首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The H+ cotransport of neutral and acidic amino acids induces transient depolarizations of oat coleoptile (Avena sativa L., var Victory) plasma membranes. The depolarizations, which are completed within 1 or 2 minutes, are followed by repolarizations that are nearly completed within another 2 or 3 minutes. Cysteine induced a two-phased alkalinization of the tissue free space during the electrical changes. The first phase was a rapid, linear increase in pH that coincided with the depolarization; the second phase was a slower, also linear, increase in pH that coincided with the repolarization. Reacidification did not occur until cysteine was withdrawn. Five other acidic, basic, and neutral amino acids also induced persistent alkalinization of the free space.

The notable features of these measurements are that free-space pH was measured more directly than previously, that pH changes corresponded in time to the electrical potential changes, and that reacidification of the free space did not occur. The latter observation indicates that net H+ efflux did not occur during repolarization and that the repolarizing current was carried by some other ion. We propose that repolarization could have depended upon depolarization-induced changes in passive K+ fluxes combined with an enhanced H+ extrusion that increased until it equaled, but did not exceed, the enhanced influx of H+.

In support of the feasibility of our hypothesis, we present a quantitative simulation model for cotransport. The simulation model also provides an interpretation of the unique electrical effects of histidine and the basic amino acids. In addition, the model focuses attention upon the difficulties of interpreting H+-anion cotransport.

  相似文献   

2.
The application of neutral or acidic amino acids to oat coleptiles induced transient depolarizations of the membrane potentials. The depolarizations are considered to reflect H+ -amino acid co-transport, and the spontaneous repolarizations are believed to be caused by subsequent electrogenic H+ extrusion. The basic amino acids depolarized the cell membrane strongly, but the repolarizations were weak or absent. The depolarizations induced by the basic amino acids were weakly sensitive to manipulations of the extracellular and intracellular pH. The depolarizations induced by the other amino acids, in contrast, were more strongly affected by the pH changes. Several amino acids induced distinct but diminished depolarizations in the presence of 2,4-dinitrophenol or cyanide, but the repolarizations were generally eliminated. These experiments support the co-transport theory but suggest somewhat different mechanisms for the transport of the neutral, acidic, and basic amino acids. We suggest that the neutral amino acids are co-transported with a single H+ and that accumulation depends upon both the ΔpH and the membrane potential components of the proton motive force. The acidic amino acids appear to be accumulated by a similar mechanism except that the transport of each molecule may be associated with a cation in addition to a single proton. The permanently protonated basic amino acids appear not to be co-transported with an additional proton. Accumulation would depend only on the membrane potential component of the proton motive force.  相似文献   

3.
The treatment of Lemna gibba plants with the weak acids (trimethylacetic acid and butyric acid), used as tools to decrease intracellular pH, induced a hyperpolarization of membrane potential, dependent on the concentration of the undissociated permeant form of the weak acid and on the value of the resting potential. Measurements were carried out both with `high potential' and `low potential' plants and the maximum values af acid induced hyperpolarizations were about 35 and 71 millivolts, respectively. Weak acids influenced also the transient light-dark membrane potential changes, typical for photosynthesizing material, suggesting a dependence of these changes on an acidification of cytoplasm. In the presence of the weak acids, the membrane depolarization induced by the cotransport of alanine and phosphate with protons was reduced; the maximum reduction (about 90%) was obtained with alanine during 2 millimolar trimethylacetic acid perfusion at pH 5. A strong inhibition of the uptake rates (up to 48% for [14C]alanine and 68% for 32P-phosphate) was obtained in the presence of the weak acids, both by decreasing the pH of the medium and by increasing the concentration of the acid. In these experimental conditions, the ATP level and O2 uptake rates did not change significantly. These results constitute good evidence that H+/solute cotransport in Lemna, already known to be dependent on the electrochemical potential difference for protons, is also strongly regulated by the cytoplasmic pH value.  相似文献   

4.
Measurements with microelectrodes implanted into Samanea saman (Jacq.) Merrill leaf pulvini showed that membrane potentials were rhythmically sensitive to the application of sucrose. The magnitude of the electrical depolarizations induced by sucrose were dependent on the concentration of H+ in the medium, yet changes in [H+] alone did not greatly affect the potential. During sucrose-induced electrical depolarization, there was a slight increase in the pH of the bathing medium; both effects were abolished by high levels of K+, Na+ or Ca2+ in the medium. These observations indicate that H+ enter the cells by some cooperative action with sucrose. A model of H+-substrate cotransport is proposed in which a sugar carrier in the membrane is made more permeable by the attachment of a proton. The rhythmic nature of this proposed cotransport may be related to circadian leaf-movements in this plant.  相似文献   

5.
Abstract In 24-h-genninaled radish seedlings erythrosin B (EB), an effective inhibitor of microsomal as well as of partially purified vanadate-sensitive ATPase markedly inhibited the basal and the FC-stimulated proton extrusion, and induced a rapid depolarization of FC-hyperpolarized trans-membrane electric potential (PD) without causing any significant change of ATP level. The effects of EB on H+ extrusion were partially additive with those of vanadatc, another inhibitor of plasma membrane H+-ATPase. These effects are interpreted as due to a direct inhibition by EB on plasma membrane H+-ATPase involved in H+ electrogenic transport in the higher plants.  相似文献   

6.
Workshop 7: 2     
Glutamine, the preferred precursor for neurotransmitter glutamate, is likely to be the principal substrate for the neuronal System A transporter SAT1 in vivo. By measuring currents associated with SAT1 expression in Xenopus oocytes, we found that SAT1 mediates transport of small, neutral, aliphatic amino acids including glutamine, alanine and the System A‐specific analogue 2‐(methylamino) isobutyrate, each with K0.5 of 0.3–0.5 mm . Amino acid transport is driven by the Na+ electrochemical gradient. Kinetic data indicates that Na+/cotransport comprises the ordered binding first of Na+ (a voltage‐dependent step), then alanine, then simultaneous translocation. Li+ (but not H+) can substitute for Na+ but results in reduced Vmax. In the absence of amino acid, SAT1 mediates a cation leak with selectivity Na+, Li+, H+, K+. The temperature‐dependence of the leak current (Ea = 17 ± 3 kcal/mol) is consistent with carrier‐mediated Na+ uniport activity (cf 13 ± 2 kcal/mol for Na+/alanine cotransport) but the leak does not saturate at physiological [Na+], suggesting channel activity. Despite a Na+ Hill coefficient of 1, we obtained Na+/amino acid coupling coefficients greater than 1 from simultaneous measurement of charge and [3H]alanine or [3H]glutamine uptake. Interpretation of these data is model‐dependent and consistent with either (1) an all‐carrier model in which Na+/amino acid cotransport is thermodynamically coupled 2 : 1, cotransport is preferred over Na+ uniport, and in which there is little cooperativity between Na+ binding events, or (2) 1 : 1 coupling in parallel with an always‐on Na+ channel activity. In either scenario, the presence of SAT1 at the plasma membrane and resultant Na+ fluxes will place a significant energy burden on the cell.  相似文献   

7.
An amino acid uptake system specific for glycine, alanine, serine and proline was induced by glucose in Chlorella vulgaris. The uptake system translocated the zwitterionic form of the amino acid. There was more than 100-fold accumulation which indicated a coupling to metabolic energy. The depolarization of the membrane potential during proline uptake and the sensitivity of its uptake rate to the membrane potential point to coupling with an ion flow. Inhibitors of plasmalemma-bound H+-ATPase inhibit proline uptake. These data are interpreted to mean that proline is taken up as a proton symport. In some Chlorella strains the proline-coupled H+ uptake could be measured with electrodes, but not in Chlorella vulgaris. There is evidence that the transport of amino acids rapidly stimulates the proton-translocating ATPase of Chlorella vulgaris, so that the proline-coupled proton uptake is immediately neutralized.  相似文献   

8.
The stimulation of the plasma membrane (PM) H+-ATPase by boric acid was studied on a microsomal fraction (MF) obtained from ungerminated, boron-dependent pollen grains of Lilium longiflorum Thunb. which usually need boron for germination and tube growth. ATP hydrolysis and H+ transport activity increased by 14 and 18%, respectively, after addition of 2-4 mM boric acid. The optimum of boron stimulation was at pH 6.5-8.5 for ATP hydrolysis and at pH 6.5-7.5 for H+ transport. No boron stimulation was detected when vanadate was added to the MF, whereas an increase of 10-20% in ATP hydrolysis and H+ transport was still measured in the presence of inhibitors specific for V -type ATPase (nitrate and bafilomycin) and F-type ATPase (azide), respectively. A vanadate-sensitive increase in ATP hydrolysis activity was also observed in partially permeabilized vesicles (0.001%[w/v] Triton X-100) suggesting a direct interaction between borate and the PM H+-ATPase rather than a weak acid-induced stimulation. Additionally, we measured the effect of boron on membrane voltage (Vm) of ungerminated pollen grains and observed small hyperpolarizations in 48% of all experiments. Exposing pollen grains to a more acidic pH of 4 caused a depolarization, followed in some experiments by a repolarization (21%). In the presence of 2 mM boron such hyperpolarizations, perhaps caused by an enhanced activity of the H+-ATPase, were measured in 58% of all tested pollen grains. The effects of boron on Vm may be reduced by additional stimulation of a K+ inward current of opposite direction to the H+-ATPase. All experiments indicate that boron stimulates an electrogenic transport system in the plasma membrane which is sensitive to vanadate and has a pH optimum around 7, i.e. the plasma membrane H+-ATPase. A boron-increased PM H+-ATPase activity in turn may stimulate germination and growth of pollen tubes.  相似文献   

9.
The glutamine/amino acid transporter solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes has been previously identified as the ASCT2 transporter. The reconstituted transporter catalyses an antiport reaction in which external glutamine and Na+ are cotransported in exchange with internal glutamine (or other amino acids). The glutamine-Na+ cotransport occurred with a 1:1 stoichiometry. The concentration of Na+ did not influence the Km for glutamine and vice versa. Experimental data obtained by a bi-substrate analysis of the glutamine-Na+ cotransport, together with previous report on the glutamineex/glutaminein pseudo bi-reactant analysis, indicated that the transporter catalyses a three-substrate transport reaction with a random simultaneous mechanism. The presence of ATP in the internal compartment of the proteoliposomes led to an increase of the Vmax of the transport and to a decrease of the Km of the transporter for external Na+. The reconstituted glutamine/amino acid transporter was inhibited by glutamate; the inhibition was more pronounced at acidic pH. A kinetic analysis revealed that the inhibition was competitive with respect to glutamine. Glutamate was also transported in exchange with glutamine. The external Km of the transporter for glutamate (13.3 mM) was slightly higher than the internal one (8.3 mM). At acidic pH the external but not the internal Km decreased. According with the Km values, glutamate should be transported preferentially from inside to outside in exchange for external glutamine and Na+.  相似文献   

10.
High rates of phosphate uptake into phosphate-starved Lemna gibba L. G1 were correlated with a high membrane potential (pd = −220 millivolts). In plants maintaining a low pd (−110 millivolts), the uptake rate was only 20% of that of high-pd plants. At the onset of phosphate transport, the membrane of high-pd plants was transiently depolarized. This effect was much smaller in low-pd plants. Light stimulated phosphate uptake and the repolarization upon phosphate-induced depolarization, especially in plants grown without sucrose. The phosphate uptake rate was optimal at pH 6 and decreased with increasing pH, corresponding to the phosphate-induced pd changes. Phosphate starvation stimulated the uptake and increased the phosphate-induced depolarization, thus indicating that phosphate uptake depends on the intracellular phosphate level. It is suggested that uptake of monovalent phosphate in Lemna gibba proceeds by an H+ cotransport dependent on the proton electrochemical potential difference and, hence, on the activity of an H+ -extrusion pump.  相似文献   

11.
Fischer E  Lüttge U 《Plant physiology》1980,65(5):1004-1008
Accumulation of 14C-labeled glycine and microelectrode techniques were employed to study glycine transport and the effect of glycine on the membrane potential (Δψ) in Lemna gibba G1. Evidence is presented that two processes, a passive uptake by diffusion and a carrier-mediated uptake, are involved in glycine transport into Lemna cells. At the onset of active glycine uptake the component of Δψ which depended on metabolism was decreased. The depolarized membrane repolarized in the presence of glycine. This glycine-induced depolarization followed a saturation curve with increasing glycine concentration which corresponded to carrier-mediated glycine influx kinetics. The transport of glycine was correlated with the metabolically dependent component of Δψ. It is suggested (a) that the transient change in Δψ reflects the operation of an H+-glycine cotransport system driven by an electrochemical H+ gradient; and (b) that this system is energized by an active H+ extrusion. Therefore the maximum depolarization of the membrane consequently depended on both the rate of glycine uptake and the activity of the proton extrusion pump.  相似文献   

12.
Membrane transport carrier function, its regulation and coupling to metabolism, can be selectively investigated dissociated from metabolism and in the presence of a defined electrochemical ion gradient driving force, using the single internal compartment system provided by vesiculated surface membranes. Vesicles isolated from nontransformed and Simian virus 40-transformed mouse fibroblast cultures catalyzed carrier-mediated transport of several neutral amino acids into an osmotically-sensitive intravesicular space without detectable metabolic conversion of substrate. When a Na+ gradient, external Na+ > internal Na+, was artifically imposed across vesicle membranes, accumulation of several neutral amino acids achieved apparent intravesicular concentrations 6- to 9-fold above their external concentrations. Na+-stimulated alanine transport activity accompanied plasma membrane material during subcellular fractionation procedures. Competitive interactions among several neutral amino acids for Na+-stimulated transport into vesicles and inactivation studies indicated that at least 3 separate transport systems with specificity properties previously defined for neutral amino acid transport in Ehrlich ascites cells were functional in vesicles from mouse fibroblasts: the A system, the L system and a glycine transport system. The pH profiles and apparent Km values for alanine and 2-aminoisobutyric acid transport into vesicles were those expected of components of the corresponding cellular uptake system. Several observations indicated that both a Na+ chemical concentration gradient and an electrical membrane potential contribute to the total driving force for active amino acid transport via the A system and the glycine system. Both the initial rate and quasi-steady-state of accumulation were stimulated as a function of increasing concentrations of Na+ applied as a gradient (external > internal) across the membrane. This stimulation was independent of endogenous Na+, K+-ATPase activity in vesicles and was diminished by monensin or by preincubation of vesicles with Na+. The apparent Km for transport of alanine and 2-aminoisobutyric acid was decreased as a function of Na+ concentration. Similarly, in the presence of a standard initial Na+ gradient, quasi-steady-state alanine accumulation in vesicles increased as a function of increasing magnitudes of interior-negative membrane potential imposed across the membrane by means of K+ diffusion potentials (internal > external) in the presence of valinomycin; the magnitude of this electrical component was estimated by the apparent distributions of the freely permeant lipophilic cation triphenylme thylphosphonium ion. Alanine transport stimulation by charge asymmetry required Na+ and was blocked by the further addition of either nigericin or external K+. As a corollary, Na+-stimulated alanine transport was associated with an apparent depolarization, detectable as an increased labeled thiocyanate accumulation. Permeant anions stimulated Na+-coupled active transport of these amino acids but did not affect Na+-independent transport. Translocation of K+, H+, or anions did not appear to be directly involved in this transport mechanism. These characteristics support an electrogenic mechanism in which amino acid translocation is coupled t o an electrochemical Na+ gradient by formation of a positively charged complex, stoichiometry unspecified, of Na+, amino acid, and membrane component. Functional changes expressed in isolated membranes were observed t o accompany a change in cellular proliferative state or viral transformation. Vesicles from Simian virus 40-transformed cells exhibited an increased Vmax of Na+-stimulated 2-aminoisobutyric acid transport, as well as an increased capacity for steady-state accumulation of amino acids in response t o a standard Na+ gradient, relative t o vesicles from nontransformed cells. Density-inhibition of nontransformed cells was associated with a marked decrease in these parameters assayed in vesicles. Several possibilities for regulatory interactions involving gradient-coupled transport systems are discussed.  相似文献   

13.
Proton (H+) conductive pathways are suggested to play roles in the regulation of intracellular pH. We characterized temperature-sensitive whole cell currents in mouse bone marrow–derived mast cells (BMMC), immature proliferating mast cells generated by in vitro culture. Heating from 24 to 36°C reversibly and repeatedly activated a voltage-dependent outward conductance with Q10 of 9.9 ± 3.1 (mean ± SD) (n = 6). Either a decrease in intracellular pH or an increase in extracellular pH enhanced the amplitude and shifted the activation voltage to more negative potentials. With acidic intracellular solutions (pH 5.5), the outward current was detected in some cells at 24°C and Q10 was 6.0 ± 2.6 (n = 9). The reversal potential was unaffected by changes in concentrations of major ionic constituents (K+, Cl, and Na+), but depended on the pH gradient, suggesting that H+ (equivalents) is a major ion species carrying the current. The H+ current was featured by slow activation kinetics upon membrane depolarization, and the activation time course was accelerated by increases in depolarization, elevating temperature and extracellular alkalization. The current was recorded even when ATP was removed from the intracellular solution, but the mean amplitude was smaller than that in the presence of ATP. The H+ current was reversibly inhibited by Zn2+ but not by bafilomycin A1, an inhibitor for a vacuolar type H+-ATPase. Macroscopic measurements of pH using a fluorescent dye (BCECF) revealed that a rapid recovery of intracellular pH from acid-load was attenuated by lowering temperature, addition of Zn2+, and depletion of extracellular K+, but not by bafilomycin A1. These results suggest that the H+ conductive pathway contributes to intracellular pH homeostasis of BMMC and that the high activation energy may be involved in enhancement of the H+ conductance.  相似文献   

14.
The single cysteine in the b subunit of the membranous F0 sector and the 19 cysteines in extramembranous F1 sector of the Escherichia coli ATP synthase were replaced by alanine. When cells were grown under anaerobic conditions on glucose, the k cat for ATP hydrolysis of membrane vesicles containing the bCys21Ala mutant enzyme, but not enzymes with other cysteine replacements, was lower, while ATP-driven H+ pumping was unchanged. However, the ATP-dependent increase in the number of accessible thiol groups in membrane vesicles was negated. Furthermore, K+ uptake and molecular hydrogen production by whole cells and protoplasts was greatly decreased. These results indicate a role for the F0 subunit bCys21 in the functionality of F0F1 and coupling to other membranous activities under fermentative conditions.  相似文献   

15.
The purpose of this study was to examine the changes in extracellular CO 3 2− and lactate concentration produced by ischemia, especially in relation to the occurrence of anoxic depolarization, and how some of these changes are altered by the inhibition of organic acid transport systems with probenecid. These data demonstrate that (i) the transmembrane mechanisms contributing to intracellular acid-base regulation (Na+/H+ and HCO 3 /Cl exchanges, and lactate/H+ cotransport) are markedly activated during ischemia; (ii) the efficacy of these mechanisms is abolished as the cellular membrane permeability to ions, including H+ and pH-changing anions, suddenly increases with anoxic depolarization; and (iii) efflux of intracellular lactate during ischemia, and its reuptake with reperfusion, mainly occur via a transporter. These findings imply that residual cellular acid-base homeostasis persists as long as cell depolarization does not occur, and strengthen the concept that anoxic depolarization is a critical event for cell survival during ischemia. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

16.
氨基酸对蟾蜍卵母细胞膜电位的影响及其作用机制   总被引:1,自引:0,他引:1  
王羽峰  成军 《生理学报》1990,42(6):515-522
本文采用微电极细胞内记录方法观察了23种氨基酸处理后蟾蜍卵母细胞膜电位的变化。丙氨酸、亮氨酸和赖氨酸可致膜电位去极化和膜K~+通透性降低,而色氨酸可致膜电位超极化和膜K~+通透性增加。其他19个氨基酸未见对膜电位有何作用。丙氨酸、亮氨酸和赖氨酸于引起去极化同时,还使卵母细胞孕酮含量成倍增加和卵母细胞趋于成熟。这些作用可被1mmol/L 丁酰 cAMP(db-cAMP)或 50μmol/L 雌二醇完全阻断。另一方面,色氨酸能阻断孕酮(10μmol/L)所致的去极化,但对 db-cAMP 所致的超极化无作用。本文讨论了氨基酸和甾类激素对卵母细胞成熟的调节作用。  相似文献   

17.
Previous electrophysiological and tracer kinetic studies indicated that the uptake of neutral amino acids took place by means of the proton cotransport mechanism in the leaf tissue of broad bean plants. The present investigations were designed to characterize the origin of the driving force for this process, and the proton pumping activity of leaf cells ofVicia. This activity is known to be revealed when peeled broad been leaf discs, floated on a bathing solution in the light or in darkness acidify the medium. White light caused the strongest acidification. The presence of K+ and Na+ in the external solution increased the H+ secretion significantly, whereas addition of Ca++caused only an insignificant enhancement of proton extrusion. The inhibitors of photosynthetic electron transport DCMTJ (50 μM) and nitrofen (50 μM) eliminated the light-enhanced H+ release indicating the dependence on photosynthesis. The involvement of a proton pump was evidenced by the effects of the uneoupler CCCP, the SH reagent HgCl2 and the ATPase inhibitor orthovanadate. The experimental results support the conclusion that H+ extrusion byVicia leaf cells is an active electrogenic process requiring metabolic energy. In the light this energy requirement is suppliedvia photosynthetic electron transport. Dedicated to Prof. Dr. F. Jacob on the occasion of his 60th birthday  相似文献   

18.
The membrane potential of guinea pig polymorphonuclear leukocytes has been assessed with two indirect probes, tetraphenylphosphonium (TPP+) and 3,3′-dipropylthiadicarbocyanine (diS-C3-(5)). The change in TPP+ concentration in the medium was measured with a TPP+-selective electrode. By monitoring differences in accumulation of TPP+ in media containing low and high potassium concentrations, a resting potential of −58.3 mV was calculated. This potential is composed of a diffusion potential due to the gradient of potassium, established by the Na+, K+ pump, and an electrogenic potential. The chemotactic peptide fMet-Leu-Phe elicits a rapid efflux of accumulated TPP+ (indicative of depolarization) followed by its reaccumulation (indicative of repolarization). In contrast, stimulation with concanavalin A results in a rapid and sustained depolarization without a subsequent repolarization. The results obtained with TPP+ and diS-C3-(5) were comparable. Such changes in membrane potential were observed in the absence of extracellular sodium, indicating that an inward movement of sodium is not responsible for the depolarization. Increasing potassium levels, which lead to membrane depolarization, had no effect on the oxidative metabolism in nonstimulated or in fMet-Leu-Phe-stimulated cells. Therefore, it seems unlikely that membrane depolarization per se is the immediate stimulus for the respiratory burst.  相似文献   

19.
We now add to the agencies by which cells take up lithium the process of cotransport with neutral amino acids via System A. In the Ehrlich cell various natural and synthetic amino acids, depending on their structure, can cause substantial accelerations of Li+ uptake over a considerable range of levels of Na+, Li+ and H+. Half the maximal augmentation of uptake, namely 1.2 mequiv. Li/kg cell water per 15 min, was obtained for 5.4 mM alanine in a double-reciprocal plot. Alanine also stimulated the exodus of Li+ from the Ehrlich cell. The human red blood cell, lacking System A as it does, becomes an imperfect model for studying cellular uptake of Li+. Until the Li+ dependence of amino acid uptake in the reticulocyte is known, reticulocytosis can be suspected of contributing to the interpersonal variations seen in Li+-for-Na+ exchange.  相似文献   

20.
Addition of 200 mm of a polyol to anthocyanin containing carrot (Daucus carota L.) cells in suspension culture decreased turgor pressure to zero and induced hyperpolarization of the membrane potential and acidification of the medium due to H+ extrusion. These changes were shown to be slightly affected by vanadate. In parallel, a decrease in intracellular ATP and total adenylate concentrations were observed. However, when the osmoticum was NaCl acidification of the medium occurred in the absence of considerable changes in intracellular ATP concentration. These results are interpreted as indicating that a drop of turgor, by addition of a polyol, triggers a proton extrusion activity which is only slightly inhibited by vanadate but apparently ATP utilizing. The observed decrease in ATP level occurs without a change in respiration rate and is accompanied by a drop in total adenylate pool. However when NaCl is the osmoticum it is assumed that ΔμH+ is enhanced through a Na+/H+ antiporter. The difference between the two types of osmotica as related to their ability to penetrate through the cellular membrane is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号