首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

The pro-fibrogenic cytokine connective tissue growth factor (CTGF) plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV)-induced liver fibrosis remains unclear.

Methods

In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2) by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1) as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques.

Results

We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells.

Conclusion

Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.  相似文献   

3.
4.
Hozumi  I.  Inuzuka  T.  Tsuji  S. 《Neurochemical research》1998,23(3):319-328
Growth inhibitory factor (GIF) is a small (7 kDa), heat-stable, acidic, hydrophilic metallothionein (MT)-like protein. GIF inhibits the neurotrophic activity in Alzheimer's disease (AD) brain extracts on neonatal rat cortical neurons in culture. GIF has been shown to be drastically reduced and down-regulated in AD brains. In neurodegenerative diseases in humans, GIF expression levels are reduced whereas GFAP expression levels are markedly induced in reactive astrocytes. Both GIF and GIF mRNA are present at high levels in reactive astrocytes following acute experimental brain injury. In chronological observations the level of GIF was found to increase more slowly and remain elevated for longer periods than that of glial fibrillary acidic protein (GFAP). These differential patterns and distribution of GIF and GFAP seem to be important in understanding the mechanism of brain tissue repair. The most important point concerning GIF in AD is not simply the decrease in the level of expression throughout the brain, but the drastic decrease in the level of expression in reactive astrocytes around senile plaques in AD. Although what makes the level of GIF decrease drastically in reactive astrocytes in AD is still unknown, supplements of GIF may be effective for AD, based on a review of current evidence. The processes of tissue repair following acute brain injury are considered to be different from those in AD from the viewpoint of reactive astrocytes.  相似文献   

5.
6.
7.
8.
9.
10.
S-nitrosylation of nuclear factor κB (NF-κB) on the p65 subunit of the p50/p65 heterodimer inhibits NF-κB DNA binding activity. We have recently shown that p65 is constitutively S-nitrosylated in the lung and that LPS-induced injury elicits a decrease in SNO-p65 levels concomitant with NF-κB activation in the respiratory epithelium and initiation of the inflammatory response. Here, we demonstrate that TNFα-mediated activation of NF-κB in the respiratory epithelium similarly induces p65 denitrosylation. This process is mediated by the denitrosylase thioredoxin (Trx), which becomes activated upon cytokine-induced degradation of thioredoxin-interacting protein (Txnip). Similarly, inhibition of Trx activity in the lung attenuates LPS-induced SNO-p65 denitrosylation, NF-κB activation, and airway inflammation, supporting a pathophysiological role for this mechanism in lung injury. These data thus link stimulus-coupled activation of NF-κB to a specific, protein-targeted denitrosylation mechanism and further highlight the importance of S-nitrosylation in the regulation of the immune response.  相似文献   

11.
12.
We recently identified the antioxidant protein Sestrin 2 (Sesn2) as a suppressor of platelet-derived growth factor receptor β (Pdgfrβ) signaling and Pdgfrβ signaling as an inducer of lung regeneration and injury repair. Here, we identified Sesn2 and the antioxidant gene inducer nuclear factor erythroid 2-related factor 2 (Nrf2) as positive regulators of proteasomal function. Inactivation of Sesn2 or Nrf2 induced reactive oxygen species-mediated proteasomal inhibition and Pdgfrβ accumulation. Using bacterial artificial chromosome (BAC) transgenic HeLa and mouse embryonic stem cells stably expressing enhanced green fluorescent protein-tagged Sesn2 at nearly endogenous levels, we also showed that Sesn2 physically interacts with 2-Cys peroxiredoxins and Nrf2 albeit under different reductive conditions. Overall, we characterized a novel, redox-sensitive Sesn2/Pdgfrβ suppressor pathway that negatively interferes with lung regeneration and is up-regulated in the emphysematous lungs of patients with chronic obstructive pulmonary disease (COPD).  相似文献   

13.
14.
15.
Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.  相似文献   

16.
17.
18.
19.
20.
Nuclear transport factor 2 (NTF2) facilitates protein transport into the nucleus and interacts with both the small Ras-like GTPase Ran and nucleoporin p62. We have determined the structure of bacterially expressed rat NTF2 at 1.6 Å resolution using X-ray crystallography. The NTF2 polypeptide chain forms an α + β barrel that opens at one end to form a distinctive hydrophobic cavity and its fold is homologous to that of scytalone dehydratase. The NTF2 hydrophobic cavity is a candidate for a potential binding site for other proteins involved in nuclear import such as Ran and nucleoporin p62. In addition, the hydrophobic cavity contains a putative catalytic Asp-His pair, which raises the possibility of an unanticipated enzymatic activity of the molecule that may have implications for the molecular mechanism of nuclear protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号