首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.  相似文献   

2.
The polyethylene glycol (PEG) treatment of ciprofloxacin-Indion 234 complex was aimed to retard rapid ion exchange drug release at gastric pH. Ciprofloxacin loading on Indion 234 was performed in a batch process, and the amount of K+ in Indion 234 displaced by drug with time was studied as equilibrium constant KDM. Drug-resin complex (DRC) was treated with aqueous PEG solution (0.5%–2% wt/vol) of different molecular weights (MWs) for 2 to 30 minutes. The PEG-treated ciprofloxacin-Indion 234 complex was evaluated for particle size, water absorption time, and drug release at gastric pH. During drug loading on Indion 234, the equilibrium constant (KDM) increased rapidly up to 20 minutes with efficient drug loading. Increased time of immersion of the drug resinate in PEG solutions significantly retained higher size particles upon dehydration. The larger DRC particles showed longer water absorption times owing to compromised hydrating power. The untreated DRC showed insignificant drug release in deionized water; while at gastric pH, ciprofloxacin release was complete in 90 minutes. A trend of increased residual particle size, proportionate increase in water absorption time, and hence the retardation of release with time of immersion was evident in PEG-treated DRC. The time of immersion of DRC in PEG-treated DRC. The time of immersion of DRC in PEG solution had predominant release retardant effect, while the effect of molecular weight of PEG was insignificant. Thus, PEG treatment of DRC successfully retards ciprofloxacin ion exchange release in acidic pH.  相似文献   

3.
The aim of the present investigation was to develop a novel dosage form of rifampicin and isoniazid to minimize degradation of rifampicin in acidic medium and to modulate the release of rifampicin in the stomach and isoniazid in the intestine. Gastroretentive tablets of rifampicin (150 mg) were prepared by the wet granulation method using hydroxypropyl methylcellulose, calcium carbonate, and polyethylene glycol 4000. The granules and tablets of rifampicin were characterized. Hard gelatin capsules (size 4) containing a compacted mass of isoniazid (150 mg) and dicalcium phosphate (75 mg) were enteric coated. Two tablets of rifampicin and 1 capsule (size 4) of isoniazid were put into a hard gelatin capsule (size 00). The in vitro drug release and in vitro drug degradation studies were performed. Rifampicin was released over 4 hours by zero-order kinetics from the novel dosage form. More than 90% of isoniazid was released in alkaline medium in 30 minutes. The results of dissolution studies with the US Pharmacopeia XXIII method revealed that a substantial amount of rifampicin was degraded from the immediate release capsule containing rifampicin and isoniazid powder owing to drug accumulation in the dissolution vessel and also to the presence of isoniazid. The degradation of rifampicin to 3-formyl rifampicin SV (3FRSV) was arrested (3.6%–4.8% degradation of rifampicin at 4 hours) because of the minimization of physical contact between the 2 drugs and controlled release of rifampicin in acidic medium in the modified Rossett-Rice apparatus. This study concludes that the problem of rifampicin degradation can be alleviated to a certain extent by this novel dosage form. Published: August 24, 2007  相似文献   

4.
The present investigation reports coupling of ?- and α-amino groups of lysine (LS) with mannose (m-LS) and sodium alginate (SA), respectively, to reduce its toxicity. Prepared conjugate, m-LS-co-SA, was characterized through infra-red spectroscopy and differential scanning calorimetry. Cell viability studies were undertaken to assess the safety profile of the prepared conjugate. Microspheres, based on the conjugate, were prepared using spray drying technique and studied for targeting of isoniazid to alveolar macrophages (AMs). Pharmacokinetic studies of the optimized formulation batch were performed in Charles Foster rats.Infra-red spectral data of the synthesized conjugate were in agreement to the presumptive sequence of the conjugation process. Dispersibility, thermal stability and safety of the conjugate were conducive to its biomedical application. Microspheres, formulated from the conjugate, were of uniform size and offered satisfactory drug loading efficiency and in vitro release characteristics. X-ray diffraction studies established that drug was entrapped within the microspheres rather than being adsorbed on to the surface. Pharmacokinetic studies revealed that the conjugate could be a potential vehicle towards both active targeting of isoniazid to AMs and controlling its release rate.  相似文献   

5.
Desai KG 《AAPS PharmSciTech》2005,6(2):E202-E208
Summary and Conclusions  The HACS/pectin blend microparticles were prepared by spray-drying technique to obtain effective targeted drug release to the colon. The mean particle size of the micro-particles (plain and blend) that were prepared in the present study was between 5.8 and 7.3 μm. The microparticles were positively charged (ζ potential was in the range of 20.3 to 30.8), and the encapsulation efficiency was between 80.1% and 94.7%. The blending of HACS with pectin improved the encapsulation efficiency and decreased the drug dissolution in the gastric condition (pH 1.2) from the pectin-based microparticles. Results of the drug release study indicated that the colonic-controlled drug delivery could be obtained from spray-dried HACS/pectin blend microparticles, and the drug release mechanism was found to be by diffusion or erosion or a combination of both. Published: September 30, 2005.  相似文献   

6.
The purpose of the present study was to obtain a polymeric system for delayed release of the drug acyclovir (ACV), which can be used for treatment of Herpes simplex and Varicella Zoster. The gelled chitosan (GCT) microspheres were obtained by coacervation-phase separation. They were treated with malonic acid to obtain malonylchitosan (MLCT) microspheres, which were characterized by, Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (13C NMR), elemental analysis (CHN), thermogravimetric analysis (TG/DTG) and scanning electron microscopy (SEM). The drug was encapsulated in MLCT microspheres by a contact adsorption technique, and the final formulation (MLCT-ACV), was analyzed for loading efficiency, degree of swelling and in vitro release profiles. The results obtained support the N-substitution of malonyl groups in the MLCT microspheres. The loading efficiency increased with impregnation time and a major amount of drug was encapsulated after 24 h. The swelling rate was higher in acid pH. The median release time was 5.5 h in pH 1.2 and 6.8. The mechanism involved in release was non-Fickian (0.43 < n < 0.85, n = 0.8474) and Super Case II kinetics (n > 1, n = 1.0491) at pH 1.2 and 6.8, respectively.  相似文献   

7.
O-carboxymethylchitosan (OCMC) microspheres containing an antibiotic drug pazufloxacin mesilate (PM) have been successfully prepared by emulsion cross-linking using glutaraldehyde (GA). Various manufacturing parameters, including amount of cross-linking agent and OCMC:PM ratios were altered to optimize process variables during the microspheres production. The structure and morphology were characterized by Fourier transform infrared (FT-IR), wide-angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The swelling and releasing behaviors of the microspheres at pH 1.2 and 7.4 media were investigated. The results revealed that the microspheres had a spherical, rough morphology and with a narrow size distribution. The degree of swelling of microspheres at pH 7.4 media was higher than that at pH 1.2 media. The microspheres proved to be successful in prolonging drug release. The release of PM was found to depend upon the extent of matrix cross-linking and drug loading. The release profiles of PM from OCMC microspheres were found to be biphasic with a burst release followed by a gradual release phase, and followed the Higuchi matrix model.  相似文献   

8.
Formation of inhalable microparticles containing rifampicin and poly(l-lactide) (L-PLA) by using supercritical anti-solvent process (SAS) was investigated. The solutions of drug and polymer in methylene chloride were sprayed into supercritical carbon dioxide. The effect of polymer content and operating conditions, temperature, pressure, carbon dioxide molar fraction, and concentration of solution, on product characteristics were studied. The prepared microparticles were characterized with respect to their morphology, particle size and size distribution, drug content, drug loading efficiency, and drug release characteristic. Discrete, spherical microparticles were obtained at high polymer:drug ratios of 7:3, 8:2, and 9:1. The shape of L-PLA microparticles became more irregular and agglomerated with decreasing polymer content. Microparticles with polymer content higher than 60% exhibited volumetric mean diameter less than 5 μm, but percent drug loading efficiency was relatively low. Drug-loaded microparticles containing 70% and 80% L-PLA showed a sustainable drug release property without initial burst release. Operating temperature level influenced on mean size and size distribution of microparticles. The operating pressure and carbon dioxide molar fraction in the range investigated were unlikely to have an effect on microparticle formation. An increasing concentration of feed solution provided larger size microparticles. Rifampicin-loaded L-PLA microparticles could be produced by SAS in a size range suitable for dry powder inhaler formulation.  相似文献   

9.
The aim of this study was to formulate a sustained release system for indomethacin (IND) with rosin gum obtained from a pine tree. Rosin microparticles were prepared by a dispersion and dialysis method without the addition of surfactant. In order to investigate the influence of solvents on the formation of colloidal microparitcles, various solvents like ethanol, DMF, DMAc, and acetone were used. The rosin microparticles containing IND were characterized by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The morphologies of rosin microparticles observed by scanning electron microscopy (SEM) were spherical. The solvents used to dissolve rosin significantly affected the drug content and drug release rate of IND. The release behaviors of IND from the rosin microparticles were dependent on the drug content and size of the particles. Rosin microparticles with a higher drug content and of a larger particle size had a slower drug release rate. Also, the IND release rate from the rosin microparticles could be regulated by the rosin content in the microparticles. From these results, rosin microparticles have the potential of being used as a sustained release system of IND.  相似文献   

10.
We described the design of uniform microencapsulates with almost 100% encapsulation efficiency, synthesized without organic solvents, via microfluidic spray drying of water-based dispersions of pH-responsive methacrylic acid polymers (Eudragit® L 30D-55). The effects of incorporating water-based network-forming materials in the formulations on pH-responsiveness and controlled release patterns of enteric microparticles were observed. Acid hydrolysed tetraethoxysilane (TEOS) was used to form an interpenetrating, rigid framework of silica, whereas Eudragit® NE (a copolymer based on ethyl acrylate and methyl methacrylate) was added to produce a more flexible polymeric network. The spray-dried microparticles generally displayed crumbled or buckled morphologies dependent on drying temperatures, due to large hydrodynamic sizes of solutes in feed dispersions. The drug release kinetics of microparticles were sensitive to the type and the added amount of network-forming materials, due to different colloidal interactions between Eudragit® L and either silica or the copolymer. This study demonstrated a strategy to design enteric microparticles with different microstructural properties and drug release behaviours through understanding of colloidal interactions between constituents of matrix materials.  相似文献   

11.
The objective of this study was to prepare and characterize microparticles of budesonide alone and budesonide and polylactic acid (PLA) using supercritical fluid (SCF) technology. A precipitation with a compressed antisolvent (PCA) technique employing supercritical CO2 and a nozzle with 100-μm internal diameter was used to prepare microparticles of budesonide and budesonide-PLA. The effect of various operating variables (temperature and pressure of CO2 and flow rates of drug-polymer solution and/or CO2) and formulation variables (0.25%, 0.5%, and 1% budesonide in methylene chloride) on the morphology and size distribution of the microparticles was determined using scanning electron microscopy. In addition, budesonide-PLA particles were characterized for their surface charge and drug-polymer interactions using a zeta meter and differential scanning calorimetry (DSC), respectively. Furthermore, in vitro budesonide release from budesonide-PLA microparticles was determined at 37°C. Using the PCA process, budesonide and budesonide-PLA microparticles with mean diameters of 1 to 2 μm were prepared. An increase in budesonide concentration (0.25%–1% wt/vol) resulted in budesonide microparticles that were fairly spherical and less aggiomerated. In addition, the size of the microparticles increased with an increase in the drug-polymer solution flow rate (1.4–4.7 mL/min) or with a decrease in the CO2 flow rate (50–10 mL/min). Budesonide-PLA microparticles had a drug loading of 7.94%, equivalent to ∼80% encapsulation efficiency. Budesonide-PLA microparticles had a zeta potential of— 37±4 mV, and DSC studies indicated that SCF processing of budesonide-PLA microparticles resulted in the loss of budesonide crystallinity. Finally, in vitro drug release studies at 37°C indicated 50% budesonide release from the budesonide-PLA microparticles at the end of 28 days. Thus, the PCA process was successful in producing budesonide and budesonide-PLA microparticles. In addition, budesonide-PLA microparticles sustained budesonide release for 4 weeks.  相似文献   

12.
Fluticasone propionate is a synthetic corticosteroid drug distinguished by its potent anti-inflammatory action with low systemic side effects in comparison to other corticosteroids making it a potential drug for local buccal delivery. The aim of the present study was to design mucoadhesive buccal film containing fluticasone that is aesthetically acceptable and could maintain local drug release for a sustained period to manage the sign and symptoms of severe erosive mouth lesions. Solvent casting technique was used in film preparation. Different polymeric blends were used either alone or in combination with mucoadhesive polymers, sodium carboxymethyl cellulose (SCMC), or Carbopol 971P at different concentrations. The physicochemical properties, in vitro mucoadhesion time as well as the drug release properties for all prepared formulations were determined. Selected formulations with adequate properties were further examined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and subjected to in vivo evaluation. Films containing hydroxypropyl methylcellulose (HPMC)/ethyl cellulose (EC) showed acceptable physicochemical properties, homogenous drug distribution, convenient mucoadhesion time, moderate swelling as well as sustained drug release up to 12 h. The biological performance of these formulations was assessed on healthy human volunteers and compared with a prepared mouthwash which showed enhanced pharmacokinetic parameters for the selected films in comparison to the mouthwash. The results revealed that the optimized formulation containing HPMC/EC and 10% SCMC could successfully achieve sustained drug release for 10 h which is considered promising for local treatment of severe mouth lesions.  相似文献   

13.
Micro- and nanoparticles are considered suitable drug delivery systems for their unique features, such as a large surface to volume ratio, and for the possibility to tune their size and hydrophobicity. A polymer/polymer/water emulsion method was used for producing a chemically cross-linked hydrogel made of poly(vinyl alcohol) and of poly(methacrylate) moieties. Mesoscopic investigation of the microparticles was accomplished by laser scanning confocal microscopy. Dynamics of confined water within the gel meshes was studied by quasi-elastic incoherent neutron scattering. Succinoylation of these particles allowed an efficient loading with a maximum doxorubicin payload of about 50% (w/w) of dry microparticles. To evaluate the potentials of such a microdevice for drug delivery, LoVo colon cancer cells have been exposed to doxorubicin loaded microparticles to study the in vitro efficiency of the payload release and the consequent cytotoxic effect.  相似文献   

14.
Self-assembled microtubules were used to entrap insulin for the preparation of new drug delivery devices. The interactions of insulin with the microtubules were probed by circular dichroism, zeta potential analysis, as well as FTIR spectroscopy. The morphologies of the insulin-loaded tubules were examined by AFM and TEM. We found that insulin loading was both pH- as well as concentration-dependent. The circular dichroism analysis indicated that, at pH range 6-7, the conformation change in the presence of the microtubules was minimal and hence would be the most appropriate conditions for insulin loading. The entrapment efficiency and release of insulin was found to be pH-dependent. Further, the controlled drug release studies indicated that, under acidic conditions, insulin release was extremely slow, and it is likely that the insulin is protected inside the microtubules. Thus, the microtubules may potentially protect the insulin from aggregation and release at lower pH (gastric pH) in ViVo. However, at pH 6.5 (closer to intestinal pH) a sustained release was observed. Such new materials may inhibit the aggregation of peptides under suitable conditions and potentially be used for drug delivery, in particular, for other peptide-based drugs.  相似文献   

15.
Garg Y  Pathak K 《AAPS PharmSciTech》2011,12(2):673-682
The purpose of research was to develop a mucoadhesive multiparticulate sustained drug delivery system of pravastatin sodium, a highly water-soluble and poorly bioavailable drug, unstable at gastric pH. Mucoadhesive microparticles were formulated using eudragit S100 and ethyl cellulose as mucoadhesive polymers. End-step modification of w/o/o double emulsion solvent diffusion method was attempted to improve the purity of the product, that can affect the dose calculations of sustained release formulations and hence bioavailability. Microparticles formed were discrete, free flowing, and exhibited good mucoadhesive properties. DSC and DRS showed stable character of drug in microparticles and absence of drug polymer interaction. The drug to polymer ratio and surfactant concentration had significant effect on mean particle size, drug release, and entrapment efficiency. Microparticles made with drug: eudragit S100 ratio of 1:3 (F6) exhibited maximum entrapment efficiency of 72.7% and ex vivo mucoadhesion time of 4.15 h. In vitro permeation studies on goat intestinal mucosa demonstrated a flux rate (1,243 μg/cm2/h) that was 169 times higher than the flux of pure drug. The gastric instability problem was overcome by formulating the optimized microparticles as enteric-coated capsules that provided a sustained delivery of the highly water-soluble drug for 12 h beyond the gastric region. The release mechanism was identified as fickian diffusion (n = 0.4137) for the optimized formulation F6. Conclusively, a drug delivery system was successfully developed that showed delayed and sustained release up to 12 h and could be potentially useful to overcome poor bioavailability problems associated with pravastatin sodium.  相似文献   

16.
The aims of this investigation were to develop a procedure to prepare chelerythrine (CHE) loaded O-carboxymethylchitosan (O-CMCS) microspheres by emulsion cross-linking method and optimize the process and formulation variables using response surface methodology (RSM) with a three-level, three-factor Box-Behnken design (BBD). The independent variables studied were O-CMCS/CHE ratio, O/W phase ratio, and O-CMCS concentration, dependent variables (responses) were drug loading content and encapsulation efficiency. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The process and formulation variables were optimized to achieve maximum drug loading content and entrapment efficiency by the desirability function. The optimized microsphere formulation was characterized for particle size, shape, morphology and in vitro drug release. Results for mean particle size, drug loading content, entrapment efficiency, and in vitro drug release of CHE-loaded O-CMCS microspheres were found to be of 12.18 μm, 4.16 ± 3.36%, 57.40 ± 2.30%, and 54.5% at pH 7.4 after 70 h, respectively. The combination use of RSM, BBD and desirability function could provide a promising application for O-CMCS as controlled drug delivery carrier and help to develop procedures for a lab-scale microemulsion process.  相似文献   

17.
Semi-interpenetrating polymer network (IPN) microspheres of acrylamide grafted on dextran (AAm-g-Dex) and chitosan (CS) were prepared by emulsion-crosslinking method using glutaraldehyde (GA) as a crosslinker. The grafting efficiency was found to be 94%. Acyclovir, an antiviral drug with limited water solubility, was successfully encapsulated into IPN microspheres by varying the ratio of AAm-g-Dex and CS, % drug loading and amount of GA. Microspheres were characterized by FT-IR spectroscopy to assess the formation of IPN structure and to confirm the absence of chemical interactions between drug, polymer and crosslinking agent. Particle size was measured using laser light scattering technique. Microspheres with average particle sizes in the range of 265–388 μm were obtained. Differential scanning calorimetry (DSC) and X-ray diffraction (X-RD) studies were performed to understand the crystalline nature of drug after encapsulation into IPN microspheres. Acyclovir encapsulation of up to 79.6% was achieved as measured by UV spectroscopy. Both equilibrium and dynamic swelling studies were performed in 0.1 N HCl. Diffusion coefficients (D) and diffusional exponents (n) for water transport were determined using an empirical equation. In vitro release studies indicated the dependence of drug release rates on both the extent of crosslinking and amount of AAm-g-Dex used in preparing microspheres; the slow release was extended up to 12 h. The release rates were fitted to an empirical equation to compute the diffusional exponent (n), which indicated non-Fickian trend for the release of acyclovir.  相似文献   

18.
To develop materials with improved controllability and specificity, we have investigated composite hydrogels with temperature-sensitive properties using photo cross-linking. Specifically, our novel composite materials are composed of nanoparticles made of poly(N-isopropylacrylamide) (PNIPAAm), temperature-sensitive hydrogels, and a photo cross-linker, poly(ethylene glycol) diacrylate (PEGDA). PNIPAAm particles were synthesized by emulsion polymerization and by varying concentration of four main factors: monomers (N-isopropylacrylamide), cross-linkers (N,N'-methylenebisacrylamide), surfactants (sodium dodecyl sulfate, SDS), and initiators (potassium persulfate). We found that the surfactant, SDS, was the most important factor affecting the particle size using the factorial design analysis. Additionally, both nano- and micro-PNIPAAm particles had excellent loading efficiency (>80% of the incubated bovine serum albumin (BSA)), and their release kinetics expressed an initial burst effect followed by a sustained release over time. Furthermore, BSA-loaded PNIPAAm nanoparticles were used to form three-dimensional gel networks by means of a photocuring process using a photo cross-linker, PEGDA, and a photoinitiator, Irgacure-2959 (I-2959). Results from scanning electron microscopy and in vitro BSA release studies from these hydrogels demonstrated that PNIPAAm nanoparticles were embedded inside the PEG polymeric matrix and the composite material was able to release BSA in response to changes in temperature. These PNIPAAm nanoparticle hydrogel networks may have advantages in applications of controlled drug delivery systems because of their temperature sensitivity and their ability of in situ photopolymerization to localize at the specific region in the body.  相似文献   

19.
Over the past few decades, there has been considerable interest in developing protein nanoparticles as drug delivery devices. The underlying rationale is their exceptional characteristics, namely biodegradability and nonantigenicity. Herein, phase separation method was used to prepare 5-fluorouracil-loaded bovine serum albumin (BSA) nanoparticles. Drug release was tracked by continuous flow dialysis technique. Effect of process variables on loading efficiency of 5-fluorouracil was investigated and optimized through Taguchi’s M16 design with the amount of entrapped drug as response. Optimum condition was found to be 2 mg/mL of 5-fluorouracil, 3.7 mL of added ethanol, 176 μL of glutaraldehyde, drug–protein incubation time of 30 min, and pH of 8.4 for 200 mg of BSA in 2 mL drug solution. pH had the most noticeable effect on the amount of entrapped drug, but glutaraldehyde had the least. Mean diameter and zeta potential of fabricated nanoparticles under these conditions were 210 nm and −31.7 mV, respectively. Drug-loaded BSA nanoparticles suspension maintained constant release of drug for 20 h under experimental conditions, so this colloidal drug carrier is capable of releasing drug in a sustained manner.  相似文献   

20.
The electrospraying technique provides nano and microparticles that can be used as drug delivery systems. The aims of this study were, firstly, to optimize the influent parameters of electrospraying for the manufacture of a Bosentan (BOS) nanoparticulate platform, and secondly, to evaluate its physicochemical properties and in vitro biopharmaceutical behavior. Particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transformed Infrared spectroscopy (FTIR). Drug loading, encapsulation efficiency and kinetic dissolution were determined. Additionally, Bosentan release assays at 24 and 72 h were performed in vitro to evaluate biopharmaceutical properties of nano-scaffolds by diffusion technique through dialysis bag. The nanostructures had heterogeneous sizes predominantly smaller than 550 nm and they were semicrystalline according to PXRD, indicating a partial amorphization of BOS during the encapsulation in the polymer matrix. FT-IR and DSC showed an absence of chemical interactions between BOS and ε-Polycaprolactone (PCL), suggesting that both components behaved as a physical mixture in these particles. The drug loading was 25.98%, and the encapsulation efficiency was 58.51%. Additionally, the release assays showed an extended and controlled release of BOS, in comparison to non-encapsulated BOS. These data also showed to fit with the Cubic Root kinetic dissolution. As a conclusion, we demonstrate that the use of electrospraying for the manufacture of BOS (or similar drugs) controlled release nanoplatforms would represent an interesting contribution in the development of new therapeutic alternatives for the treatment of pathologies such as pulmonary hypertension and other related diseases. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2748, 2019.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号