This report uses a proteomic strategy to interrogate how and when the cell coordinates the formation of histone posttranslational modifications during division. Paramount among the findings is that H3K9 and H3K27 trimethylation begins during S phase but is completed only during the subsequent G(1) phase via two distinct pathways from the unmodified and preexisting dimethylated states. In short, we have systematically characterized the temporal origins and methylation pathways for histone posttranslational modifications during the cell cycle.  相似文献   

18.
Gene silencing by epigenetic mechanisms is frequent in prostate cancer (PCA). The link between DNA hypermethylation and histone modifications is not completely understood. We chose the GSTP1 gene which is silenced by hypermethylation to analyze the effect of the histone deacetylase inhibitor depsipeptide on DNA methylation and histone modifications at the GSTP1 promoter site. Prostate cell lines (PC-3, LNCaP, and BPH-1) were treated with depsipeptide; apoptosis (FACS analysis), GSTP1 mRNA levels (quantitative real-time PCR), DNA hypermethylation (methylation-specific PCR), and histone modifications (chromatin immunoprecipitation) were studied. Depsipeptide induced apoptosis in PCA cells, but not a cell cycle arrest. Depispeptide reversed DNA hypermethylation and repressive histone modifications (reduction of H3K9me2/3 and H3K27me2/3; increase of H3K18Ac), thereby inducing GSTP1 mRNA re-expression. Successful therapy requires both, DNA demethylation and activating histone modifications, to induce complete gene expression of epigenetically silenced genes and depsipeptide fulfils both criteria.  相似文献   

19.
20.
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号