首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs “Synergistic electrolysis and electroporation” (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation.  相似文献   

2.

Background  

Irreversible electroporation (IRE) is a minimally invasive tissue ablation technique which utilizes electric pulses delivered by electrodes to a targeted area of tissue to produce high amplitude electric fields, thus inducing irreversible damage to the cell membrane lipid bilayer. An important application of this technique is for cancer tissue ablation. Mathematical modelling is considered important in IRE treatment planning. In the past, IRE mathematical modelling used a deterministic single value for the amplitude of the electric field required for causing cell death. However, tissue, particularly cancerous tissue, is comprised of a population of different cells of different sizes and orientations, which in conventional IRE are exposed to complex electric fields; therefore, using a deterministic single value is overly simplistic.  相似文献   

3.

Background

Therapeutic irreversible electroporation (IRE) is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death.

Methods

A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE). A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation.

Results

No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain.

Conclusions

H-FIRE is a feasible technique for non-thermal tissue ablation that eliminates muscle contractions seen in IRE treatments performed with unipolar electric pulses. Therefore, it has the potential to be performed clinically without the administration of paralytic agents.  相似文献   

4.
Microsecond and nanosecond electric pulses in cancer treatments   总被引:1,自引:0,他引:1  
New local treatments based on electromagnetic fields have been developed as non‐surgical and minimally invasive treatments of tumors. In particular, short electric pulses can induce important non‐thermal changes in cell physiology, especially the permeabilization of the cell membrane. The aim of this review is to summarize the present data on the electroporation‐based techniques: electrochemotherapy (ECT), nanosecond pulsed electric fields (nsPEFs), and irreversible electroporation (IRE). ECT is a safe, easy, and efficient technique for the treatment of solid tumors that uses cell‐permeabilizing electrical pulses to enhance the activity of a non‐permeant (bleomycin) or low permeant (cisplatin) anticancer drug with a very high intrinsic cytotoxicity. The most interesting feature of ECT is its unique ability to selectively kill tumor cells without harming normal surrounding tissue. ECT is already used widely in the clinics in Europe. nsPEFs could represent a drug free, purely electrical cancer therapy. They allow the inhibition of tumor growth, and interestingly, nsPEF can target intracellular organelles. However, many questions remain on the mechanism of action of these pulses. Finally, IRE is a new ablation procedure using pulses that provoke the permanent permeabilization of the cells resulting in their death. This technique does not result in any thermal effect, which is its main advantage in current physical ablation technologies. For both the nsPEF and the IRE, the preservation of the normal tissue, which is characteristic of ECT, has not yet been shown and their safety and efficacy still have to be investigated thoroughly in vivo and in the clinics. Bioelectromagnetics 33:106–123, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-µs PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs.  相似文献   

6.
Nonthermal irreversible electroporation (NTIRE) is a new minimally invasive technique to treat cancer. It is unique because of its nonthermal mechanism of tumor ablation. Intracranial NTIRE procedures involve placing electrodes into the targeted area of the brain and delivering a series of short but intense electric pulses. The electric pulses induce irreversible structural changes in cell membranes, leading to cell death. We correlated NTIRE lesion volumes in normal brain tissue with electric field distributions from comprehensive numerical models. The electrical conductivity of brain tissue was extrapolated from the measured in vivo data and the numerical models. Using this, we present results on the electric field threshold necessary to induce NTIRE lesions (495–510 V/cm) in canine brain tissue using 90 50-μs pulses at 4 Hz. Furthermore, this preliminary study provides some of the necessary numerical tools for using NTIRE as a brain cancer treatment. We also computed the electrical conductivity of brain tissue from the in vivo data (0.12–0.30 S/m) and provide guidelines for treatment planning and execution. Knowledge of the dynamic electrical conductivity of the tissue and electric field that correlates to lesion volume is crucial to ensure predictable complete NTIRE treatment while minimizing damage to surrounding healthy tissue.  相似文献   

7.
Daniels CS  Rubinsky B 《PloS one》2011,6(11):e26219
This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to ablate cells in the high subzero freezing region of a cryosurgical lesion.  相似文献   

8.
Rhabdomyolysis due to pulsed electric fields   总被引:5,自引:0,他引:5  
High-voltage electrical trauma frequently results in extensive and scattered destruction of skeletal muscle along the current path. The damage is commonly believed to be mediated by heating. Recent experimental and theoretical evidence suggests, however, that the rhabdomyolysis and secondary myoglobin release that occur also can result from electroporation, a purely nonthermal mechanism. Based on the results of a computer simulation of a typical high-voltage electric shock, we have postulated that electroporation contributes substantially to skeletal muscle damage and could be the primary mechanism of damage in some cases of electrical injury. In this study, we determined the threshold field strength and exposure duration required to produce rhabdomyolysis by the electroporation mechanism. The change in the electrical impedance of intact skeletal muscle tissue following the application of short-duration, high-intensity electric field pulses is used as an indicator of membrane damage. Our experiments show that a decrease in impedance magnitude occurs following electric field pulses that exceed threshold values of 60 V/cm magnitude and 1-ms duration. The field strength, pulse duration, and number of pulses are factors that determine the extent of damage. The effect does not depend on excitation-contraction coupling. Electron micrographs confirm structural defects created in the membranes by the applied electric field pulses, and these represent the first clear demonstration of rhabdomyolysis in intact muscle due to electroporation. These results provide compelling evidence in support of our postulate.  相似文献   

9.

Background

To evaluate the potential effects of irreversible electroporation ablation on the Achilles tendon in a rabbit model and to compare the histopathological and biomechanical changes between specimens following electroporation ablation and radiofrequency ablation.

Methods

A total of 140 six-month-old male New Zealand rabbits were used. The animals were randomly divided into two groups, 70 in the radiofrequency ablation group and 70 in the electroporation group. In situ ablations were applied directly to the Achilles tendons of rabbits using typical electroporation (1800 V/cm, 90 pulses) and radiofrequency ablation (power control mode) protocols. Histopathological and biomechanical evaluations were performed to examine the effects of electroporation ablation and radiofrequency ablation over time.

Results

Both electroporation and radiofrequency ablation produced complete cell ablation in the target region. Thermal damage resulted in tendon rupture 3 days post radiofrequency ablation. In contrast, electroporation-ablated Achilles tendons preserved their biomechanical properties and showed no detectable rupture at this time point. The electroporation-ablated tendons exhibited signs of recovery, including tenoblast regeneration and angiogenesis within 2 weeks, and the restoration of their integral structure was evident within 12 weeks.

Conclusions

When applying electroporation to ablate solid tumors, major advantage could be that collateral damage to adjacent tendons or ligaments is minimized due to the unique ability of electroporation ablation to target the cell membrane. This advantage could have a significant impact on the field of tumor ablation near vital tendons or ligaments.  相似文献   

10.
Electroporation is an approach used to enhance the transport of large molecules to the cell cytosol in which a targeted tissue region is exposed to a series of electric pulses. The cell membrane, which normally acts as a barrier to large molecule transport into the cell interior, is temporarily destabilized due to the development of pores in the cell membrane. Consequently, agents that are ordinarily unable enter the cell are able to pass through the cell membrane. Of possible concern when exposing biological tissue to an electric field is thermal tissue damage associated with joule heating. This paper explores the thermal effects of various geometric, biological, and electroporation pulse parameters including the blood vessel presence and size, plate electrode configuration, and pulse duration and frequency. A three-dimensional transient finite volume model of in vivo parallel plate electroporation of liver tissue is used to develop a better understanding of the underlying relationships between the physical parameters involved with tissue electroporation and resulting thermal damage potential.  相似文献   

11.
The recently described method of cell electroporation by flow of cell suspension through localized direct current electric fields (dcEFs) was applied to identify non-toxic substances that could sensitize cells to external electric fields. We found that local cationic anesthetics such as procaine, lidocaine and tetracaine greatly facilitated the electroporation of AT2 rat prostate carcinoma cells and human skin fibroblasts (HSF). This manifested as a 50% reduction in the strength of the electric field required to induce cell death by irreversible electroporation or to introduce fluorescent dyes such as calcein, carboxyfluorescein or Lucifer yellow into the cells. A similar decrease in the electric field thresholds for irreversible and reversible cell electroporation was observed when the cells were exposed to the electric field in the presence of the non-toxic cationic dyes 9-aminoacridine (9-AAA) or toluidine blue. Identifying non-toxic, reversibly acting cell sensitizers may facilitate cancer tissue ablation and help introduce therapeutic or diagnostic substances into the cells and tissues.  相似文献   

12.
Chinese hamster ovary (CHO) cells in suspension were subjected to pulsed electric fields suitable for electrically mediated gene transfer (pulse duration longer than 1 ms). Using the chemiluminescence probe lucigenin, we showed that a generation of reactive-oxygen species (oxidative jump) was present when the cells were electropermeabilised using millisecond pulses. The oxidative jump yield was controlled by the extent of alterations allowing permeabilisation within the electrically affected cell area, but showed a saturating dependence on the pulse duration over 1 ms. Cell electropulsation induced reversible and irreversible alterations of the membrane assembly. The oxidative stress was only present when the membrane permeabilisation was reversible. Irreversible electrical membrane disruption inhibited the oxidative jump. The oxidative jump was not a simple feedback effect of membrane electropermeabilisation. It strongly controlled long-term cell survival. This had to be associated with the cell-damaging action of reactive-oxygen species. However, for millisecond-cumulated pulse duration, an accumulation of a large number of short pulses (microsecond) was extremely lethal for cells, while no correlation with an increased oxidative jump was found. Cell responses, such as the production of free radicals, were present during electropermeabilisation of living cells and controlled partially the long-term behaviour of the pulsed cell.  相似文献   

13.
Magnetic resonance electrical impedance tomography (MREIT) was recently proposed for determining electric field distribution during electroporation in which cell membrane permeability is temporary increased by application of an external high electric field. The method was already successfully applied for reconstruction of electric field distribution in agar phantoms. Before the next step towards in vivo experiments is taken, monitoring of electric field distribution during electroporation of ex vivo tissue ex vivo and feasibility for its use in electroporation based treatments needed to be evaluated. Sequences of high voltage pulses were applied to chicken liver tissue in order to expose it to electric field which was measured by means of MREIT. MREIT was also evaluated for its use in electroporation based treatments by calculating electric field distribution for two regions, the tumor and the tumor-liver region, in a numerical model based on data obtained from clinical study on electrochemotherapy treatment of deep-seated tumors. Electric field distribution inside tissue was successfully measured ex vivo using MREIT and significant changes of tissue electrical conductivity were observed in the region of the highest electric field. A good agreement was obtained between the electric field distribution obtained by MREIT and the actual electric field distribution in evaluated regions of a numerical model, suggesting that implementation of MREIT could thus enable efficient detection of areas with insufficient electric field coverage during electroporation based treatments, thus assuring the effectiveness of the treatment.  相似文献   

14.
Irreversible electroporation (IRE) is emerging as a powerful tool for tumor ablation that utilizes pulsed electric fields to destabilize the plasma membrane of cancer cells past the point of recovery. The ablated region is dictated primarily by the electric field distribution in the tissue, which forms the basis of current treatment planning algorithms. To generate data for refinement of these algorithms, there is a need to develop a physiologically accurate and reproducible platform on which to study IRE in vitro. Here, IRE was performed on a 3D in vitro tumor model consisting of cancer cells cultured within dense collagen I hydrogels, which have been shown to acquire phenotypes and respond to therapeutic stimuli in a manner analogous to that observed in in vivo pathological systems. Electrical and thermal fluctuations were monitored during treatment, and this information was incorporated into a numerical model for predicting the electric field distribution in the tumors. When correlated with Live/Dead staining of the tumors, an electric field threshold for cell death (500 V/cm) comparable to values reported in vivo was generated. In addition, submillimeter resolution was observed at the boundary between the treated and untreated regions, which is characteristic of in vivo IRE. Overall, these results illustrate the advantages of using 3D cancer cell culture models to improve IRE-treatment planning and facilitate widespread clinical use of the technology.  相似文献   

15.
Diverse effects of nanosecond pulsed electric fields on cells and tissues   总被引:11,自引:0,他引:11  
The application of pulsed electric fields to cells is extended to include nonthermal pulses with shorter durations (10-300 ns), higher electric fields (< or =350 kV/cm), higher power (gigawatts), and distinct effects (nsPEF) compared to classical electroporation. Here we define effects and explore potential application for nsPEF in biology and medicine. As the pulse duration is decreased below the plasma membrane charging time constant, plasma membrane effects decrease and intracellular effects predominate. NsPEFs induced apoptosis and caspase activation that was calcium-dependent (Jurkat cells) and calcium-independent (HL-60 and Jurkat cells). In mouse B10-2 fibrosarcoma tumors, nsPEFs induced caspase activation and DNA fragmentation ex vivo, and reduced tumor size in vivo. With conditions below thresholds for classical electroporation and apoptosis, nsPEF induced calcium release from intracellular stores and subsequent calcium influx through store-operated channels in the plasma membrane that mimicked purinergic receptor-mediated calcium mobilization. When nsPEF were applied after classical electroporation pulses, GFP reporter gene expression was enhanced above that observed for classical electroporation. These findings indicate that nsPEF extend classical electroporation to include events that primarily affect intracellular structures and functions. Potential applications for nsPEF include inducing apoptosis in cells and tumors, probing signal transduction mechanisms that determine cell fate, and enhancing gene expression.  相似文献   

16.

Background  

Irreversible electroporation (IRE) is a new minimally invasive technique to kill undesirable tissue in a non-thermal manner. In order to maximize the benefits from an IRE procedure, the pulse parameters and electrode configuration must be optimized to achieve complete coverage of the targeted tissue while preventing thermal damage due to excessive Joule heating.  相似文献   

17.

Background

One recent area of cancer research is irreversible electroporation (IRE). Irreversible electroporation is a minimally invasive procedure where needle electrodes are inserted into the body to ablate tumor cells with electricity. The aim of this paper is to propose a mathematical model that incorporates a tissue’s conductivity increasing more in the direction of the electrical field as this has been shown to occur in experiments.

Method

It was necessary to mathematically derive a valid form of the conductivity tensor such that it is dependent on the electrical field direction and can be easily implemented into numerical software. The derivation of a conductivity tensor that can take arbitrary functions for the conductivity in the directions tangent and normal to the electrical field is the main contribution of this paper. Numerical simulations were performed for isotropic-varying and anisotropic-varying conductivities to evaluate the importance of including the electrical field’s direction in the formulation for conductivity.

Results

By starting from previously published experimental results, this paper derived a general formulation for an anistropic-varying tensor for implementation into irreversible electroporation modeling software. The anistropic-varying tensor formulation allows the conductivity to take into consideration both electrical field direction and magnitude, as opposed to previous published works that only took into account electrical field magnitude.The anisotropic formulation predicts roughly a five percent decrease in ablation size for the monopolar simulation and approximately a ten percent decrease in ablation size for the bipolar simulations. This is a positive result as previously reported results found the isotropic formulation to overpredict ablation size for both monopolar and bipolar simulations. Furthermore, it was also reported that the isotropic formulation overpredicts the ablation size more for the bipolar case than the monopolar case. Thus, our results are following the experimental trend by having a larger percentage change in volume for the bipolar case than the monopolar case.

Conclusions

The predicted volume of ablated cells decreased, and could be a possible explanation for the slight over-prediction seen by isotropic-varying formulations.
  相似文献   

18.
Genetically engineered cells with mutations of relevance to electroporation, cell membrane permeabilization by electric pulses, can become a promising new tool for fundamental research on this important biotechnology. Listeria monocytogenes mutants lacking DltA or MprF and assayed for sensitivity to the cathelicidin like anti-microbial cationic peptide (mCRAMP), were developed to study the effect of cell wall charge on electroporation. Working in the irreversible electroporation regime (IRE), we found that application of a sequence of 50 pulses, each 50μs duration, 12.5kV/cm field, delivered at 2Hz led to 2.67±0.29 log reduction in wild-type L. monocytogenes, log 2.60±0.19 in the MprF-minus mutant, and log 1.33±0.13 in the DltA-minus mutant. The experimental observation that the DltA-minus mutant was highly susceptible to cationic mCRAMP and resistant to IRE suggests that the charge on the bacterial cell wall affects electroporation and shows that this approach may be promising for fundamental studies on electroporation.  相似文献   

19.
The blood-brain-barrier (BBB) presents a significant obstacle to the delivery of systemically administered chemotherapeutics for the treatment of brain cancer. Irreversible electroporation (IRE) is an emerging technology that uses pulsed electric fields for the non-thermal ablation of tumors. We hypothesized that there is a minimal electric field at which BBB disruption occurs surrounding an IRE-induced zone of ablation and that this transient response can be measured using gadolinium (Gd) uptake as a surrogate marker for BBB disruption. The study was performed in a Good Laboratory Practices (GLP) compliant facility and had Institutional Animal Care and Use Committee (IACUC) approval. IRE ablations were performed in vivo in normal rat brain (n = 21) with 1-mm electrodes (0.45 mm diameter) separated by an edge-to-edge distance of 4 mm. We used an ECM830 pulse generator to deliver ninety 50-μs pulse treatments (0, 200, 400, 600, 800, and 1000 V/cm) at 1 Hz. The effects of applied electric fields and timing of Gd administration (−5, +5, +15, and +30 min) was assessed by systematically characterizing IRE-induced regions of cell death and BBB disruption with 7.0-T magnetic resonance imaging (MRI) and histopathologic evaluations. Statistical analysis on the effect of applied electric field and Gd timing was conducted via Fit of Least Squares with α = 0.05 and linear regression analysis. The focal nature of IRE treatment was confirmed with 3D MRI reconstructions with linear correlations between volume of ablation and electric field. Our results also demonstrated that IRE is an ablation technique that kills brain tissue in a focal manner depicted by MRI (n = 16) and transiently disrupts the BBB adjacent to the ablated area in a voltage-dependent manner as seen with Evan''s Blue (n = 5) and Gd administration.  相似文献   

20.
The effects of intense submicrosecond electrical pulses on cells   总被引:5,自引:0,他引:5       下载免费PDF全文
A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 micros-60 ns, electric field intensities 3-150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the cause of increased surface membrane permeability. For nanosecond pulses, more delayed propidium iodide uptake occurred with significantly later uptake of propidium iodide occurring after 60 ns pulses compared to 300 ns pulses. Cellular swelling occurred rapidly following 300 ns pulses, but was minimal following 60 ns pulses. These data indicate that submicrosecond pulses achieve temporally distinct effects on living cells compared to microsecond pulses. The longer pulses result in rapid permeability changes in the surface membrane that are relatively homogeneous across the cell population, consistent with electroporation, while shorter pulses cause surface membrane permeability changes that are temporally delayed and heterogeneous in their magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号