首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sleep disturbances in alcohol-dependent (AD) individuals may persist despite abstinence from alcohol and can influence the course of the disorder. Although the mechanisms of sleep disturbances of AD are not well understood and some evidence suggests dysregulation of circadian rhythms, dim light melatonin onset (DLMO) has not previously been assessed in AD versus healthy control (HC) individuals in a sample that varied by sex and race. The authors assessed 52 AD participants (mean?±?SD age: 36.0?±?11.0 yrs of age, 10 women) who were 3–12 wks since their last drink (abstinence: 57.9?±?19.3 d) and 19 age- and sex-matched HCs (34.4?±?10.6 yrs, 5 women). Following a 23:00–06:00?h at-home sleep schedule for at least 5 d and screening/baseline nights in the sleep laboratory, participants underwent a 3-h extension of wakefulness (02:00?h bedtime) during which salivary melatonin samples were collected every 30?min beginning at 19:30?h. The time of DLMO was the primary measure of circadian physiology and was assessed with two commonly used methodologies. There was a slower rate of rise and lower maximal amplitude of the melatonin rhythm in the AD group. DLMO varied by the method used to derive it. Using 3 pg/mL as threshold, no significant differences were found between the AD and HC groups. Using 2 standard deviations above the mean of the first three samples, the DLMO in AD occurred significantly later, 21:02?±?00:41?h, than in HC, 20:44?±?00:21?h (t?=??2.4, p?=?.02). Although melatonin in the AD group appears to have a slower rate of rise, using well-established criteria to assess the salivary DLMO did not reveal differences between AD and HC participants. Only when capturing melatonin when it is already rising was DLMO found to be significantly delayed by a mean 18?min in AD participants. Future circadian analyses on alcoholics should account for these methodological caveats. (Author correspondence: )  相似文献   

2.
Melatonin concentration and core body temperature (CBT) follow endogenous circadian biological rhythms. In the evening, melatonin level increases and CBT decreases. These changes are involved in the regulation of the sleep-wake cycle. Therefore, the authors hypothesized that age-related changes in these rhythms affect sleep quality in older people. In a cross-sectional study design, 11 older poor-sleeping women (aged 62–72 yrs) and 9 older good-sleeping women (60–82 yrs) were compared with 10 younger good-sleeping women (23–28 yrs). The older groups were matched by age and body mass index. Sleep quality was assessed by the Pittsburgh Sleep Quality Index questionnaire. As an indicator of CBT, oral temperature was measured at 1-h intervals from 17:00 to 24:00?h. At the same time points, saliva samples were collected for determining melatonin levels by enzyme-linked immunosorbent assay (ELISA). The dim light melatonin onset (DLMO), characterizing the onset of melatonin production, was calculated. Evening changes in melatonin and CBT levels were tested by the Friedman test. Group comparisons were performed with independent samples tests. Predictors of sleep-onset latency (SOL) were assessed by regression analysis. Results show that the mean CBT decreased in the evening from 17:00 to 24:00?h in both young women (from 36.57°C to 36.25°C, p < .001) and older women (from 36.58°C to 35.88°C, p < .001), being lowest in the older poor sleepers (p < .05). During the same time period, mean melatonin levels increased in young women (from 16.2 to 54.1 pg/mL, p < .001) and older women (from 10.0 to 23.5 pg/mL, p < .001), being lowest among the older poor sleepers (from 20:00 to 24:00?h, p < .05 vs. young women). Older poor sleepers also showed a smaller increase in melatonin level from 17:00 to 24:00?h than older good sleepers (mean?±?SD: 7.0?±?9.63 pg/mL vs. 15.6?±?24.1 pg/mL, p = .013). Accordingly, the DLMO occurred at similar times in young (20:10?h) and older (19:57?h) good-sleeping women, but was delayed ~50?min in older poor-sleeping women (20:47?h). Older poor sleepers showed a shorter phase angle between DLMO and sleep onset, but a longer phase angle between CBT peak and sleep onset than young good sleepers, whereas older good sleepers had intermediate phase angles (insignificant). Regression analysis showed that the DLMO was a significant predictor of SOL in the older women (R2?=?0.64, p < .001), but not in the younger women. This indicates that melatonin production started later in those older women who needed more time to fall asleep. In conclusion, changes in melatonin level and CBT were intact in older poor sleepers in that evening melatonin increased and CBT decreased. However, poor sleepers showed a weaker evening increase in melatonin level, and their DLMO was delayed compared with good sleepers, suggesting that it is not primarily the absolute level of endogenous melatonin, but rather the timing of the circadian rhythm in evening melatonin secretion that might be related to disturbances in the sleep-wake cycle in older people. (Author correspondence: )  相似文献   

3.
The objective of this study was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (DSPD; n?=?16, 15.3?±?1.8 yrs) and unaffected controls (n?=?22, 13.7?±?2.4 yrs) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00 to 05:00?h and 05:00 to 14:00?h were examined, in addition to the 9-h intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent delayed sleep phase subjects received more evening (p?<?.02, 22:00–02:00?h) and less morning (p?<?.05, 08:00–09:00?h and 10:00–12:00?h) light than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p?<?.03, 5–7?h prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p?<?.001 and p?=?.02, respectively) and morning (p?=?.01 and p?<?.001, respectively) light exposure, and later sleep onset times were associated with increased evening exposure (p?<?.001). Increased total sleep time also correlated with increased exposure during the 9?h before sleep onset (p?=?.01), and a later sleep onset time corresponded with decreased light exposure during the same interval (p?<?.001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with DSPD. Pre- and post-sleep light exposures do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with DSPD. (Author correspondence: )  相似文献   

4.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

5.
The dim light melatonin onset (DLMO) is the most reliable circadian phase marker in humans, but the cost of assaying samples is relatively high. Therefore, the authors examined differences between DLMOs calculated from hourly versus half-hourly sampling and differences between DLMOs calculated with two recommended thresholds (a fixed threshold of 3 pg/mL and a variable “3k” threshold equal to the mean plus two standard deviations of the first three low daytime points). The authors calculated these DLMOs from salivary dim light melatonin profiles collected from 122 individuals (64 women) at baseline. DLMOs derived from hourly sampling occurred on average only 6–8?min earlier than the DLMOs derived from half-hourly saliva sampling, and they were highly correlated with each other (r?≥?0.89, p?<?.001). However, in up to 19% of cases the DLMO derived from hourly sampling was >30?min from the DLMO derived from half-hourly sampling. The 3 pg/mL threshold produced significantly less variable DLMOs than the 3k threshold. However, the 3k threshold was significantly lower than the 3 pg/mL threshold (p?<?.001). The DLMOs calculated with the 3k method were significantly earlier (by 22–24?min) than the DLMOs calculated with the 3 pg/mL threshold, regardless of sampling rate. These results suggest that in large research studies and clinical settings, the more affordable and practical option of hourly sampling is adequate for a reasonable estimate of circadian phase. Although the 3 pg/mL fixed threshold is less variable than the 3k threshold, it produces estimates of the DLMO that are further from the initial rise of melatonin. (Author correspondence: )  相似文献   

6.
Factors contributing to sleep timing and sleep restriction in daily life include chronotype and less flexibility in times available for sleep on scheduled days versus free days. There is some evidence that these two factors interact, with morning types and evening types reporting similar sleep need, but evening types being more likely to accumulate a sleep debt during the week and to have greater sleep extension on weekend nights. The aim of the present study was to evaluate the independent contributions of circadian phase and weekend-to-weekday variability to sleep timing in daily life. The study included 14 morning types and 14 evening types recruited from a community-based sample of New Zealand adults (mean age 41.1 ± 4.7 years). On days 1–15, the participants followed their usual routines in their own homes and daily sleep start, midpoint and end times were determined by actigraphy and sleep diaries. Days 16–17 involved a 17 h modified constant routine protocol in the laboratory (17:00 to 10:00, <20 lux) with half-hourly saliva samples assayed for melatonin. Mixed model ANCOVAs for repeated measures were used to investigate the independent relationships between sleep start and end times (separate models) and age (30–39 years versus 40–49 years), circadian phase [time of the dim light melatonin onset (DLMO)] and weekday/weekend schedules (Sunday–Thursday nights versus Friday–Saturday nights). As expected on weekdays, evening types had later sleep start times (mean = 23:47 versus 22:37, p < .0001) and end times (mean = 07:14 versus 05:56, p < .0001) than morning types. Similarly on weekend days, evening types had later sleep start times (mean = 00:14 versus 23:07, p = .0032) and end times (mean = 08:56 versus 07:04, p < .0001) than morning types. Evening types also had later DLMO (22:06 versus 20:46, p = .0002) than morning types (mean difference = 80.4 min, SE = 18.6 min). The ANCOVA models found that later sleep start times were associated with later DLMO (p = .0172) and weekend-to-weekday sleep timing variability (p < .0001), after controlling for age, while later sleep end times were associated with later DLMO (p = .0038), younger age (p = .0190) and weekend days (p < .0001). Sleep end times showed stronger association with DLMO (for every 30 min delay in DLMO, estimated mean sleep end time occurred 14.0 min later versus 10.19 min later for sleep start times). Sleep end times also showed greater delays on weekends versus weekdays (estimated mean delay for sleep end time = 84 min, for sleep start time = 28 min). Comparing morning types and evening types, the estimated contributions of the DLMO to the mean observed differences in sleep timing were on weekdays, 39% for sleep start times and 49% for sleep end times; and on weekends, 41% for sleep start times and 34% of sleep end times. We conclude that differences in sleep timing between morning types and evening types were much greater than would be predicted on the basis of the independent contribution of the difference in DLMO on both weekdays and weekend days. The timing of sleep in daily life involves complex interactions between physiological and psychosocial factors, which may be moderated by age in adults aged 30–49 years.  相似文献   

7.
The purpose of this study was to determine whether a sleep log parameter could be used to estimate the circadian phase of normal, healthy, young adults who sleep at their normal times, and thus naturally have day-to-day variability in their times of sleep. Thus, we did not impose any restrictions on the sleep schedules of our subjects (n = 26). For 14 d, they completed daily sleep logs that were verified with wrist activity monitors. On day 14, salivary melatonin was sampled every 30 min in dim light from 19:00 to 07:30 h to determine the dim light melatonin onset (DLMO). Daily sleep parameters (onset, midpoint, and wake) were taken from sleep logs and averaged over the last 5, 7, and 14 d before determination of the DLMO. The mean DLMO was 22:48 +/- 01:30 h. Sleep onset and wake time averaged over the last 5 d were 01:44 +/- 01:41 and 08:44 +/- 01:26 h, respectively. The DLMO was significantly correlated with sleep onset, midpoint, and wake time, but was most strongly correlated with the mean midpoint of sleep from the last 5 d (r = 0.89). The DLMO predicted using the mean midpoint of sleep from the last 5 d was within 1 h of the DLMO determined from salivary melatonin for 92% of the subjects; in no case did the difference exceed 1.5 h. The correlation between the DLMO and the score on the morningness-eveningness questionnaire was significant but comparatively weak (r = -0.48). We conclude that the circadian phase of normal, healthy day-active young adults can be accurately predicted using sleep times recorded on sleep logs (and verified by actigraphy), even when the sleep schedules are irregular.  相似文献   

8.
《Chronobiology international》2013,30(7):1438-1453
Increased sensitivity to light-induced melatonin suppression characterizes some, but not all, patients with bipolar illness or seasonal affective disorder. The aim of this study was to test the hypothesis that patients with premenstrual dysphoric disorder (PMDD), categorized as a depressive disorder in Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), have altered sensitivity to 200 lux light during mid-follicular (MF) and late-luteal (LL) menstrual cycle phases compared with normal control (NC) women. As an extension of a pilot study in which the authors administered 500 lux to 8 PMDD and 5 NC subjects, in the present study the authors administered 200 lux to 10 PMDD and 13 NC subjects during MF and LL menstrual cycle phases. Subjects were admitted to the General Clinical Research Center (GCRC) in dim light (<50 lux) to dark (during sleep) conditions at 16:00?h where nurses inserted an intravenous catheter at 17:00?h and collected plasma samples for melatonin at 30-min intervals from 18:00 to 10:00?h, including between 00:00 and 01:00?h for baseline values, between 01:30 and 03:00?h during the 200 lux light exposure administered from 01:00 to 03:00?h, and at 03:30 and 04:00?h after the light exposure. Median % melatonin suppression was significantly greater in PMDD (30.8%) versus NC (?0.2%) women (p?=?.040), and was significantly greater in PMDD in the MF (30.8%) than in the LL (?0.15%) phase (p?=?.047). Additionally, in the LL (but not the MF) phase, % suppression after 200 lux light was significantly positively correlated with serum estradiol level (p ?=? .007) in PMDD patients, but not in NC subjects (p?>?.05). (Author correspondence: )  相似文献   

9.
Exogenous melatonin administration in humans is known to exert both chronobiotic (phase shifting) and soporific effects. In a previous study in our lab, young, healthy, subjects worked five consecutive simulated night shifts (23:00 to 07:00 h) and slept during the day (08:30 to 15:30 h). Large phase delays of various magnitudes were produced by the study interventions, which included bright light exposure during the night shifts, as assessed by the dim light melatonin onset (DLMO) before (baseline) and after (final) the five night shifts. Subjects also ingested either 1.8 mg sustained-release melatonin or placebo before daytime sleep. Although melatonin at this time should delay the circadian clock, this previous study found that it did not increase the magnitude of phase delays. To determine whether melatonin had a soporific effect, we controlled the various magnitudes of phase delay produced by the other study interventions. Melatonin (n=18) and placebo (n=18) groups were formed by matching a melatonin participant with a placebo participant that had a similar baseline and final DLMO (±1 h). Sleep log measurements of total sleep time (TST) and actigraphic measurements of sleep latency, TST, and three movement indices for the two groups were examined. Although melatonin was associated with small improvements in sleep quality and quantity, the differences were not statistically significant by analysis of variance. However, binomial analysis indicated that melatonin participants were more likely to sleep better than their placebo counterparts on some days with some measures. It was concluded that, the soporific effect of melatonin is small when administered prior to 7 h daytime sleep periods following night shift work.  相似文献   

10.
Sleep disturbances in alcohol-dependent (AD) individuals may persist despite abstinence from alcohol and can influence the course of the disorder. Although the mechanisms of sleep disturbances of AD are not well understood and some evidence suggests dysregulation of circadian rhythms, dim light melatonin onset (DLMO) has not previously been assessed in AD versus healthy control (HC) individuals in a sample that varied by sex and race. The authors assessed 52 AD participants (mean?±?SD age: 36.0?±?11.0 yrs of age, 10 women) who were 3-12 wks since their last drink (abstinence: 57.9?±?19.3 d) and 19 age- and sex-matched HCs (34.4?±?10.6 yrs, 5 women). Following a 23:00-06:00?h at-home sleep schedule for at least 5 d and screening/baseline nights in the sleep laboratory, participants underwent a 3-h extension of wakefulness (02:00?h bedtime) during which salivary melatonin samples were collected every 30?min beginning at 19:30?h. The time of DLMO was the primary measure of circadian physiology and was assessed with two commonly used methodologies. There was a slower rate of rise and lower maximal amplitude of the melatonin rhythm in the AD group. DLMO varied by the method used to derive it. Using 3 pg/mL as threshold, no significant differences were found between the AD and HC groups. Using 2 standard deviations above the mean of the first three samples, the DLMO in AD occurred significantly later, 21:02?±?00:41?h, than in HC, 20:44?±?00:21?h (t?=?-2.4, p?=?.02). Although melatonin in the AD group appears to have a slower rate of rise, using well-established criteria to assess the salivary DLMO did not reveal differences between AD and HC participants. Only when capturing melatonin when it is already rising was DLMO found to be significantly delayed by a mean 18?min in AD participants. Future circadian analyses on alcoholics should account for these methodological caveats.  相似文献   

11.
Exogenous melatonin administration in humans is known to exert both chronobiotic (phase shifting) and soporific effects. In a previous study in our lab, young, healthy, subjects worked five consecutive simulated night shifts (23:00 to 07:00 h) and slept during the day (08:30 to 15:30 h). Large phase delays of various magnitudes were produced by the study interventions, which included bright light exposure during the night shifts, as assessed by the dim light melatonin onset (DLMO) before (baseline) and after (final) the five night shifts. Subjects also ingested either 1.8 mg sustained‐release melatonin or placebo before daytime sleep. Although melatonin at this time should delay the circadian clock, this previous study found that it did not increase the magnitude of phase delays. To determine whether melatonin had a soporific effect, we controlled the various magnitudes of phase delay produced by the other study interventions. Melatonin (n=18) and placebo (n=18) groups were formed by matching a melatonin participant with a placebo participant that had a similar baseline and final DLMO (±1 h). Sleep log measurements of total sleep time (TST) and actigraphic measurements of sleep latency, TST, and three movement indices for the two groups were examined. Although melatonin was associated with small improvements in sleep quality and quantity, the differences were not statistically significant by analysis of variance. However, binomial analysis indicated that melatonin participants were more likely to sleep better than their placebo counterparts on some days with some measures. It was concluded that, the soporific effect of melatonin is small when administered prior to 7 h daytime sleep periods following night shift work.  相似文献   

12.
The present study evaluated the effects of exposure to light intensity in the morning on dim light melatonin onset (DLMO). The tested light intensities were 750 lux, 150 lux, 3000 lux, 6000 lux and 12,000 lux (horizontal illuminance at cornea), using commercial 5000 K fluorescent lamps. Eleven healthy males aged 21-31 participated in 2-day experiments for each light condition. On the first experimental day (day 1), subjects were exposed to dim light (<30 lux) for 3 h in the morning (09:00-12:00). On the same day, saliva samples were taken in dim light (<30 lux) every 30 min from 21:00 to 01:00 to determine the DLMO phase. The subjects were allowed to sleep from 01:00 to 08:00. On the second experimental day (day 2), the subjects were exposed to experimental light conditions for 3 h in the morning. The experimental schedule after light exposure was the same as on day 1. On comparing day 2 with day 1, significant phase advances of DLMO were obtained at 3000 lux, 6000 lux and 12,000 lux. These findings indicate that exposure to a necessary intensity from an ordinary light source, such as a fluorescent lamp, in the morning within one day affects melatonin secretion.  相似文献   

13.
The guidelines for night and shift workers recommend that after night work, they should sleep in a dark environment during the daytime. However, staying in a dark environment during the daytime reduces nocturnal melatonin secretion and delays its onset. Daytime bright-light exposure after night work is important for melatonin synthesis the subsequent night and for maintaining the circadian rhythms. However, it is not clear whether daytime sleeping after night work should be in a dim- or a bright-light environment for maintaining melatonin secretion. The aim of this study, therefore, was to evaluate the effect of bright-light exposure during daytime sleeping on nocturnal melatonin secretion after simulated night work. Twelve healthy male subjects, aged 24.8 ± 4.6 (mean ± SD), participated in 3-day sessions under two experimental conditions, bright light or dim light, in a random order. On the first day, the subjects entered the experimental room at 16:00 and saliva samples were collected every hour between 18:00 and 00:00 under dim-light conditions. Between 00:00 and 08:00, they participated in tasks that simulated night work. At 10:00 the next morning, they slept for 6 hours under either a bright-light condition (>3000 lx) or a dim-light condition (<50 lx). In the evening, saliva samples were collected as on the first day. The saliva samples were analyzed for melatonin concentration. Activity and sleep times were recorded by a wrist device worn throughout the experiment. In the statistical analysis, the time courses of melatonin concentration were compared between the two conditions by three-way repeated measurements ANOVA (light condition, day and time of day). The change in dim light melatonin onset (ΔDLMO) between the first and second days, and daytime and nocturnal sleep parameters after the simulated night work were compared between the light conditions using paired t-tests. The ANOVA results indicated a significant interaction (light condition and3 day) (p = .006). Post hoc tests indicated that in the dim-light condition, the melatonin concentration was significantly lower on the second day than on the first day (p = .046); however, in the bright-light condition, there was no significant difference in the melatonin concentration between the days (p = .560). There was a significant difference in ΔDLMO between the conditions (p = .015): DLMO after sleeping was advanced by 11.1 ± 17.4 min under bright-light conditions but delayed for 7.2 ± 13.6 min after sleeping under dim-light conditions. No significant differences were found in any sleep parameter. Our study demonstrated that daytime sleeping under bright-light conditions after night work could not reduce late evening melatonin secretion until midnight or delay the phase of melatonin secretion without decreasing the quality of the daytime sleeping. Thus, these results suggested that, to enhance melatonin secretion and to maintain their conventional sleep–wake cycle, after night work, shift workers should sleep during the daytime under bright-light conditions rather than dim-light conditions.  相似文献   

14.
Melatonin concentration and core body temperature (CBT) follow endogenous circadian biological rhythms. In the evening, melatonin level increases and CBT decreases. These changes are involved in the regulation of the sleep-wake cycle. Therefore, the authors hypothesized that age-related changes in these rhythms affect sleep quality in older people. In a cross-sectional study design, 11 older poor-sleeping women (aged 62-72 yrs) and 9 older good-sleeping women (60-82 yrs) were compared with 10 younger good-sleeping women (23-28 yrs). The older groups were matched by age and body mass index. Sleep quality was assessed by the Pittsburgh Sleep Quality Index questionnaire. As an indicator of CBT, oral temperature was measured at 1-h intervals from 17:00 to 24:00?h. At the same time points, saliva samples were collected for determining melatonin levels by enzyme-linked immunosorbent assay (ELISA). The dim light melatonin onset (DLMO), characterizing the onset of melatonin production, was calculated. Evening changes in melatonin and CBT levels were tested by the Friedman test. Group comparisons were performed with independent samples tests. Predictors of sleep-onset latency (SOL) were assessed by regression analysis. Results show that the mean CBT decreased in the evening from 17:00 to 24:00?h in both young women (from 36.57°C to 36.25°C, p < .001) and older women (from 36.58°C to 35.88°C, p < .001), being lowest in the older poor sleepers (p < .05). During the same time period, mean melatonin levels increased in young women (from 16.2 to 54.1 pg/mL, p < .001) and older women (from 10.0 to 23.5 pg/mL, p < .001), being lowest among the older poor sleepers (from 20:00 to 24:00?h, p < .05 vs. young women). Older poor sleepers also showed a smaller increase in melatonin level from 17:00 to 24:00?h than older good sleepers (mean?±?SD: 7.0?±?9.63 pg/mL vs. 15.6?±?24.1 pg/mL, p = .013). Accordingly, the DLMO occurred at similar times in young (20:10?h) and older (19:57?h) good-sleeping women, but was delayed ~50?min in older poor-sleeping women (20:47?h). Older poor sleepers showed a shorter phase angle between DLMO and sleep onset, but a longer phase angle between CBT peak and sleep onset than young good sleepers, whereas older good sleepers had intermediate phase angles (insignificant). Regression analysis showed that the DLMO was a significant predictor of SOL in the older women (R(2)?=?0.64, p < .001), but not in the younger women. This indicates that melatonin production started later in those older women who needed more time to fall asleep. In conclusion, changes in melatonin level and CBT were intact in older poor sleepers in that evening melatonin increased and CBT decreased. However, poor sleepers showed a weaker evening increase in melatonin level, and their DLMO was delayed compared with good sleepers, suggesting that it is not primarily the absolute level of endogenous melatonin, but rather the timing of the circadian rhythm in evening melatonin secretion that might be related to disturbances in the sleep-wake cycle in older people.  相似文献   

15.
《Chronobiology international》2013,30(6):1171-1182
Although previous reports indicate that nocturnal plasma melatonin secretion declines with age, some recent findings do not support this point. In the present cross-sectional study, we documented serum melatonin concentrations at two time points, 02:00 and 08:00h, in 144 persons aged 30–110 yr and found a significant age-related decline. It began around the age of 60 and reached a very significantly lower level in subjects in their 70s and over 80 yr of age (P<0.01, when compared with age <60 yr). Nocturnal melatonin levels were higher among (post-menopausal only) women than men overall (P<0.05). In the older age-groups, nocturnal melatonin levels did not differ between healthy controls and subjects with high blood pressure or ischemic heart disease. To further check these results, we also assessed the circadian pattern of serum melatonin in four subgroups of healthy men, aged 30–39, 40–49, 50–59, and 60–69 yr: blood samples were taken at 2h intervals from 08:00 to 22:00h and hourly from 22:00 to 08:00h. Our results showed generally similar circadian melatonin patterns that peaked at night with very low levels during the daytime. No significant difference was found among the three younger groups, but nocturnal melatonin levels were significantly lower in the men in their 60s.  相似文献   

16.
The purpose of this study was to determine whether a sleep log parameter could be used to estimate the circadian phase of normal, healthy, young adults who sleep at their normal times, and thus naturally have day-to-day variability in their times of sleep. Thus, we did not impose any restrictions on the sleep schedules of our subjects (n=26). For 14 d, they completed daily sleep logs that were verified with wrist activity monitors. On day 14, salivary melatonin was sampled every 30 min in dim light from 19:00 to 07:30h to determine the dim light melatonin onset (DLMO). Daily sleep parameters (onset, midpoint, and wake) were taken from sleep logs and averaged over the last 5, 7, and 14 d before determination of the DLMO. The mean DLMO was 22:48±01:30 h. Sleep onset and wake time averaged over the last 5 d were 01:44±01:41 and 08:44±01:26 h, respectively. The DLMO was significantly correlated with sleep onset, midpoint, and wake time, but was most strongly correlated with the mean midpoint of sleep from the last 5 d (r=0.89). The DLMO predicted using the mean midpoint of sleep from the last 5 d was within 1 h of the DLMO determined from salivary melatonin for 92% of the subjects; in no case did the difference exceed 1.5 h. The correlation between the DLMO and the score on the morningness-eveningness questionnaire was significant but comparatively weak (r=-0.48). We conclude that the circadian phase of normal, healthy day-active young adults can be accurately predicted using sleep times recorded on sleep logs (and verified by actigraphy), even when the sleep schedules are irregular.  相似文献   

17.
Different wavelengths of light were compared for melatonin suppression and phase shifting of the salivary melatonin rhythm. The wavelengths compared were 660 nm (red), 595 nm (amber), 525 nm (green), 497 nm (blue/green), and 470 nm (blue). They were administered with light-emitting diodes equated for irradiance of 130 μW/cm2. Fifteen volunteers participated in all five wavelength conditions and a no light control condition, with each condition conducted over two consecutive evenings. Half-hourly saliva samples were collected from 19:00 to 02:00 on night 1 and until 01:00 on night 2. Light was administered for the experimental conditions on the first night only from midnight to 02:00. Percentage melatonin suppression on night 1 and dim light melatonin onset (DLMO) for each night were calculated. The shorter wavelengths of 470, 497, and 525 nm showed the greatest melatonin suppression, 65% to 81%. The shorter wavelengths also showed the greatest DLMO delay on night 2, ranging from 27 to 36 min. The results were consistent with the involvement of a scotopic mechanism in the regulation of circadian phase. (Chronobiology International, 18(5), 801-808, 2001)  相似文献   

18.
In most studies, the magnitude and rate of adaptation to various night work schedules is assessed using core body temperature as the marker of circadian phase. The aim of the current study was to assess adaptation to a simulated night work schedule using salivary dim light melatonin onset (DLMO) as an alternative circadian phase marker. It was hypothesised that the night work schedule would result in a phase delay, manifest in relatively later DLMO, but that this delay would be somewhat inhibited by exposure to natural light. Participants worked seven consecutive simulated 8-hour night shifts (23:00-07:00 h). By night 7, there was a mean cumulative phase delay of 5.5 hours, equivalent to an average delay of 0.8 hours per day. This indicates that partial circadian adaptation occurred in response to the simulated night work schedule. The radioimmunoassay used in the current study provides a sensitive assessment of melatonin concentration in saliva that can be used to determine DLMO, and thus provides an alternative phase marker to core body temperature, at least in laboratory studies.  相似文献   

19.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean ± SD] age: 39.2 ± 12.5 yrs; mean yrs on shift = 9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6 ± 8.6 yrs; mean years on shift = 8.4) participated. All participants were admitted to the sleep center at 16:00 h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00 h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42 ± 3.25 h, whereas in the SWD group it was 20:42 ± 2.21 h (z = 2.4; p 相似文献   

20.
Light is the strongest synchronizer of human circadian rhythms, and exposure to residential light at night reportedly causes a delay of circadian rhythms. The present study was conducted to investigate the association between color temperature of light at home and circadian phase of salivary melatonin in adults and children. Twenty healthy children (mean age: 9.7 year) and 17 of their parents (mean age: 41.9 years) participated in the experiment. Circadian phase assessments were made with dim light melatonin onset (DLMO). There were large individual variations in DLMO both in adults and children. The average DLMO in adults and in children were 21:50 ± 1:12 and 20:55 ± 0:44, respectively. The average illuminance and color temperature of light at eye level were 139.6 ± 82.7 lx and 3862.0 ± 965.6 K, respectively. There were significant correlations between color temperature of light and DLMO in adults (r = 0.735, p < 0.01) and children (r = 0.479, p < 0.05), although no significant correlations were found between illuminance level and DLMO. The results suggest that high color temperature light at home might be a cause of the delay of circadian phase in adults and children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号