首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
PURPOSE: Angiogenesis plays an important role in pancreas cancer pathobiology. Pancreatic tumor cells secrete vascular endothelial growth factor (VEGF), activating endothelial cell protein kinase C beta (PKCβ) that phosphorylates GSK3β to suppress apoptosis and promote endothelial cell proliferation and microvessel formation. We used Enzastaurin (Enz) to test the hypothesis that inhibition of PKCβ results in radiosensitization of endothelial cells in culture and in vivo. MATERIALS/METHODS: We measured PKCβ phosphorylation, VEGF pathway signaling, colony formation, and capillary sprout formation in primary human dermal microvessel endothelial cells (HDMECs) after Enz or radiation (RT) treatment. Microvessel density and tumor volume of human pancreatic cancer xenografts in nude mice were measured after treatment with Enz, RT, or both. RESULTS: Enz inhibited PKCβ and radiosensitized HDMEC with an enhancement ratio of 1.31 ± 0.05. Enz combined with RT reduced HDMEC capillary sprouting to a greater extent than either agent alone. Enz prevented radiation-induced GSK3β phosphorylation of serine 9 while having no direct effect on VEGFR phosphorylation. Treatment of xenografts with Enz and radiation produced greater reductions in microvessel density than either treatment alone. The reduction in microvessel density corresponded with increased tumor growth delay. CONCLUSIONS: Enz-induced PKCβ inhibition radiosensitizes human endothelial cells and enhances the antiangiogenic effects of RT. The combination of Enz and RT reduced microvessel density and resulted in increased growth delay in pancreatic cancer xenografts, without increase in toxicity. These results provide the rationale for combining PKCβ inhibition with radiation and further investigating such regimens in pancreatic cancer.  相似文献   

2.

Background

Metastatic renal cell carcinoma (RCC) is highly resistant to systemic chemotherapy. Unfortunately, nearly all patients die of the metastatic and chemoresistant RCC. Recent studies have shown the atypical PKCζ is an important regulator of tumorigenesis. However, the correlation between PKCζ expression and the clinical outcome in RCC patients is unclear. We examined the level of PKCζ expression in human RCC.

Methods

PKCζ mRNA and protein expressions were examined by real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) respectively in RCC tissues of 144 patients. Cellular cytotoxicity and proliferation were assessed by MTT.

Results

PKCζ expression was significantly higher in normal than in cancerous tissues (P < 0.0001) by real-time PCR and IHC. Similarly, PKCζ expression was down-regulated in four renal cancer cell lines compared to immortalized benign renal tubular cells. Interestingly, an increase of PKCζ expression was associated with the elevated tumor grade (P = 0.04), but no such association was found in TNM stage (P = 0.13). Tumors with higher PKCζ expression were associated with tumor size (P = 0.048). Expression of higher PKCζ found a poor survival in patients with high tumor grade. Down-regulation of PKCζ showed the significant chemoresistance in RCC cell lines. Inactivation of PKCζ expression enhanced cellular resistance to cisplatin and paclitaxel, and proliferation in HK-2 cells by specific PKCζ siRNA and inhibitor.

Conclusions

PKCζ expression was associated with tumorigenesis and chemoresistance in RCC.  相似文献   

3.
4.
It is well established that protein kinase C (PKC) isozymes play distinctive roles in mitogenic and survival signaling as well as in cancer progression. PKCε, the product of the PRKCE gene, is upregulated in various types of cancers including prostate, lung and breast cancer. To address a potential role for PKCs in prostate cancer progression we generated three mouse transgenic lines expressing PKCα, PKCδ or PKCε in the prostate epithelium under the control of the rat probasin (PB) promoter. Whereas PB-PKCα and PB-PKCδ mice did not show any evident phenotype, PB-PKCε mice developed prostate hyperplasia as well as prostate intraepithelial neoplasia (PIN) that displayed enhanced phospho-Akt, phospho-S6 and phospho-Stat3 levels, as well as enhanced resistance to apoptotic stimuli. PKCε overexpression was insufficient to drive neoplastic changes in the mouse prostate. Notably, overexpression of PKCε by adenoviral means in normal immortalized RWPE-1 prostate cells confers a growth advantage and hyperactivation of Erk and Akt. Our results argue for a causal link between PKCε overexpression and prostate cancer development.Key words: PKCε, transgenic mice, prostate, preneoplastic lesions, cell survival, Akt  相似文献   

5.
IL-32α is known as a proinflammatory cytokine. However, several evidences implying its action in cells have been recently reported. In this study, we present for the first time that IL-32α plays an intracellular mediatory role in IL-6 production using constitutive expression systems for IL-32α in THP-1 cells. We show that phorbol 12-myristate 13-acetate (PMA)-induced increase in IL-6 production by IL-32α-expressing cells was higher than that by empty vector-expressing cells and that this increase occurred in a time- and dose-dependent manner. Treatment with MAPK inhibitors did not diminish this effect of IL-32α, and NF-κB signaling activity was similar in the two cell lines. Because the augmenting effect of IL-32α was dependent on the PKC activator PMA, we tested various PKC inhibitors. The pan-PKC inhibitor Gö6850 and the PKCϵ inhibitor Ro-31-8220 abrogated the augmenting effect of IL-32α on IL-6 production, whereas the classical PKC inhibitor Gö6976 and the PKCδ inhibitor rottlerin did not. In addition, IL-32α was co-immunoprecipitated with PMA-activated PKCϵ, and this interaction was totally inhibited by the PKCϵ inhibitor Ro-31-8220. PMA-induced enhancement of STAT3 phosphorylation was observed only in IL-32α-expressing cells, and this enhancement was inhibited by Ro-31-8220, but not by Gö6976. We demonstrate that IL-32α mediated STAT3 phosphorylation by forming a trimeric complex with PKCϵ and enhanced STAT3 localization onto the IL-6 promoter and thereby increased IL-6 expression. Thus, our data indicate that the intracellular interaction of IL-32α with PKCϵ and STAT3 promotes STAT3 binding to the IL-6 promoter by enforcing STAT3 phosphorylation, which results in increased production of IL-6.  相似文献   

6.
Gene alterations in tumor cells that confer the ability to grow under nutrient- and mitogen-deficient conditions constitute a competitive advantage that leads to more-aggressive forms of cancer. The atypical protein kinase C (PKC) isoform, PKCζ, has been shown to interact with the signaling adapter p62, which is important for Ras-induced lung carcinogenesis. Here we show that PKCζ-deficient mice display increased Ras-induced lung carcinogenesis, suggesting a new role for this kinase as a tumor suppressor in vivo. We also show that Ras-transformed PKCζ-deficient lungs and embryo fibroblasts produced more interleukin-6 (IL-6), which we demonstrate here plays an essential role in the ability of Ras-transformed cells to grow under nutrient-deprived conditions in vitro and in a mouse xenograft system in vivo. We also show that PKCζ represses histone acetylation at the C/EBPβ element in the IL-6 promoter. Therefore, PKCζ, by controlling the production of IL-6, is a critical signaling molecule in tumorigenesis.  相似文献   

7.
8.

Background and Purpose

The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer.

Methods

Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined.

Results

Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts.

Conclusion

The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.  相似文献   

9.
By the yeast two-hybrid screening of a rat brain cDNA library with the regulatory domain of protein kinase C ζ (PKCζ) as a bait, we have cloned a gene coding for a novel PKCζ-interacting protein homologous to the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth and fasciculation. The protein designated FEZ1 (fasciculation and elongation protein zeta-1) consisting of 393 amino acid residues shows a high Asp/Glu content and contains several regions predicted to form amphipathic helices. Northern blot analysis has revealed that FEZ1 mRNA is abundantly expressed in adult rat brain and throughout the developmental stages of mouse embryo. By the yeast two-hybrid assay with various deletion mutants of PKC, FEZ1 was shown to interact with the NH2-terminal variable region (V1) of PKCζ and weakly with that of PKCε. In the COS-7 cells coexpressing FEZ1 and PKCζ, FEZ1 was present mainly in the plasma membrane, associating with PKCζ and being phosphorylated. These results indicate that FEZ1 is a novel substrate of PKCζ. When the constitutively active mutant of PKCζ was used, FEZ1 was found in the cytoplasm of COS-7 cells. Upon treatment of the cells with a PKC inhibitor, staurosporin, FEZ1 was translocated from the cytoplasm to the plasma membrane, suggesting that the cytoplasmic translocation of FEZ1 is directly regulated by the PKCζ activity. Although expression of FEZ1 alone had no effect on PC12 cells, coexpression of FEZ1 and constitutively active PKCζ stimulated the neuronal differentiation of PC12 cells. Combined with the recent finding that a human FEZ1 protein is able to complement the function of UNC-76 necessary for normal axonal bundling and elongation within axon bundles in the nematode, these results suggest that FEZ1 plays a crucial role in the axon guidance machinery in mammals by interacting with PKCζ.  相似文献   

10.
11.
The atypical protein kinase C (PKC) isoform zeta (PKCζ) has been implicated in the intracellular transduction of mitogenic and apoptotic signals by acting on different signaling pathways. The key role of these processes in tumorigenesis suggests a possible involvement of PKCζ in this event. PKCζ is activated by cytotoxic treatments, inhibits apoptotic cell death and reduces the sensitivity of cancer cells to chemotherapeutic agents. Here, using pharmacological and DNA recombinant approaches, we show that oxidative stress triggers nuclear translocation of PKCζ and induces resistance to apoptotic agents. Accordingly, chemoresistant cells show accumulation of PKCζ within the nucleus, and a nuclear-targeted PKCζ transfected in tumor cells decreases sensitivity to apoptosis. We thus developed a novel recombinant protein capable of selectively inhibiting the nuclear fraction of PKCζ that restored the susceptibility to apoptosis in cells in which PKCζ was enriched in the nuclear fraction, including chemoresistant cells. These findings establish the importance of PKCζ as a possible target to increase the effectiveness of anticancer therapies and highlight potential sites of intervention.Key words: protein kinase C, chemoresistance, oxidative stress, nuclear translocation, apoptosis  相似文献   

12.
13.

Aims/hypothesis

Diabetic macular edema represents the main cause of visual loss in diabetic retinopathy. Besides inner blood retinal barrier breakdown, the role of the outer blood retinal barrier breakdown has been poorly analyzed. We characterized the structural and molecular alterations of the outer blood retinal barrier during the time course of diabetes, focusing on PKCζ, a critical protein for tight junction assembly, known to be overactivated by hyperglycemia.

Methods

Studies were conducted on a type2 diabetes Goto-Kakizaki rat model. PKCζ level and subcellular localization were assessed by immunoblotting and immunohistochemistry. Cell death was detected by TUNEL assays. PKCζ level on specific layers was assessed by laser microdissection followed by Western blotting. The functional role of PKCζ was then evaluated in vivo, using intraocular administration of its specific inhibitor.

Results

PKCζ was localized in tight junction protein complexes of the retinal pigment epithelium and in photoreceptors inner segments. Strikingly, in outer segment PKCζ staining was restricted to cone photoreceptors. Short-term hyperglycemia induced activation and delocalization of PKCζ from both retinal pigment epithelium junctions and cone outer segment. Outer blood retinal barrier disruption and photoreceptor cone degeneration characterized long-term hyperglycemia. In vivo, reduction of PKCζ overactivation using a specific inhibitor, restored its tight-junction localization and not only improved the outer blood retinal barrier, but also reduced photoreceptor cell-death.

Conclusions

In the retina, hyperglycemia induced overactivation of PKCζ is associated with outer blood retinal barrier breakdown and photoreceptor degeneration. In vivo, short-term inhibition of PKCζ restores the outer barrier structure and reduces photoreceptor cell death, identifying PKCζ as a potential target for early and underestimated diabetes-induced retinal pathology.  相似文献   

14.
15.
MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3′-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation.  相似文献   

16.
Cytokine and activation of lymphocytes are critical for tumor growth. We investigated whether interleukin (IL)-32β overexpression changes other cytokine levels and activates cytotoxic lymphocyte, and thus modify tumor growth. Herein, IL-32β inhibited B16 melanoma growth in IL-32β-overexpressing transgenic mice (IL-32β mice), and downregulated the expressions of anti-apoptotic proteins (bcl-2, IAP, and XIAP) and cell growth regulatory proteins (Ki-67 antigen (Ki-67) and proliferating cell nuclear antigen (PCNA)), but upregulated the expressions of pro-apoptotic proteins (bax, cleaved caspase-3, and cleaved caspase-9). IL-32β also inhibited colon and prostate tumor growth in athymic nude mice inoculated with IL-32β-transfected SW620 colon or PC3 prostate cancer cells. The forced expression of IL-32β also inhibited cell growth in cultured colon and prostate cancer cells, and these inhibitory effects were abolished by IL-32 small interfering RNA (siRNA). IL-10 levels were elevated, but IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were reduced in the tumor tissues and spleens of IL-32β mice, and athymic nude mice. The number of cytotoxic T (CD8+) and natural killer (NK) cells in tumor tissues, spleen, and blood was significantly elevated in IL-32β mice and athymic nude mice inoculated with IL-32β-transfected cancer cells. Constituted activated NF-κB and STAT3 levels were reduced in the tumor tissues of IL-32β mice and athymic nude mice, as well as in IL-32β-transfected cultured cancer cells. These findings suggest that IL-32β inhibits tumor growth by increasing cytotoxic lymphocyte numbers, and by inactivating the NF-κB and STAT3 pathways through changing of cytokine levels in tumor tissues.  相似文献   

17.
18.
Extracellular superoxide dismutase (EC-SOD) overexpression modulates cellular responses such as tumor cell suppression and is induced by IFNγ. Therefore, we examined the role of EC-SOD in IFNγ-mediated tumor cell suppression. We observed that the dominant-negative protein kinase C delta (PKCδ) suppresses IFNγ-induced EC-SOD expression in both keratinocytes and melanoma cells. Our results also showed that PKCδ-induced ECSOD expression was reduced by pretreatment with a PKCspecific inhibitor or a siRNA against PKCδ. PKCδ-induced ECSOD expression suppressed cell proliferations by the up-regulation of p21 and Rb, and the downregulation of cyclin A and D. Finally, we demonstrated that increased expression of EC-SOD drastically suppressed lung melanoma proliferation in an EC-SOD transgenic mouse via p21 expression. In summary, our findings suggest that IFNγ-induced EC-SOD expression occurs via activation of PKCδ. Therefore, the upregulation of EC-SOD may be effective for prevention of various cancers, including melanoma, via cell cycle arrest. [BMB Reports 2012; 45(11): 659-664]  相似文献   

19.
Protein kinase C (PKC) is a family of protein kinases controlling protein phosphorylation and playing important roles in the regulation of metabolism. We have investigated expression levels of PKC isoforms in pancreatic islets and liver of diabetic Goto-Kakizaki (GK) rats with and without insulin treatment to evaluate their association with glucose homeostasis. mRNA and protein expression levels of PKC isoforms were assessed in pancreatic islets and liver of Wistar rats and GK rats with or without insulin treatment. PKCα and PKCζ mRNA expressions were down-regulated in islets of GK compared with Wistar rats. PKCα and phosphorylated PKCα (p-PKCα) protein expressions were decreased in islets of GK compared with insulin-treated GK and Wistar rats. PKCζ protein expression in islets was reduced in GK and insulin-treated GK compared with Wistar rats, but p-PKCζ was decreased only in GK rats. Islet PKCε mRNA and protein expressions were lower in GK compared with insulin-treated GK and Wistar rats. In liver, PKCδ and PKCζ mRNA expressions were decreased in both GK and insulin-treated GK compared with Wistar rats. Hepatic PKCζ protein expression was diminished in both GK rats with and without insulin treatment compared with Wistar rats. Hepatic PKCε mRNA expression was down-regulated in insulin-treated GK compared with GK and Wistar rats. PKCα, PKCε, and p-PKCζ expressions were secondary to hyperglycaemia in GK rat islets. Hepatic PKCδ and PKCζ mRNA expressions were primarily linked to hyperglycaemia. Additionally, hepatic PKCε mRNA expression could be under control of insulin.  相似文献   

20.
The Rab7 GTPase promotes membrane fusion reactions between late endosomes and lysosomes. In previous studies, we demonstrated that Rab7 inactivation blocks growth factor withdrawal-induced cell death. These results led us to hypothesize that growth factor withdrawal activates Rab7. Here, we show that growth factor deprivation increased both the fraction of Rab7 that was associated with cellular membranes and the percentage of Rab7 bound to guanosine triphosphate (GTP). Moreover, expressing a constitutively GTP-bound mutant of Rab7, Rab7-Q67L, was sufficient to trigger cell death even in the presence of growth factors. This activated Rab7 mutant was also able to reverse the growth factor-independent cell survival conferred by protein kinase C (PKC) δ inhibition. PKCδ is one of the most highly induced proteins after growth factor withdrawal and contributes to the induction of apoptosis. To evaluate whether PKCδ regulates Rab7, we first examined lysosomal morphology in cells with reduced PKCδ activity. Consistent with a potential role as a Rab7 activator, blocking PKCδ function caused profound lysosomal fragmentation comparable to that observed when Rab7 was directly inhibited. Interestingly, PKCδ inhibition fragmented the lysosome without decreasing Rab7-GTP levels. Taken together, these results suggest that Rab7 activation by growth factor withdrawal contributes to the induction of apoptosis and that Rab7-dependent fusion reactions may be targeted by signaling pathways that limit growth factor-independent cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号