首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the relationship between HIV-1 replication and virus (HIV-1; CMV)-specific CD4(+) T cell frequency and function in HIV-1-infected children. HIV-1 gag p55-specific CD4(+) T cell IFN-gamma responses were detected in the majority of children studied. p55-specific responses were detected less commonly and at lower frequencies in children with <50 copies/ml plasma HIV-1 RNA than in children with active HIV-1 replication. In children with <50 copies/ml plasma HIV-1, p55-specific responses were detected only in children with evidence of ongoing HIV-1 replication, indicating a direct relationship between HIV-1 replication and HIV-specific CD4(+) T cell frequencies. In contrast, p55-specific proliferative responses were detected more frequently in children with <50 copies/ml plasma HIV-1. CMV-specific CD4(+) responses were more commonly detected and at higher frequencies in CMV-coinfected children with suppressed HIV-1 replication. The lack of HIV-specific CD4(+) proliferative responses, along with the preservation of CMV-specific CD4(+) responses in children with controlled HIV-1 replication, suggests that viral replication may have deleterious effects on HIV-1 and other virus-specific CD4(+) responses. Vaccination to stimulate HIV-specific CD4(+) T cell responses in these children may synergize with antiretroviral therapy to improve the long-term control of viral replication, and may perhaps allow the eventual discontinuation of antiretroviral therapy.  相似文献   

2.
HIV-1-specific CD4(+) T cells are qualitatively dysfunctional in the majority of HIV-1-infected individuals and are thus unable to effectively control viral replication. The current study extensively details the maturational phenotype of memory CD4(+) T cells directed against HIV-1 and CMV. We find that HIV-1-specific CD4(+) T cells are skewed to an early central memory phenotype, whereas CMV-specific CD4(+) T cells generally display a late effector memory phenotype. These differences hold true for both IFN-gamma- and IL-2-producing virus-specific CD4(+) T cells, are present during all disease stages, and persist even after highly active antiretroviral therapy (HAART). In addition, after HAART, HIV-1-specific CD4(+) T cells are enriched for CD27(+)CD28(-)-expressing cells, a rare phenotype, reflecting an early intermediate stage of differentiation. We found no correlation between differentiation phenotype of HIV-1-specific CD4(+) T cells and HIV-1 plasma viral load or HIV-1 disease progression. Surprisingly, HIV-1 viral load affected the maturational phenotype of CMV-specific CD4(+) T cells toward an earlier, less-differentiated state. In summary, our data indicate that the maturational state of HIV-1-specific CD4(+) T cells cannot be a sole explanation for loss of containment of HIV-1. However, HIV-1 replication can affect the phenotype of CD4(+) T cells of other specificities, which might adversely affect their ability to control those pathogens. The role for HIV-1-specific CD4(+) T cells expressing CD27(+)CD28(-) after HAART remains to be determined.  相似文献   

3.
CD8+ T lymphocyte responses play an important role in controlling HIV-1 replication but escape from CD8+ T cell surveillance may limit the effectiveness of these responses. Mother-to-child transmission of CD8+ T cell escape variants may particularly affect CD8+ T cell recognition of infant HIV-1 epitopes. In this study, amino acid sequence variation in HIV-1 gag and nef was examined in five untreated mother-infant pairs to evaluate the potential role of CD8+ T cell responses in the evolution of the viral quasispecies. Several CD8+ T cell escape variants were detected in maternal plasma. Evaluation of infant plasma viruses at 1-3 mo documented heterogeneity of gag and nef gene sequences and mother-to-child transmission of CD8+ T cell escape variants. Infant HLA haplotype and viral fitness appeared to determine the stability of the escape mutants in the infant over time. Changes in CD8+ T cell epitope sequences were detected in infants' sequential plasma specimens, suggesting that infants are capable of generating virus-specific CD8+ T cell responses that exert selective pressures in vivo. Altogether, these studies document that HIV-1-specific CD8+ T cell responses contribute to the evolution of the viral quasispecies in HIV-1-infected women and their infants and may have important implications for vaccine design.  相似文献   

4.
HIV-1 Ag-specific CD4(+) T cell proliferative responses in human subjects with advanced, untreated HIV-1 disease are often weak or undetectable. Conversely, HIV-1-specific CD4(+) T cell proliferation is occasionally detected following suppression of HIV-1 replication with highly active antiretroviral therapy (HAART). These observations suggest that unchecked HIV-1 replication may lead to depletion or dysfunction of HIV-1-specific CD4(+) T cells, and that these defects may be partially corrected by viral suppression and subsequent immune reconstitution. However, the impact of this immune reconstitution on the repertoire of HIV-1-specific CD4(+) T cells has not been thoroughly evaluated. To examine the HIV-1-specific CD4(+) T cell repertoire in this clinical setting, we established HIV-1 p24-specific CD4(+) T cell clones from a successfully HAART-treated subject whose pretreatment peripheral CD4 count was 0 cells/ micro l. Eleven different p24-specific CD4(+) T cell clonotypes were distinguished among 13 clones obtained. Most clones produced both IFN-gamma and IL-4 upon Ag stimulation. Clones targeted eight distinct epitopes that varied in their conservancy among HIV-1 strains, and responses were restricted by one of three MHC II molecules. Clones showed a range of functional avidities for both protein and peptide Ags. Additional studies confirmed that multiple HIV-1 p24-derived epitopes were targeted by IFN-gamma-producing CD4(+) cells from subjects first treated with HAART during advanced HIV-1 disease (median, 4.5 peptides/subject; range, 3-6). These results suggest that in HAART-treated subjects whose peripheral CD4(+) T cell pools were once severely depleted, the HIV-1-specific CD4(+) T cell repertoire may include a diverse array of clonotypes targeting multiple HIV-1 epitopes.  相似文献   

5.
One hallmark of uncontrolled, chronic human immunodeficiency virus type 1 (HIV-1) infection is the absence of strong HIV-1-specific, CD4(+) T-cell-proliferative responses, yet the mechanism underlying this T helper (Th)-cell defect remains controversial. To better understand the impact of HIV-1 replication on Th-cell function, we compared the frequency of CD4(+) Th-cell responses based on production of gamma interferon to lymphoproliferative responses directed against HIV-1 proteins in HIV-1-infected subjects with active in vivo viral replication versus those on suppressed highly active antiretroviral therapy (HAART). No statistically significant differences in the frequencies of cytokine-secreting, HIV-1-specific CD4(+) T cells between the donor groups were found, despite differences in viral load and treatment status. However, HIV-1-specific lymphoproliferative responses were significantly greater in the subjects with HAART suppression than in subjects with active viral replication. Similar levels of HIV-1 RNA were measured in T-cell cultures stimulated with HIV-1 antigens regardless of donor in vivo viral loads, but only HIV-1-specific CD4(+) T cells from subjects with HAART suppression proliferated in vitro, suggesting that HIV-1 replication in vitro does not preclude HIV-1-specific lymphoproliferation. This study demonstrates a discordance between the frequency and proliferative capacity of HIV-1-specific CD4(+) T cells in subjects with ongoing in vivo viral replication and suggests that in vivo HIV-1 replication contributes to the observed defect in HIV-1-specific CD4(+) T-cell proliferation.  相似文献   

6.
A vaccine regimen that can rapidly control HIV-1 replication at the site of exposure following sexual contact is likely to be the most effective in preventing HIV-1 infection. As part of a larger, phase II clinical trial, we evaluated the ability of a recombinant canarypox HIV-1 vaccine to induce CTL that can be detected in both the systemic and mucosal compartments following i.m. immunization in 12 low- and high-risk HIV-1 seronegative volunteers. In the 7 volunteers receiving four immunizations with live recombinant canarypox ALVAC-HIV vaccine with or without rgp120/SF-2, HIV-1-specific CTL were detected in the blood of 5 (71%) and in the rectum of 4 (57%). CTL responses were observed in both risk strata. In contrast, 5 volunteers receiving placebo had undetectable responses in both compartments. Vaccine-induced, HIV-1-specific effector activities included IFN-gamma secretion and class I MHC-restricted CD8(+) CTL. Rectal and systemic CD8(+) CTL clones established in 1 vaccine recipient revealed similar Env-specific responses and MHC restriction. These findings indicate that parenteral vaccination can induce HIV-1-specific CTL that localize to sites of HIV-1 acquisition, where their presence may be critical in the control of initial viral replication and eventual dissemination. Determination of the optimal strategy to induce mucosal T cells requires future clinical studies.  相似文献   

7.
Healthy young children who acquire CMV have prolonged viral shedding into the urine and saliva, but whether this is attributable to limitations in viral-specific immune responses has not been explored. In this study, we found that otherwise immunocompetent young children after recent primary CMV infection accumulated markedly fewer CMV-specific CD4(+) T cells that produced IFN-gamma than did adults. These differences in CD4(+) T cell function persisted for more than 1 year after viral acquisition, and did not apply to CMV-specific IFN-gamma production by CD8(+) T cells. The IFN-gamma-producing CD4(+) T cells of children or adults that were reactive with CMV Ags were mainly the CCR7(low) cell subset of memory (CD45R0(high)CD45RA(low)) cells. The decreased IFN-gamma response to CMV in children was selective, because their CCR7(low) memory CD4(+) T cells and those of adults produced similar levels of this cytokine after stimulation with staphylococcal enterotoxin B superantigen. CD4(+) T cells from children also had reduced CMV-specific IL-2 and CD154 (CD40 ligand) expression, suggesting an early blockade in the differentiation of viral-specific CD4(+) T cells. Following CMV acquisition, children, but not adults, persistently shed virus in urine, and this was observable for at least 29 mo postinfection. Thus, CD4(+) T cell-mediated immunity to CMV in humans is generated in an age-dependent manner, and may have a substantial role in controlling renal viral replication and urinary shedding.  相似文献   

8.
Functional defects in cytotoxic CD8(+) T cell responses arise in chronic human viral infections, but the mechanisms involved are not well understood. In mice, CD4 cell-mediated interleukin-21 (IL-21) production is necessary for the maintenance of CD8(+) T cell function and control of persistent viral infections. To investigate the potential role of IL-21 in a chronic human viral infection, we studied the rare subset of HIV-1 controllers, who are able to spontaneously control HIV-1 replication without treatment. HIV-specific triggering of IL-21 by CD4(+) T cells was significantly enriched in these persons (P = 0.0007), while isolated loss of IL-21-secreting CD4(+) T cells was characteristic for subjects with persistent viremia and progressive disease. IL-21 responses were mediated by recognition of discrete epitopes largely in the Gag protein, and expansion of IL-21(+) CD4(+) T cells in acute infection resulted in lower viral set points (P = 0.002). Moreover, IL-21 production by CD4(+) T cells of HIV controllers enhanced perforin production by HIV-1-specific CD8(+) T cells from chronic progressors even in late stages of disease, and HIV-1-specific effector CD8(+) T cells showed an enhanced ability to efficiently inhibit viral replication in vitro after IL-21 binding. These data suggest that HIV-1-specific IL-21(+) CD4(+) T cell responses might contribute to the control of viral replication in humans and are likely to be of great importance for vaccine design.  相似文献   

9.
10.
Preferential apoptosis of HIV-1-specific CD4+ T cells   总被引:4,自引:0,他引:4  
In contrast to other viral infections such as CMV, circulating frequencies of HIV-1-specific CD4+ T cells in peripheral blood are quantitatively diminished in the majority of HIV-1-infected individuals. One mechanism for this quantitative defect is preferential infection of HIV-1-specific CD4+ T cells, although <10% of HIV-1-specific CD4+ T cells are infected. Apoptosis has been proposed as an important contributor to the pathogenesis of CD4+ T cell depletion in HIV/AIDS. We show here that, within HIV-1-infected individuals, a greater proportion of ex vivo HIV-1-specific CD4+ T cells undergo apoptosis compared with CMV-specific CD4+ T cells (45 vs 7.4%, respectively, p < 0.05, in chronic progressors). The degree of apoptosis within HIV-1-specific CD4+ T cells correlates with viral load and disease progression, and highly active antiretroviral therapy abrogates these differences. The data support a mechanism for apoptosis in these cells similar to that found in activation-induced apoptosis through the TCR, resulting in oxygen-free radical production, mitochondrial damage, and caspase-9 activation. That HIV-1 proteins can also directly enhance activation-induced apoptosis supports a mechanism for a preferential induction of apoptosis of HIV-1-specific CD4+ T cells, which contributes to a loss of immunological control of HIV-1 replication.  相似文献   

11.
An in vitro proliferative defect has been observed in HIV-1-specific CD4(+) T cells from infected subjects with high-level plasma HIV-1 viremia. To determine the mechanism of this defect, HIV-1 Gag-specific CD4(+) T cells from treated and untreated HIV-1-infected subjects were analyzed for cytokine profile, proliferative capacity, and maturation state. Unexpectedly high frequencies of HIV-1-specific, IL-2-producing CD4(+) T cells were measured in subjects with low or undetectable plasma HIV-1 loads, regardless of treatment status, and IL-2 frequencies correlated inversely with viral loads. IL-2-producing CD4(+) T cells also primarily displayed a central memory (T(Cm); CCR7(+)CD45RA(-)) maturation phenotype, whereas IFN-gamma-producing cells were mostly effector memory (T(Em), CCR7(-)CD45RA(-)). Among Gag-specific, IFN-gamma-producing CD4(+) T cells, higher T(Em) frequencies and lower T(Cm) frequencies were observed in untreated, high viral load subjects than in subjects with low viral loads. The percentage of HIV-1 Gag-specific CD4(+) T(Cm) correlated inversely with HIV-1 viral load and directly with Gag-specific CD4(+) T cell proliferation, whereas the opposite relationships were observed for HIV-1-specific CD4(+) T(Em). These results suggest that HIV-1 viremia skews Gag-specific CD4(+) T cells away from an IL-2-producing T(Cm) phenotype and toward a poorly proliferating T(Em) phenotype, which may limit the effectiveness of the HIV-1-specific immune response.  相似文献   

12.
Vpr is preferentially targeted by CTL during HIV-1 infection   总被引:11,自引:0,他引:11  
The HIV-1 accessory proteins Vpr, Vpu, and Vif are essential for viral replication, and their cytoplasmic production suggests that they should be processed for recognition by CTLs. However, the extent to which these proteins are targeted in natural infection, as well as precise CTL epitopes within them, remains to be defined. In this study, CTL responses against HIV-1 Vpr, Vpu, and Vif were analyzed in 60 HIV-1-infected individuals and 10 HIV-1-negative controls using overlapping peptides spanning the entire proteins. Peptide-specific IFN-gamma production was measured by ELISPOT assay and flow-based intracellular cytokine quantification. HLA class I restriction and cytotoxic activity were confirmed after isolation of peptide-specific CD8(+) T cell lines. CD8(+) T cell responses against Vpr, Vpu, and Vif were found in 45%, 2%, and 33% of HIV-1-infected individuals, respectively. Multiple CTL epitopes were identified in functionally important regions of HIV-1 Vpr and Vif. Moreover, in infected individuals in whom the breadth of HIV-1-specific responses was assessed comprehensively, Vpr and p17 were the most preferentially targeted proteins per unit length by CD8(+) T cells. These data indicate that despite the small size of these proteins Vif and Vpr are frequently targeted by CTL in natural HIV-1 infection and contribute importantly to the total HIV-1-specific CD8(+) T cell responses. These findings will be important in evaluating the specificity and breadth of immune responses during acute and chronic infection, and in the design and testing of candidate HIV vaccines.  相似文献   

13.
Primary CMV infection in lung transplant recipients (LTRs) is associated with increased mortality. We studied 22 donor CMV-positive, recipient-negative (D(+)R(-)) LTRs for the development of posttransplant CMV-specific immunity. We found that 13 of 22 D(+)R(-) LTRs (59.1%) seroconverted (CMV IgG Ab(+)). Using pooled peptides of the immunodominant CMV Ags pp65 and IE1, we detected CMV-specific CD8(+)IFN-gamma(+) T cells in the PBMC of 90% of seroconverted individuals following primary infection by intracellular cytokine staining. In contrast, few seroconverters had detectable CMV-specific CD4(+)IFN-gamma(+) T cells during viral latency. However, the majority of IgG(+) LTRs demonstrated CMV-specific CD4(+) and CD8(+) T cell proliferative responses from PBMC, with CD4(+)IFN-gamma(+) T cells detectable upon re-expansion. Examination of lung allograft mononuclear cells obtained by bronchoalveolar lavage revealed both CMV-specific CD4(+) and CD8(+)IFN-gamma(+) T cells, including patients from whom CD4(+)IFN-gamma(+) T cells were simultaneously undetectable in the PBMC, suggesting differential effector memory populations between these compartments. Moreover, both responses in the PBMC and lung allograft were found to persist, despite substantial immunosuppression, long after primary infection. Clinical correlation in this cohort demonstrated that the acquisition of CMV immunity was associated with freedom from CMV disease (p < or = 0.009) and preservation of allograft function (p < or = 0.02) compared with those who failed to develop CMV immunity. Together, our data reveal immunologic heterogeneity in D(+)R(-) LTRs, with the development and persistence of primary CMV responses that may provide clinical benefit.  相似文献   

14.
15.
Without treatment most HIV-1-infected children in Africa die before their third birthday (>89%) and long-term nonprogressors are rare. The mechanisms underlying nonprogression in HIV-1-infected children are not well understood. In the present study, we examined potential correlates of delayed HIV disease progression in 51 HIV-1-infected African children. Children were assigned to progression subgroups based on clinical characterization. HIV-1-specific immune responses were studied using a combination of ELISPOT assays, tetramer staining, and FACS analysis to characterize the magnitude, specificity, and functional phenotype of HIV-1-specific CD8(+) and CD4(+) T cells. Host genetic factors were examined by genotyping with sequence-specific primers. HIV-1 nef gene sequences from infecting isolates from the children were examined for potential attenuating deletions. Thymic output was measured by T cell rearrangement excision circle assays. HIV-1-specific CD8(+) T cell responses were detected in all progression groups. The most striking attribute of long-term survivor nonprogressors was the detection of HIV-1-specific CD4(+) Th responses in this group at a magnitude substantially greater than previously observed in adult long-term nonprogressors. Although long-term survivor nonprogressors had a significantly higher percentage of CD45RA(+)CD4(+) T cells, nonprogression was not associated with higher thymic output. No protective genotypes for known coreceptor polymorphisms or large sequence deletions in the nef gene associated with delayed disease progression were identified. In the absence of host genotypes and attenuating mutations in HIV-1 nef, long-term surviving children generated strong CD4(+) T cell responses to HIV-1. As HIV-1-specific helper cells support anti-HIV-1 effector responses in active disease, their presence may be important in delaying disease progression.  相似文献   

16.
Human endogenous retrovirus (HERV)-specific T cell responses in HIV-1-infected adults have been reported. Whether HERV-specific immunity exists in vertically HIV-1-infected children is unknown. We performed a cross-sectional analysis of HERV-specific T cell responses in 42 vertically HIV-1-infected children. HERV (-H, -K, and -L family)-specific T cell responses were identified in 26 of 42 subjects, with the greatest magnitude observed for the responses to HERV-L. These HERV-specific T cell responses were inversely correlated with the HIV-1 plasma viral load and positively correlated with CD4(+) T cell counts. These data indicate that HERV-specific T cells may participate in controlling HIV-1 replication and that certain highly conserved HERV-derived proteins may serve as promising therapeutic vaccine targets in HIV-1-infected children.  相似文献   

17.
CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8(+) T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8(+) responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8(+) T cells during AHI. Autologous and heterologous CD8(+) T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8(+) T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8(+) antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8(+)-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8(+) T cell-mediated inhibition of virus replication. CD8(+) T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies.  相似文献   

18.
Recombinant modified vaccinia Ankara- and peptide-based IFN-gamma ELISPOT assays were used to detect and measure human CMV (HCMV)-specific CD8(+) T cell responses to the pp65 (UL83) and immediate early protein 1 (IE1; UL123) gene products in 16 HCMV-infected infants and children. Age at study ranged from birth to 2 years. HCMV-specific CD8(+) T cells were detected in 14 (88%) of 16 children at frequencies ranging from 60 to >2000 spots/million PBMC. Responses were detected as early as 1 day of age in infants with documented congenital infection. Nine children responded to both pp65 and IE1, whereas responses to pp65 or IE1 alone were detected in three and two children, respectively. Regardless of the specificity of initial responses, IE1-specific responses predominated by 1 year of age. Changes in HCMV epitopes targeted by the CD8(+) T cell responses were observed over time; epitopes commonly recognized by HLA-A2(+) adults with latent HCMV infection did not fully account for responses detected in early childhood. Finally, the detection of HCMV-specific CD8(+) T cell responses was temporally associated with a decrease in peripheral blood HCMV load. Taken altogether, these data demonstrate that the fetus and young infant can generate virus-specific CD8(+) T cell responses. Changes observed in the protein and epitope-specificity of HCMV-specific CD8(+) T cells over time are consistent with those observed after other primary viral infections. The temporal association between the detection of HCMV-specific CD8(+) T cell responses and the reduction in blood HCMV load supports the importance of CD8(+) T cells in controlling primary HCMV viremia.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) infection results in different patterns of viral replication in pediatric compared to adult populations. The role of early HIV-1-specific responses in viral control has not been well defined, because most studies of HIV-1-infected infants have been retrospective or cross-sectional. We evaluated the association between HIV-1-specific gamma interferon (IFN-gamma) release from the cells of infants of 1 to 3 months of age and peak viral loads and mortality in the first year of life among 61 Kenyan HIV-1-infected infants. At 1 month, responses were detected in 7/12 (58%) and 6/21 (29%) of infants infected in utero and peripartum, respectively (P = 0.09), and in approximately 50% of infants thereafter. Peaks of HIV-specific spot-forming units (SFU) increased significantly with age in all infants, from 251/10(6) peripheral blood mononuclear cells (PBMC) at 1 month of age to 501/10(6) PBMC at 12 months of age (P = 0.03), although when limited to infants who survived to 1 year, the increase in peak HIV-specific SFU was no longer significant (P = 0.18). Over the first year of life, infants with IFN-gamma responses at 1 month had peak plasma viral loads, rates of decline of viral load, and mortality risk similar to those of infants who lacked responses at 1 month. The strength and breadth of IFN-gamma responses at 1 month were not significantly associated with viral containment or mortality. These results suggest that, in contrast to HIV-1-infected adults, in whom strong cytotoxic T lymphocyte responses in primary infection are associated with reductions in viremia, HIV-1-infected neonates generate HIV-1-specific CD8+-T-cell responses early in life that are not clearly associated with improved clinical outcomes.  相似文献   

20.
Ag-presenting dendritic cells present viral Ags to T cells after uptake of apoptotic bodies derived from virus-infected cells in vitro. However, it is unclear whether apoptotic virus-infected cells are capable of generating immunity in vivo. In this study, we show that inoculation of mice with apoptotic HIV-1/murine leukemia virus (MuLV)-infected cells induces HIV-1-specific immunity. Immunization with apoptotic HIV-1/MuLV-infected syngeneic splenocytes resulted in strong Nef-specific CD8(+) T cell proliferation and p24-induced CD4(+) and CD8(+) T cell proliferation as well as IFN-gamma production. In addition, systemic IgG and IgA as well as mucosa-associated IgA responses were generated. Moreover, mice vaccinated with apoptotic HIV-1/MuLV cells were protected against challenge with live HIV-1/MuLV-infected cells, whereas mice vaccinated with apoptotic noninfected or MuLV-infected splenocytes remained susceptible to HIV-1/MuLV. These data show that i.p. immunization with apoptotic HIV-1-infected cells induces high levels of HIV-1-specific systemic immunity, primes for mucosal immunity, and induces protection against challenge with live HIV-1-infected cells in mice. These findings may have implications for the development of therapeutic and prophylactic HIV-1 vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号