首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Yen K  Vinayachandran V  Batta K  Koerber RT  Pugh BF 《Cell》2012,149(7):1461-1473
How chromatin remodelers cooperate to organize nucleosomes around the start and end of genes is not known. We determined the genome-wide binding of remodeler complexes SWI/SNF, RSC, ISW1a, ISW1b, ISW2, and INO80 to individual nucleosomes in Saccharomyces, and determined their functional contributions to nucleosome positioning through deletion analysis. We applied ultra-high-resolution ChIP-exo mapping to Isw2 to determine its subnucleosomal orientation and organization on a genomic scale. Remodelers interacted with selected nucleosome positions relative to the start and end of genes and produced net directionality in moving nucleosomes either away or toward nucleosome-free regions at the 5' and 3' ends of genes. Isw2 possessed a subnucleosomal organization in accord with biochemical and crystallographic-based models that place its linker binding region within promoters and abutted against Reb1-bound locations. Together, these findings reveal a coordinated position-specific approach taken by remodelers to organize genic nucleosomes into arrays.  相似文献   

8.
Rules and regulation in the primary structure of chromatin   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
11.
The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
A major question in chromatin biology is to what extent the sequence of DNA directly determines the genetic and chromatin organization of a eukaryotic genome? We consider two aspects to this question: the DNA sequence-specified positioning of nucleosomes and the determination of NDRs (nucleosome-depleted regions) or barriers. We argue that, in budding yeast, while DNA sequence-specified nucleosome positioning may contribute to positions flanking the regions lacking nucleosomes, DNA thermodynamic stability is a major component determinant of the genetic organization of this organism.  相似文献   

20.
Chd1- and ISWI-type chromatin remodelers can sense extranucleosomal DNA and preferentially shift nucleosomes toward longer stretches of available DNA. The DNA-binding domains of these chromatin remodelers are believed to be responsible for sensing extranucleosomal DNA and are needed for robust sliding, but it is unclear how these domains contribute to directional movement of nucleosomes. Here, we show that the DNA-binding domain of Chd1 is not essential for nucleosome sliding but is critical for centering mononucleosomes on short DNA fragments. Remarkably, nucleosome centering was achieved by replacing the native DNA-binding domain of Chd1 with foreign DNA-binding domains of Escherichia coli AraC or Drosophila melanogaster engrailed. Introducing target DNA sequences recognized by the foreign domains enabled the remodelers to rapidly shift nucleosomes toward these binding sites, demonstrating that these foreign DNA-binding domains dictated the direction of sliding. Sequence-directed sliding occluded the target DNA sequences on the nucleosome enough to promote release of the remodeler. Target DNA sequences were highly stimulatory at multiple positions flanking the nucleosome and had the strongest influence when separated from the nucleosome by 23 or fewer base pairs. These results suggest that the DNA-binding domain's affinity for extranucleosomal DNA is the key determinant for the direction that Chd1 shifts the nucleosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号