首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria in the freshwater sponge Ephydatia fluviatilis inhabiting the artificial lake Vinkeveense Plassen, Utrecht, The Netherlands. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints revealed that the apparent diversities within the domain Bacteria and the phylum Actinobacteria were lower in E. fluviatilis than in bulk water. Enrichment of specific PCR-DGGE bands in E. fluviatilis was detected. Furthermore, sponge- and bulk water-derived bacterial clone libraries differed with respect to bacterial community composition at the phylum level. E. fluviatilis-derived sequences were affiliated with six recognized phyla, i.e., Proteobacteria, Planctomycetes, Actinobacteria, Bacteroidetes, Chlamydiae and Verrucomicrobia, in order of relative abundance; next to the uncultured candidate phylum TM7 and one deeply rooted bacterial lineage of undefined taxonomy (BLUT). Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in the freshwater clone library whereas sequences affiliated with Planctomycetes, Verrucomicrobia, Acidobacteria and Armatimonadetes were found at lower frequencies. Fine-tuned phylogenetic inference showed no or negligible overlaps between the E. fluviatilis and water-derived phylotypes within bacterial taxa such as Alphaproteobacteria, Bacteroidetes and Actinobacteria. We also ascertained the status of two alphaproteobacterial lineages as freshwater sponge-specific phylogenetic clusters, and report on high distinctiveness of other E. fluviatilis specific phylotypes, especially within the Bacteroidetes, Planctomycetes and Chlamydia taxa. This study supports the contention that the composition and diversity of bacteria in E. fluviatilis is partially driven by the host organism.  相似文献   

2.
The Yellowstone geothermal complex has yielded foundational discoveries that have significantly enhanced our understanding of the Archaea. This study continues on this theme, examining Yellowstone Lake and its lake floor hydrothermal vents. Significant Archaea novelty and diversity were found associated with two near-surface photic zone environments and two vents that varied in their depth, temperature and geochemical profile. Phylogenetic diversity was assessed using 454-FLX sequencing (∼51 000 pyrosequencing reads; V1 and V2 regions) and Sanger sequencing of 200 near-full-length polymerase chain reaction (PCR) clones. Automated classifiers (Ribosomal Database Project (RDP) and Greengenes) were problematic for the 454-FLX reads (wrong domain or phylum), although BLAST analysis of the 454-FLX reads against the phylogenetically placed full-length Sanger sequenced PCR clones proved reliable. Most of the archaeal diversity was associated with vents, and as expected there were differences between the vents and the near-surface photic zone samples. Thaumarchaeota dominated all samples: vent-associated organisms corresponded to the largely uncharacterized Marine Group I, and in surface waters, ∼69–84% of the 454-FLX reads matched archaeal clones representing organisms that are Nitrosopumilus maritimus-like (96–97% identity). Importance of the lake nitrogen cycling was also suggested by >5% of the alkaline vent phylotypes being closely related to the nitrifier Candidatus Nitrosocaldus yellowstonii. The Euryarchaeota were primarily related to the uncharacterized environmental clones that make up the Deep Sea Euryarchaeal Group or Deep Sea Hydrothermal Vent Group-6. The phylogenetic parallels of Yellowstone Lake archaea to marine microorganisms provide opportunities to examine interesting evolutionary tracks between freshwater and marine lineages.  相似文献   

3.
Specific amplification of 16S rRNA gene fragments in combination with denaturing gradient gel electrophoresis (DGGE) was used to generate fingerprints of Chromatiaceae, green sulfur bacteria, Desulfovibrionaceae, and β-Proteobacteria. Sequencing of the gene fragments confirmed that each primer pair was highly specific for the respective phylogenetic group. Applying the new primer sets, the bacterial diversity in the chemoclines of a eutrophic freshwater lake, a saline meromictic lake, and a laminated marine sediment was investigated. Compared to a conventional bacterial primer pair, a higher number of discrete DGGE bands was generated using our specific primer pairs. With one exception, all 15 bands tested yielded reliable 16S rRNA gene sequences. The highest diversity was found within the chemocline microbial community of the eutrophic freshwater lake. Sequence comparison revealed that the six sequences of Chromatiaceae and green sulfur bacteria detected in this habitat all represent distinct and previously unknown phylotypes. The lowest diversity of phylotypes was detected in the chemocline of the meromictic saline lake, which yielded only one sequence each of the Chromatiaceae, β-2-Proteobacteria, and Desulfovibrionaceae, and no sequences of green sulfur bacteria. The newly developed primer sets are useful for the detection of previously unknown phylotypes, for the comparison of the microbial diversity between different natural habitats, and especially for the rapid monitoring of enrichments of unknown bacterial species. Received: 22 January 1999 / Accepted: 28 April 1999  相似文献   

4.
In an effort to better understand the factors contributing to patterns in freshwater bacterioplankton community composition and diversity, we coupled automated ribosomal intergenic spacer analysis (ARISA) to analysis of 16S ribosomal RNA (rRNA) gene sequences to follow the persistence patterns of 46 individual phylotypes over 3 years in Crystal Bog Lake. Additionally, we sought to identify linkages between the observed phylotype variations and known chemical and biological drivers. Sequencing of 16S rRNA genes obtained from the water column indicated the presence of phylotypes associated with the Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, TM7 and Verrucomicrobia phyla, as well as phylotypes with unknown affiliation. Employment of the 16S rRNA gene/ARISA method revealed that specific phylotypes varied independently of the entire bacterial community dynamics. Actinobacteria, which were present on greater than 95% of sampling dates, did not share the large temporal variability of the other identified phyla. Examination of phylotype relative abundance patterns (inferred using ARISA fragment relative fluorescence) revealed a strong correlation between the dominant phytoplankton succession and the relative abundance patterns of the majority of individual phylotypes. Further analysis revealed covariation among unique phylotypes, which formed several distinct bacterial assemblages correlated with particular phytoplankton communities. These data indicate the existence of unique persistence patterns for different common freshwater phylotypes, which may be linked to the presence of dominant phytoplankton species.  相似文献   

5.
We used sequencing and phylogenetic analysis of PCR-amplified 16S rRNA genes from bacteria that are associated with the esophagus/pharynx, stomach and intestine of two marine sympatric invertebrates but with different feeding mechanisms, namely the sea urchin Paracentrotus lividus (grazer) and the ascidian Microcomus sp. (suspension feeder). Amplifiable DNA was retrieved from all sections except the pharynx of the ascidian. Based on the inferred phylogeny of the retrieved sequences, the sea urchin’s esophagus is mainly characterized mostly by bacteria belonging to α-, γ-Proteobacteria and Bacteriodetes, most probably originating from the surrounding environment. The stomach revealed phylotypes that belonged to γ- and δ-Proteobacteria, Verrucomicrobia and Fusobacteria. Since the majority of their closest relatives are anaerobic species and they could be putative symbionts of the P. lividus stomach, in which anaerobic conditions also prevail. Seven out of eight phylotypes found in the sea urchin’s intestine belonged to sulfate reducing δ-Proteobacteria, and one to γ-Proteobacteria, with possible nutritional activities, i.e. degradation of complex organic compounds which is beneficial for the animal. The bacterial phylotypes of the ascidian digestive tract belonged only to the phyla of Actinobacteria and Proteobacteria. The stomach phylotypes of the ascidian were related to pathogenic bacteria possibly originating from the water column, while the intestine seemed to harbour putative symbiotic bacteria that are involved in the degradation of nitrogenous and other organic compounds, thus assisting ascidian nutrition. The text was submitted by the authors in English.  相似文献   

6.
The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It is noted that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.  相似文献   

7.
Bacterial abundances and diversity in the surface water of Lake Namco, the largest oligosaline lake on the Tibetan Plateau, were examined using flow cytometry approach and constructing 16S rRNA gene clone libraries. Bacterial abundances were from 0.08 × 106 to 1.6 × 106 cells mL?1, and were in the reported range of other lakes of the Tibetan Plateau and high mountain regions. Bacterial abundances were significantly correlated with the concentrations of chlorophyll a (chl a), but showed no significant relationship with the dissolved organic carbon (DOC), which suggested that the amount of DOC released by algae was the key factor determining the bacterial abundance rather than the total DOC. The total trace elements concentrations also obviously connected with bacterial abundances, and 9 of 20 elements showed significant relationship. Bacterial 16S rRNA gene clone sequences were affiliated to the α-, β-, γ-, δ-, and ?-Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Acidobacteria, Planctomycetes, Verrucomicrobia, Candidate division OD1, or unclassified, and among these the β-Proteobacteria dominated. Bacteria in Lake Namco were most closely related to those retrieved from freshwater habitats. Relatively few sequences were closely related to those recovered from saline habitats. Eleven of 34 typical freshwater bacterial clusters were detected in the oligosaline Lake Namco. Bacterial diversity within the lake varied and was connected with the concentrations of DOC and chl a.  相似文献   

8.
We investigated the diversity of the bacterial 16S rRNA genes occurring on the abdominal setal tufts and in the emptied midgut of the marine mudshrimp Pestarella tyrrhena (Decapoda: Thalassinidea). There were no dominant phylotypes on the setal tufts. The majority of the phylotypes belonged to the phylum Bacteroidetes, frequently occurring in the water column. The rest of the phylotypes were related to anoxygenic photosynthetic α-Proteobacteria and to Actinobacteria. This bacterial profile seems more of a marine assemblage rather than a specific one suggesting that no specific microbial process can be inferred on the setal tufts. In the emptied midgut, 64 clones were attributed to 16 unique phylotypes with the majority (40.6%) belonging to the γ-Proteobacteria, specifically to the genus Vibrio, a marine group with known symbionts of decapods. The next most abundant group was the ɛ-Proteobacteria (28.1%), with members as likely symbionts related to the processes involving redox reactions occurring in the midgut. In addition, phylotypes related to the Spirochaetes (10.9%) were also present, with relatives capable of symbiosis conducting a nitrite associated metabolism. Entomoplasmatales, Bacteroidetes and Actinobacteria related phylotypes were also found. These results indicate a specific bacterial community dominated by putative symbiotic Bacteria within the P. tyrrhena’s midgut.  相似文献   

9.
We have surveyed the first 1 m of 10 oligotrophic high mountain lakes in the Central Pyrenees (Spain) for both abundance and predominant phylotypes richness of the archaeaplankton assemblage, using CARD-FISH and 16S rRNA gene sequencing respectively. Archaea inhabiting the air-water surface microlayer (neuston) ranged between 3% and 37% of total 4,6-diamidino-2-phenylindole (DAPI) counts and were mainly Crenarchaeota of a new freshwater cluster distantly related to the Marine Group 1.1a. Conversely, most of the Archaea from the underlying waters (the remaining first 1 m integrated) were mainly Euryarchaeota of three distantly related branches ranging between 0.4% and 27% of total DAPI counts. Therefore, a consistent qualitative and quantitative spatial segregation was observed for the two main archaeal phyla between neuston and underlying waters at a regional scale. We also observed a consistent pattern along the lakes surveyed between lake area, lake depth and water residence time, and the archaeal enrichment in the neuston: the larger the lake the higher the proportion of archaea in the neuston as compared with abundances from the underlying waters ( n  = 10 lakes; R 2 > 0.80; P  < 0.001, in all three cases). This is the first report identifying a widespread non-thermophilic habitat where freshwater planktonic Crenarchaeota can be found naturally enriched. High mountain lakes offer great research opportunities to explore the ecology of one of the most enigmatic and far from being understood group of prokaryotes.  相似文献   

10.
In the present study cultivation-dependent and molecular methods were applied in combination to investigate the arsenite-oxidizing communities in enrichment cultures from arsenic and lead smelter-impacted soils with respect to both 16S rRNA and arsenite oxidase gene diversity. Enrichments with arsenite as the only electron donor resulted in completely different communities than enrichments with yeast extract and the simultaneous presence of arsenite. The lithoautotrophic community appeared to be dominated by Ferrimicrobium-related Actinobacteria, unusual Acidobacteria, Myxobacteria, and α-Proteobacteria but the heterotrophic community comprised many Dokdonella-related γ-Proteobacteria. Gene sequences of clones encoding arsenite oxidase from the enrichment for lithoautotrophs belonged to three major clusters with sequences from non-cultivated microorganisms. So, primers used to detect arsenite oxidase genes could amplify the genes from many α-, β- and γ-Proteobacteria, but not from various strains of the other phyla present in the enrichment for lithotrophs. This was also observed for the isolates where arsenite oxidase genes from new proteobacterial isolates of the genera Burkholderia, Bosea, Alcaligenes, Bradyrhizobium and Methylobacterium could be amplified but the genes of the new Rhodococcus isolate S43 could not. The results indicate that the ability to oxidize arsenite is widespread in various unusual taxa, and molecular methods for their detection require further improvement.  相似文献   

11.
Aims:  To explore the association of microbial community structure with the development of eutrophication in a large shallow freshwater lake, Lake Taihu.
Methods and Results:  The bacterial and archaeal assemblages in sediments of different lake areas were analysed using denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA fragments. The bacterial DGGE profiles showed that eutrophied sites, grass-bottom areas and relatively clean sites with a eutrophic (albeit dredged) site are three respective clusters. Fifty-one dominant bacterial DGGE bands were detected and 92 corresponding clones were sequenced, most of which were affiliated with bacterial phylotypes commonly found in freshwater ecosystems. Actinobacteria were detected in the centre of the lake and not at eutrophied sites whereas the opposite was found with respect to Verrucomicrobiales . Twenty-five dominant archaeal DGGE bands were detected and 31 corresponding clones were sequenced, most of which were affiliated with freshwater archaeal phylotypes.
Conclusions:  The bacterial community structures in the sediments of different areas with similar water quality and situation tend to be similar in Taihu Lake.
Significance and Impact of the Study:  This study may expand our knowledge on the relationship between the overall microbial assemblages and the development of eutrophication in the shallow freshwater lake.  相似文献   

12.
乌梁素海富营养化湖区浮游细菌多样性及系统发育分析   总被引:6,自引:0,他引:6  
水生生态系统富营养化与细菌群落之间的关系尚不明确。本文通过构建和分析16S rRNA基因片段克隆文库, 以期揭示乌梁素海富营养化水体细菌的多样性及其系统发育关系, 并探讨富营养化与细菌多样性之间的关系。利用Hae III对文库中的87个克隆子进行单酶切, 产生了23种带型, 文库覆盖度达到了73.6%, 反映出文库有较好的代表性。选择每种OTU的一个代表克隆进行测序分析, 基因序列系统发育分析结果表明, 乌梁素海中多数细菌与淡水生态系统中常见的细菌门类相同, 即α-, β-, γ-Proteobacteria, Bacteroidetes, Actinobacteria, 它们分别占总菌数的10.3%、41.4%、4.6%和6.9%, 其中β-Proteobacteria和Bacteroidetes是优势细菌类群。与典型淡水生态系统细菌群落组成不同的是, 乌梁素海中存在约10.3%的轻度嗜盐碱细菌。水体中83.9%的细菌与已培养的细菌的同源性低于97%, 其中58.9%的细菌未能鉴定到属; 其余总菌数16.1%的克隆与具有降解污染物生物活性的已知菌相近。Bacteroidetes、Firmicutes和β-Proteobacteria中的某些类群成为优势菌群可能是对乌梁素海水体富营养化的响应。  相似文献   

13.
The phylogenetic diversity of freshwater bacterioplankton is widely known; however, there is minimal information on the functional diversity of the bacterial communities in these systems. Understanding the functional diversity of freshwater bacterial communities is important because heterotrophic bacteria can be impacted by anthropogenic perturbation, which in turn can alter biogeochemical cycling. The objective of this study was to use Biolog EcoPlates to acquire spatial and temporal community-level physiological profiles (CLPPs) for three freshwater lakes of different trophic levels and to assess the phylogenetic affiliation of the bacteria responsible for utilizing the various carbon guilds within them by denaturing gradient gel electrophoresis (DGGE). CLPP results showed that bacterial communities utilized the carbon guilds similarly between sites within the three lakes. However, when the metabolic profile of each lake was compared, Lake Bradford and Moore Lake were more similar to one another than to Lake Munson, the eutrophic lake. Additionally, although the bacteria that utilized the five carbon guilds included representatives from the classes α-, β-, γ-Proteobacteria, Flavobacteria and Sphingobacteria, Lake Munson had the largest number of Flavobacteria and γ-Proteobacteria in comparison to Moore Lake and Lake Bradford. Overall, Biolog analysis was useful in identifying differences in the functional diversity of bacterial communities between lakes of different trophic statuses and can be used as a tool to assess ecosystem health.  相似文献   

14.
In order to extend previous comparisons between coastal marine bacterioplankton communities and their open ocean and freshwater counterparts, here we summarize and provide new data on a clone library of 105 SSU rRNA genes recovered from seawater collected over the western continental shelf of the USA in the Pacific Ocean. Comparisons to previously published data revealed that this coastal bacterioplankton clone library was dominated by SSU rRNA gene phylotypes originally described from surface waters of the open ocean, but also revealed unique SSU rRNA gene lineages of beta Proteobacteria related to those found in clone libraries from freshwater habitats. beta Proteobacteria lineages common to coastal and freshwater samples included members of a clade of obligately methylotrophic bacteria, SSU rRNA genes affiliated with Xylophilus ampelinus, and a clade related to the genus Duganella. In addition, SSU rRNA genes were recovered from such previously recognized marine bacterioplankton SSU rRNA gene clone clusters as the SAR86, SAR11, and SAR116 clusters within the class Proteobacteria, the Roseobacter clade of the alpha subclass of the Proteobacteria, the marine group A/SAR406 cluster, and the marine Actinobacteria clade. Overall, these results support and extend previous observations concerning the global distribution of several marine planktonic prokaryote SSU rRNA gene phylotypes, but also show that coastal bacterioplankton communities contain SSU rRNA gene lineages (and presumably bacterioplankton) shown previously to be prevalent in freshwater habitats.  相似文献   

15.
杨乐 《生态学杂志》2020,39(4):1338-1348
传统观点认为,甲烷(CH4)产生于严格的厌氧环境,在有氧环境中容易被氧化,但许多湖泊表层有氧水体出现了CH4过饱和现象,这种现象被称为"甲烷悖论"现象。为了解释湖泊"甲烷悖论"现象,本文根据湖泊表层CH4的来源,归纳出"外来假说"和"自产假说"。"外来假说"假说认为,岸边浅水区底泥或消落区土壤产生CH4向湖心表层水体横向扩散传输(FL),这种假说适应于岸边富含有机质的小型浅水湖泊。"自产假说"认为,湖心表层水体中产甲烷古生菌原位产生CH4(P),这种假说适应于山区大型深水湖泊。此外,湖泊表层有氧水体中CH4的来源还有湖泊周围河流的输入(FR)、沉淀物或次表层水体的CH4垂直向上湍流扩散(FZ)、气泡CH4溶解在表层水体中(FD)等,而湖泊表层有氧水体中CH4的损耗有"水-气"界面上气体排放(E)、CH4氧化(O)等。在厘清湖泊表层水体中CH4收支的基础上,建立CH4质量收支平衡模型,有助于客观认识湖泊表层水体中CH4的来源。实际上,湖泊表层水体中过饱和甲烷的来源与湖泊的环境特性有关,但数据分析方法、取样时段、湖泊环境条件等差异,容易造成"外来假说"和"自产假说"之争。  相似文献   

16.
In this study, for the first time the diversity of bacteria associated with the endemic freshwater sponge Lubomirskia baicalensis collected from the Sousern Basin of Lake Baikal was investigated employing cultivation-independent approaches. In total, 102 bacterial 16S rRNA clones were screened using restriction fragment length polymorphism (RFLP) and 30 were selected for sequencing. BLASTN and phylogenetic analysis based on near full length 16S rDNA sequences showed that 22 operational taxonomic units (OTUs) were clustered in six known phyla: Actinobacteria (8 OTUs), alpha-Proteobacteria (4 OTUs), beta-Proteobacteria (4 OTUs), Verrucomicrobia (4 OTUs), Nitrospiracea (1 OTU) and Bacteroidetes (1 OTU). Remarkably all phylotypes were affiliated to uncultured microorganisms, however, all alpha-Proteobacteria sequences were closely related to bacteria derived from the freshwater sponge Spongilla lacustris. Our results reveal a high diversity in the L. baicalensis bacterial community and provide an insight into microbial ecology and diversity within freshwater sponges inhabiting the ancient Lake Baikal ecosystem.  相似文献   

17.
【目的】本研究旨在分析典型虾塘养殖水体中参与氮循环关键过程的菌群多样性,为指导实际对虾养殖水体中NH 4+和NO 2-的微生物降解、水体氮素污染控制以及虾塘养殖氮素循环的有效管理提供科学依据。【方法】使用聚合酶链式反应及变性梯度凝胶电泳技术(Polymerase Chain Reaction-Denaturing Gradient GelElectrophoresis,PCR-DGGE)从8个不同地点的虾塘水样中确定代表性水样,以此为典型水样进行研究,构建了氨单加氧酶基因(amoA)、亚硝酸盐氧化还原酶基因(nxrA)、亚硝酸盐还原酶基因(nirS)的克隆文库。利用限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)技术将克隆文库进行酶切分析。【结果】通过序列多态性分析,表明amoA基因克隆文库中所有序列都属于变形杆菌门β亚纲(β-Proteobacteria),分别为亚硝化单细胞菌属(Nitrosomonas)(81%)和亚硝化螺旋菌属(Nitrosospira)(19%)2个属。nxrA基因克隆文库检测到α-Proteobacteria和δ-Proteobacteria两个亚纲,其中硝化杆菌属(Nitrobacter)是优势菌群,占整个文库的92%,仅有一个类群属于δ亚纲的脱硫杆菌科(Desulfobacteraceae)(8%)。nirS基因文库群落结构相对于amoA和nxrA基因文库较复杂,分别为α-Proteobacteria、β-Proteobacteria亚纲和Actinobacteria,序列分析表明,25%的类群为固氮弧菌属(Azoarcus),25%的类群为(Polymorphum),20%的类群为需氧去氮菌属(Thauera),10%的类群为(Sophophora),10%的的类群为链霉菌属(Streptomyces),5%的类群为(Brachymonas),5%的类群为(Ruegeria)。【结论】典型虾塘养殖水环境中氮素循环关键过程的菌群多样性丰富,其中亚硝化单胞菌属(Nitrosomonas)和硝化杆菌属(Nitrobacter)分别是此环境中主要的氨氧化作用推动者和亚硝酸盐氧化作用推动者,而在反硝化重要环节中,固氮弧菌属等多种菌群都起着推动作用。  相似文献   

18.
鄱阳湖秋季水-气界面CH4排放通量的区域差异及影响因素   总被引:1,自引:0,他引:1  
林茂  徐明  耿玉清  刘丽香  张鑫 《生态学杂志》2012,31(8):2112-2118
有限的观测点以及空间的异质性已经成为准确估算湖泊水-气界面CH4通量的挑战。鄱阳湖是我国最大的淡水湖,为了解秋季湖区水-气界面的CH4排放通量,2010年10月利用密闭静态箱-气象色谱法对星子、都昌、南矶山和吴城4个湖区水-气界面CH4排放通量及气象、底泥、水体等因素进行了测定。研究表明,都昌湖区CH4排放通量平均值为0.26mg·m-2·h-1,显著高于星子(0.15mg·m-2·h-1)、吴城(0.13mg·m-2·h-1)和南矶山(0.10mg·m-2·h-1)湖区。鄱阳湖水-气界面秋季CH4排放通量平均为0.17mg·m-2·h-1,变异系数为58.6%。相关分析表明,风速显著影响CH4排放通量(P<0.01)。在排除风速>5m·s-1的数据后,底泥有机碳以及水体铵态氮含量与CH4排放通量显著相关,而水体DOC含量与CH4排放通量呈显著负相关(P<0.05)。对鄱阳湖CH4排放量的精确估算,依赖于较广区域和较长时间的观测。  相似文献   

19.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

20.
Diversity and abundance of Gram positive bacteria in a tidal flat ecosystem   总被引:2,自引:0,他引:2  
Gram positive bacteria recently have been identified as important components of freshwater ecosystems and are also present in marine environments. However, their quantitative significance and possible role in the latter systems is still little studied, in particular in coastal regions. Therefore, we investigated the abundance and composition of Gram positive bacteria in the Wadden Sea, a tidal flat ecosystem in the German Bight of the North Sea. Applying fluorescence in situ hybridization we found that Actinobacteria constitute 4-7% of total bacteria in the Wadden Sea and slightly higher proportions in a freshwater drainage channel connected to the sea by a sluice. The application of denaturing gradient gel electrophoresis of 16S rRNA gene fragments after amplification by an Actinobacteria-specific primer set and subsequent sequencing showed that the composition of the actinobacterial community in the Wadden Sea was distinctly different from that in the freshwater system. A bacterial clone library of 111 clones yielded eight Gram positive phylotypes which are related closely to other marine phylotypes including the Marine Actinobacteria Clade but also to freshwater phylotypes. We applied dilution cultures, enriched with various biopolymers, Marine Broth and Fucus vesiculosus extracts, for isolating bacteria from the bulk water, suspended aggregates, the oxic surface and oxic/anoxic transition zone of the sediment. Fifty-three isolates affiliated to seven families of the order Actinomycetales and nine isolates to the family Bacillaceae. The salinity range (1-45 per thousand NaCl) and growth optimum of 14 strains from various families showed that all except one strain exhibited a rather broad range of sustained growth from 1 per thousand to >or= 20 per thousand NaCl and several strains exhibited an optimum of > 10 per thousand NaCl. The results indicate that the Gram positive bacterial community in the Wadden Sea is surprisingly diverse and consists mainly of indigenous species which appear to be well adapted to the environmental conditions of this coastal ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号