首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
Summary Though all three lectins tested (ConA, RCA II, WGA) bound to the entire cell membrane, none bound selectively to the docking site of secretory organelles (trichocysts); the same results were achieved with FITC-conjugates, or, on the EM level, with peroxidase- or gold-labeling. Only WGA triggered the release of trichocysts and none of the lectins tested inhibited AED-induced synchronous exocytosis.When exocytosis was triggered synchronously in the presence of any of these three lectins (FITC-conjugates), the resulting ghosts trapped the FITC-lectins and the cell surface was immediately afterwards studded with regularly spaced dots (corresponding to the ghosts located on the regularly spaced exocytosis sites). These disappeared within about 10 min from the cell surface (thus reflecting ghost internalization with a half life of 3 min) and fluorescent label was then found in 6–10 vacuoles, which are several m in diameter, stain for acid phosphatase and, on the EM level, contain numerous membrane fragments (other-wise not found in this form in digesting vacuoles). We conclude that synchronous massive exocytosis involves lysosomal breakdown rather than reutilization of internalized trichocyst membranes and that these contain lectin binding sites (given the fact free fluorescent probes did not efficiently stain ghosts).Trichocyst contents were analyzed for their lectin binding capacity in situ and on polyacrylamide gels. RCA II yielded intense staining (particularly of tips), while ConA (fluorescence concentrated over bodies) and WGA yielded less staining of trichocyst contents on the light and electron microscopic level. Only ConA- and WGA-staining was inhibitable by an excess of specific sugars, while RCA II binding was not. ConA binding was also confirmed on polyacrylamide gels which also allowed us to assess the rather low degree of glycosylation (1% by comparison with known glycoprotein standards) of the main trichocyst proteins contained in their expandable matrix.Since RCA II binding could be due to its own glycosylation residues we looked for an endogenous lectin. The conjecture was substantiated by the binding of FITC-lactose-albumin (inhibitable by a mixture of glucose-galactose). This preliminary new finding may be important for the elucidation of trichocyst function.Abbreviations AED aminoethyldextran - BSE backscatter electrons - ConA Concanavalin A - DAB 3,3-diaminobenzidine - EM electron microscope - FITC fluorescein-isothiocyanate - kD kiloDalton - ME mercaptoethanol - MIP membrane-intercalate particle - Mr apparent molecular weight - PAGE polyacrylamide-gel-electrophoresis - PAS periodic acid Schiff - pI isoelectric point - POX peroxidase - RCA II Ricinus communis agglutinin II - SDS sodium dodecylsulphate - SEM scanning electron microscope - WGA wheat germ agglutinin  相似文献   

2.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

3.
All the lectin-FITC conjugates tested (ConA, RCA II, WGA) bind to the surface of Paramecium cells. Yet only WGA yields a distinct fluorescent pattern; it contours the basis of cilia and in some cells it brilliantly stains a few neighbouring rows of the regular surface fields in the anterioventral region (a region known to contain extensive fields of linear aggregates of freeze-fracture particles and to be engaged in conjugation). Incubation in vivo with WGA-FITC resulted in the selective labeling of the cytopharyngeal region as well as of the cytoproct. On Lowicryl K4M sections, WGA-gold probes concomitantly labeled disk-shaped vesicles that are assumed in the literature to serve as shuttle vesicles between these two cell regions and, thus, to connect forming and defecating digesting vacuoles (stages DV I and DV IV). On K4M sections WGA-Au stains also most other components of the lysosomal system. Also on K4M sections RCA II-Au labeled the walls of bacteria contained in DV I and II type digesting vacuoles (but not lysosomes identified bona fide by their size and shape and by their frequent vicinity to or continuity with digesting vacuoles). The WGA data largely support previous conclusions on the possible functional connection of all these elements (DV I-IV, smaller lysosomes, disk-shaped vesicles etc.) of the lysosomal system in Paramecium, as proposed by Allen and his group on the basis of other lines of evidence. As shown in the accompanying paper, ConA-FITC stained ghosts (formed after massive trichocyst exocytosis) also abut into DV-like structures. The different results obtained with the three lectins tested reflect the complex sorting machinery contained in the elaborate lysosomal system of a Paramecium cell. In the cytosol, finally, there occurs a particularly intense staining with ConA-gold, applied to Lowicryl sections, that probably represents glycogen-like particles. The same procedure reveals some weak staining of secretory contents and of nuclear structures.  相似文献   

4.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

5.
Carbohydrate binding proteins, known as lectins, bind to specific sugar groups on most membranes. We used fluorescent and light microscopy to study the interaction of various lectins with the membranes of microglia cultured from neonatal rat or fetal mouse cerebral cortices. Microglia stained intensely with GS-1, RCA, WGA, and ConA and slightly with DBA, UEA, BPA, and SBA. No staining was seen with GS-2, MPA, or PNA. Staining was specific for microglia in the mixed glial cultures and was dose dependent. In addition, microglial lectin binding could be reduced or blocked by competitive inhibition using specific sugars. Treatment of the microglia with agents such as dimethylsulfoxide (DMSO), interleukin-1 (IL-1), interferon (IFN), or lipopolysaccharide (LPS) did not eliminate lectin staining, although the degree of staining was altered. Positive staining of the microglia was also associated with a functional change for at least one lectin, i.e., ConA. Superoxide anion production by microglia was increased in the presence of ConA. Overall, binding of the lectins GS-1, RCA, WGA, and ConA can be used as an identifying tool for microglia in glial cultures, but intensity of staining varies depending on their functional state.  相似文献   

6.
The surface saccharide composition of collagenase-dispersed pancreatic cells from adult guinea pig and rat glands was examined by using eight lectins and their ferritin conjugates: Concanavalin A (ConA); Lens culinaris (LCL); Lotus tetragonolobus (LTL); Ricinus communis agglutinins I and II (RCA I, RCA II); Soybean agglutinin (SBA); Ulex europeus lectin (UEL); and wheat germ agglutinin (WGA). Binding studies of iodinated lectins and lectin-ferritin conjugates both revealed one population of saturable, high-affinity receptor sites on the total cell population (approximately 95% acinar cells). Electron microscopy, however, revealed differences in lectin-ferritin binding to the plasmalemma of acinar, centroacinar, and endocrine cells. Whereas acinar cells bound heavily all lectin conjugates, endocrine and centroacinar cells were densely labeled only by ConA, LCL, WGA, and RCA I, and possessed few receptors for LTL, UEL, and SBA. Endocrine and centroacinar cells could be differentiated from each other by using RCA II, which binds to centroacinar cells but not to endocrine cells. Some RCA II receptors appeared to be glycolipids because they were extracted by ethanol and chloroform-methanol in contrast to WGA receptors which resisted solvent treatment but were partly removed by papain digestion. RCA I receptors were affected by neither treatment. The apparent absence of receptors for SBA on endocrine and centroacinar cells, and for RCA II on endocrine cells, was reversed by neuraminidase digestion, which suggested masking of lectin receptors by sialic acid. The absence of LTL and UEL receptors on endocrine and centroacinar cells was not reversed by neuraminidase. We suggest that the differential lectin-binding patterns observed on acinar, centroacinar, and endocrine cells from the adult pancreas surface-carbohydrate-developmental programs expressed during morphogenesis and cytodifferentiation of the gland.  相似文献   

7.
Summary A panel of 10 FITC-labelled lectins (MPA, PNA, ConA, DBA, SBA, RCA-120, WGA, UEA, GS-I, GS-II) was applied to cryosections of seven specimens of normal urothelium. Seven of the lectins (MPA, ConA, RCA, WGA, UEA, GS-I and GS-II) showed a pattern of increasing fluorescence intensity from basal to superficial cells of the urothelium whereas PNA, DBA and SBA showed more uniform binding throughout the urothelium. Urothelial cell suspensions labelled with FITC-lectins were studied by flow cytometry to quantify the variation in binding to different cells types. Three cellular subpopulations were identified in normal urothelium on the basis of their optical properties. Fluorescence intensity due to specific lectin binding was then measured separately for each subpopulation. Although there was some variation among individual cases, a general pattern emerged in this small series. WGA, RCA, and GS-II bind in large quantities to all urothelial cells while PNA, SBA, ConA and DBA show little binding. MPA, RCA, UEA and GS-I showed the most marked increase in fluorescence intensity from basal to superficial cells as observed microscopically and quantified by flow cytometry.  相似文献   

8.
Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): L-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis- to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

9.
Lectin binding patterns in normal human endometrium were examined by light and electron microscopy using seven different lectins (ConA, WGA, RCA, PNA, UEA-1, DBA, and SBA). For light microscopic observations, criteria based on the incidence and intensity of cells positive for the lectin staining were adopted to evaluate the different staining patterns of the proliferative and secretory endometria obtained by the avidin-biotin-peroxidase complex (ABC) technique. At the light microscopic level, ConA, WGA, and RCA stained endometrial glandular cells in both phases. The number of PNA-positive cells with the binding sites entirely limited to the apical surface tended to be reduced slightly in the secretory phase. UEA-1 weakly stained the apical surface of glandular cells in the proliferative phase but not in the secretory phase. Among the lectins used in this study, DBA and SBA displayed remarkable changes between the phases. That is, in the proliferative phase they produced only a faint or slight positive stain at the apical surface, but the incidence and intensity of DBA- and the SBA-positive glandular cells increased in the secretory phase. By electron microscopy, the reaction product of ConA was observed in the plasma membrane, endoplasmic reticulum, nuclear envelope, and the Golgi apparatus, and the binding sites of RCA and DBA were observed in the plasma and Golgi membranes. Between both phases, the reactivity of ConA and RCA showed almost no change. However, the secretory endometrial cells containing the DBA-positive Golgi apparatus were markedly increased in number compared with the proliferative ones bearing the lectin-positive organelles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Sack  H. -J.  Stöhr  M.  Schachner  M. 《Cell and tissue research》1983,228(1):183-204
Summary The binding of several plant lectins, Concanavalin A (ConA), Lens culinarisA (LCA), wheat germ agglutinin (WGA), and Ricinus communis agglutinin 120 (RCA120) to cell surfaces of developing mouse cerebellar cells was assayed by the use of fluorescein isothiocyanate (FITC)-conjugated compounds. Freshly dissociated, live single-cell suspensions from 6-day-old mouse cerebellum contain 93% ConA, 99% LCA, 98% WGA, and 59% RCA 120-positive cells with ring fluorescence. Of the RCA 120-positive cells, 4% express a high and 55% a lower or very low number of lectin receptors. Flow cytometric analysis of fluorescent lectin binding yields results qualitatively similar to those obtained by scoring positive and negative cells in the fluorescence microscope.In monolayer cultures of 6-day-old mouse cerebellum practically all cells express receptors for ConA, LCA, and WGA, whereas RCA 120 binding sites are absent from neurons with small cell bodies (granule, basket and stellate cells) and present in large number on neurons with large cell bodies (Purkinje and possibly Golgi Type-II cells) and fibroblasts. RCA 120 receptors are weakly expressed on astro-and oligodendroglia. Cell type-specific expression of RCA 120 receptors is constant throughout all ages studied (embryonic day 13 to postnatal day 9). At early embryonic ages the proportion of highly fluorescent neurons with large cell bodies is significantly increased.  相似文献   

11.
Summary Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): l-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis-to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

12.
Labeled lectins with binding specificity to the hexose components of mucus glycoproteins (HPA, RCA I, PNA, Con A, WGA, and UEA I) were used to demonstrate structural differences in the glycoprotein composition of various cell types of the normal, benign and malignant gastrointestinal mucosa. While in the RCA I, UEA I, and WGA binding of normal mucus secreting cell types only quantitative differences were observed, the mucus in the surface epithelial cells of gastric mucosa and in the colonic goblet cells was characterized by the absence of PNA, Con A, and PNA, HPA binding sites, respectively. These lectins, however, showed a strong binding to the supranuclear, Golgi-region in the undifferentiated or activated forms of these cells. Even the staining intensity of the luminal membrane surfaces of the non mucinous parietal and chief cells was often stronger by PNA, HPA, and RCA I lectins than that of the mucus secretions in the highly differentiated mucus cells. These results indicate the existence of either heterogeneous glycoprotein components or mucus molecules with variations in the degree of glycosylation of their oligosaccharide chains in the different cells. The latter seems more likely since in benign and malignant alterations lectin binding sites appear in great density, which were found to be characteristic of the undifferentiated mucus cells or for the non mucinous cells of the normal gastric mucosa. Similarly in some gastric cancers which do not stain with the periodic acid-Schiff reaction at all, large amount of free or neuraminic acid substituted PNA binding sites can be detected.  相似文献   

13.
The cell surface glycoproteins of goat epididymal maturing spermatozoa have been investigated using lectins as surface probes that interact with specific sugars with high affinity. Concanavalin A (ConA) and wheat-germ agglutinin (WGA) showed high affinity for mature cauda epididymal sperm agglutination, whereas RCA2, kidney beans lectin and peanut agglutinin caused much lower or little agglutination of the cells. The mature sperm exhibited markedly higher efficacy than the immature caput epididymal sperm for binding both ConA and WGA, as evidenced by sperm agglutination and the binding of the fluorescence isothiocyanate (FITC)-labelled lectins. FITC-ConA binds uniformly to the entire mature sperm surface whereas FITC-WGA binds to the acrosomal cap region of the head. The FITC-RCA2 mainly labelled the posterior head of mature cauda sperm. However, no WGA-specific glycoprotein receptors could be detected in sperm plasma membrane (PM) by WGA-Sepharose affinity chromatography. The data implied that the epididymal sperm maturation is associated with a marked increase in the ConA/WGA receptors and that WGA receptors may be glycolipids rather than glycoproteins. Analysis of the ConA receptors of cauda sperm PM identified by ConA-Sepharose affinity chromatography and subsequent resolution in SDS-PAGE demonstrated the presence of five glycopolypeptides of different concentrations (98, 96, 43, 27 and 17 kDa) of goat sperm membrane. The immunoblot of these ConA-specific glycopeptides with anti-sperm membrane antiserum showed that 98- and 96-kDa receptors are immunoresponsive.  相似文献   

14.
The identification of lectin-binding structures in adult worms of Echinococcus granulosus was carried out by lectin fluorescence; the distribution of carbohydrates in parasite glycoconjugates was also studied by lectin blotting. The lectins with the most ample recognition pattern were ConA, WGA, and PNA. ConA showed widespread reactivity in tegument and parenchyma components, including the reproductive system, suggesting that mannose is a highly expressed component of the adult glycans. Although reproductive structures appeared to be rich in N-acetyl-D-glucosamine (GlcNAc)-N-acetyl neuraminic acid (NeuAc) and galactose (Gal) as demonstrated by their strong reactivity with WGA and PNA, respectively, some differences were observed in their labeling patterns. This was very clear in the case of the vagina, which only reacted with WGA. Furthermore, WGA and ConA both had reactivity with the excretory canals. RCA, the other Gal binding lectin used, only reacted with the tegument, suggesting that widespread PNA reactivity with the reproductive system is related to the presence of the D-Gal-beta-(1,3)D-GalNAc terminal structure. UEA I failed to bind to any parasite tissues as determined by lectin fluorescence, whereas DBA and SBA showed a very faint staining of the tegument. However, in transferred glycans, N-acetyl-D-galactosamine (GalNAc) and fucose (Fuc) containing glycoproteins were distinctly detected.  相似文献   

15.
Carbohydrates of the zona pellucida (ZP) in mammals are believed to have a role in sperm-egg interaction. We have characterized the biochemical nature and distribution of the carbohydrate residues of rat ZP at the light (LM) and electron microscope (EM) levels, using lectins as probes. Immature female rats were induced to superovulate and cumulus-oocyte complexes were isolated from the oviduct, fixed with glutaraldehyde, and embedded in araldite for LM and LR-Gold for EM histochemistry. For examination of follicular oocytes, rat ovaries were fixed with glutaraldehyde and embedded in paraffin. The araldite or paraffin sections were deresined or deparaffinized, respectively, labeled with biotin-tagged lectins as probes, and avidin-biotin-peroxidase complex as visualant. For EM examination, thin LR-Gold sections were labeled with RCA-I colloidal gold complex (RCA/G) and stained with uranyl acetate. LM analyses indicate that in ovulated oocytes the ZP intensely binds peanut agglutinin (PNA); succinylated wheat germ agglutinin, (S-WGA), Griffonia simplisifolia agglutinin-I (GS-I) and soybean agglutinin (SBA), and to a lesser extent, lectins from Ricinus communis (RCA-I), Concanavaia ensiformis (Con A), Ulex europoeus (UEA-I), and wheat germ agglutinin (WGA). The neighboring cumulus cells are considerably less reactive and exhibit membrane staining only with Con A, WGA, and PNA. EM analysis of RCA/G binding revealed intensive binding to the inner layer region of the ZP and moderate binding to cytoplasmic vesicles of the cumulus cells. The ZP of follicular oocytes exhibits a different lectin binding pattern, expressed in staining strongly with PNA and S-WGA, and in a tendency of the lectin receptors to occur in the outer portion of the ZP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Lymphocyte subclasses from normal peripheral blood have been fractionated by affinity chromatography with lectins. Concanavalin A (Con A), Lens culinaris lectin (LC), Pisum sativum lectin (PS), Phaseolus vulgaris lectin (PHA), Dolichos biflours lectin (DB), Glicine max lectin (SBA), Ricinus communis lectin (RCA II), Tetragonolobus purpureus lectin (TP) and Triticum vulgaris lectin (WGA), were coupled to Sepharose 6MB, and lymphocytes labelled with 125I were eluted through the chromatographic columns. The binding of lymphocytes to WGA and SBA lectins was 32% and 13% respectively. The binding to the other lectins tested were found to be between 32% and 13%. When solutions of increasing concentrations of specific sugar were added to the columns a progressive elution of bound lymphocytes was observed. These results indicate the existence of a large range of lymphocyte subclasses, with different binding capacity to lectins, which was a function of the receptor number or/and receptor affinity to each lectin. Furthermore, these two parameters were found to vary in each functional population. Even though all the lymphocytes had lectin receptors, T lymphocytes showed higher affinity for Con A, PHA and TP lectins, while B lymphocytes appeared to be more specific for LC, PS, SBA, DB, RCAII and WGA lectins.  相似文献   

17.
 Lectins with different sugar specificities and binding to phagosome-lysosome systems as well as cell surface constituents were used to study glycoconjugate variation throughout culture and clonal life in Paramecium primaurelia, particularly during the transition period from logarithmic to stationary growth phase and in relation to clonal decline, respectively. These lectins include Griffonia simplicifolia agglutinin II (GS II), Ricinus communis agglutinin (RCA120), Arachis hypogea agglutinin (PNA), succinyl concanavalin A (succinyl-con A), and Triticum vulgaris agglutinin (WGA). The labeling obtained varies both according to the lectin used and to the culture and clonal age of the cells. Negative results were obtained in logarithmic growth phase cells and in clonal young cells by using lectin GS II. Conversely, lectins RCA120 and PNA bind to the cell surface, the oral region as well as cilia, and do not undergo modifications with culture or clonal age and after permeabilization. WGA binds to constituents of the cell surface, trichocyst tips, food vacuoles, the oral region, and cilia but the extent of labeling decreases as culture age increases; during clonal decline, cells show the same labeling pattern as starved cells. Finally, the lectin succinyl-con A shows a large amount of binding sites on the cell surface, on trichocyst tips, and in the oral region of logarithmic-phase cells, whereas the number of sites decreases in late stationary phase. The data obtained partly differ from those reported in the literature and the differences can be attributed to the culture conditions and species examined. Nevertheless, the assumption that a rearrangement of some glycoconjugates of membrane throughout culture and clonal life of Paramecium is confirmed. Accepted: 25 November 1996  相似文献   

18.
GP62 is a member of the stress glycoprotein family that was proposed to have a chaperone-like function in the heat-shock response. Using lectin blotting we have studied glycosylation of GP62 and determined that in addition to heat-shock, even simple subculturing of cells is a sufficient stimulus to provoke induction of GP62. Interestingly, both kinetics of induction and glycosylation of GP62 induced by subculturing were different than when GP62 was induced by heat-shock. While GP62 induced by heat-shock was recognized by SNA, DSA and PHA-E lectins, and not by BSA I, Con A, RCA I, SJA, UEA I, VVA, and WGA lectins, GP62 induced by subculturing was also recognized by RCA I and WGA lectins.  相似文献   

19.
Summary Fluorochrome conjugated lectins were used to observe cell surface changes in the corneal endothelium during wound repair in the adult rat and during normal fetal development. Fluorescence microscopy of non-injured adult corneal endothelia incubated in wheat-germ agglutinin (WGA), Concanavalin A (Con A), and Ricinus communis agglutinin I (RCA), revealed that these lectins bound to cell surfaces. Conversely, binding was not observed for either Griffonia simplicifolia I (GS-I), soybean agglutinin (SBA) or Ulex europaeus agglutinin (UEA). Twenty-four hours after a circular freeze injury, endothelial cells surrounding the wound demonstrated decreased binding for WGA and Con A, whereas, RCA binding appeared reduced but centrally clustered on the apical cell surface. Furthermore, SBA now bound to endothelial cells adjacent to the wound area, but not to cells near the tissue periphery. Neither GS-I nor UEA exhibited any binding to injured tissue. By 48 h post-injury, the wound area repopulates and endothelial cells begin reestablishing the monolayer. These cells now exhibit increased binding for WGA, especially along regions of cell-to-cell contact, whereas, Con A, RCA and SBA binding patterns remain unchanged. Seventy-two hours after injury, the monolayer is well organized with WGA, Con A and RCA binding patterns becoming similar to those observed for non-injured tissue. However, at this time, SBA binding decreases dramatically. By 1 week post-injury, binding patterns for WGA, ConA and RCA closely resemble their non-injured counterparts while SBA continues to demonstrate low levels of binding. In early stages of its development, the endothelium actively proliferates and morphologically resembles adult tissue during wound repair. The 16-day fetal tissue is mitotically active, does not exhibit a well defined monolayer, and demonstrates weak fluorescence binding for WGA, Con A and RCA. Conversely, SBA binding is readily detected on many cell surfaces. By 19 days in utero, the endothelial monolayers becomes organized and cell proliferation greatly diminishes. WGA, Con A and RCA now exhibit binding similar to that seen in the adult tissue. SBA binding is not detected at this time. Thus, changes in lectin binding during wound repair of the adult rat corneal endothelium mimic changes in lectin binding seen during the development of the tissue.Supported by grant EY-06435 from The National Institutes of Health  相似文献   

20.
This review summarizes biogenesis, composition, intracellular transport, and possible functions of trichocysts. Trichocyst release by Paramecium is the fastest dense core‐secretory vesicle exocytosis known. This is enabled by the crystalline nature of the trichocyst “body” whose matrix proteins (tmp), upon contact with extracellular Ca2+, undergo explosive recrystallization that propagates cooperatively throughout the organelle. Membrane fusion during stimulated trichocyst exocytosis involves Ca2+ mobilization from alveolar sacs and tightly coupled store‐operated Ca2+‐influx, initiated by activation of ryanodine receptor‐like Ca2+‐release channels. Particularly, aminoethyldextran perfectly mimics a physiological function of trichocysts, i.e. defense against predators, by vigorous, local trichocyst discharge. The tmp's contained in the main “body” of a trichocyst are arranged in a defined pattern, resulting in crossstriation, whose period expands upon expulsion. The second part of a trichocyst, the “tip”, contains secretory lectins which diffuse upon discharge. Repulsion from predators may not be the only function of trichocysts. We consider ciliary reversal accompanying stimulated trichocyst exocytosis (also in mutants devoid of depolarization‐activated Ca2+ channels) a second, automatically superimposed defense mechanism. A third defensive mechanism may be effectuated by the secretory lectins of the trichocyst tip; they may inhibit toxicyst exocytosis in Dileptus by crosslinking surface proteins (an effect mimicked in Paramecium by antibodies against cell surface components). Some of the proteins, body and tip, are glycosylated as visualized by binding of exogenous lectins. This reflects the biogenetic pathway, from the endoplasmic reticulum via the Golgi apparatus, which is also supported by details from molecular biology. There are fragile links connecting the matrix of a trichocyst with its membrane; these may signal the filling state, full or empty, before and after tmp release upon exocytosis, respectively. This is supported by experimentally produced “frustrated exocytosis”, i.e. membrane fusion without contents release, followed by membrane resealing and entry in a new cycle of reattachment for stimulated exocytosis. There are some more puzzles to be solved: Considering the absence of any detectable Ca2+ and of acidity in the organelle, what causes the striking effects of silencing the genes of some specific Ca2+‐release channels and of subunits of the H+‐ATPase? What determines the inherent polarity of a trichocyst? What precisely causes the inability of trichocyst mutants to dock at the cell membrane? Many details now call for further experimental work to unravel more secrets about these fascinating organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号