首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Aromatherapy is an anecdotal method for modifying sleep and mood. However, whether olfactory exposure to essential oils affects night-time objective sleep remains untested. Previous studies also demonstrate superior olfactory abilities in women. Therefore, this study investigated the effects of an olfactory stimulus on subsequent sleep and assessed gender differences in such effects. Thirty-one young healthy sleepers (16 men and 15 women, aged 18 to 30 yr, mean±SD, 20.5±2.4 yr) completed 3 consecutive overnight sessions in a sleep laboratory: one adaptation, one stimulus, and one control night (the latter 2 nights in counterbalanced order). Subjects received an intermittent presentation (first 2 min of each 10 min interval) of an olfactory (lavender oil) or a control (distilled water) stimulus between 23:10 and 23:40 h. Standard polysomnographic sleep and self-rated sleepiness and mood data were collected. Lavender increased the percentage of deep or slow-wave sleep (SWS) in men and women. All subjects reported higher vigor the morning after lavender exposure, corroborating the restorative SWS increase. Lavender also increased stage 2 (light) sleep, and decreased rapid-eye movement (REM) sleep and the amount of time to reach wake after first falling asleep (wake after sleep onset latency) in women, with opposite effects in men. Thus, lavender serves as a mild sedative and has practical applications as a novel, nonphotic method for promoting deep sleep in young men and women and for producing gender-dependent sleep effects.  相似文献   

2.
Middle‐aged and elderly populations exhibit gender differences in polysomnographic (PSG) sleep; however, whether young men and women also show such differences remains unclear. Thirty‐one young healthy sleepers (16 men and 15 women, aged 18 to 30 yr, mean±SD, 20.5±2.4 yr) completed 3 consecutive overnight sessions in a sleep laboratory, after maintaining a stable sleep‐wake cycle for 1 wk before study entry. Standard PSG sleep and self‐rated sleepiness data were collected each night. Across nights, women showed better sleep quality than men: they fell asleep faster (shorter sleep onset latency) and had better sleep efficiency, with more time asleep and less time awake (all differences showed large effect sizes, d=0.98 to 1.12). By contrast, men were sleepier than women across nights. Both men and women demonstrated poorer overall sleep quality on the first night compared with the subsequent 2 nights of study. We conclude young adult healthy sleepers show robust gender differences in PSG sleep, like older populations, with better sleep quality in women than in men. These results highlight the importance of gender in sleep and circadian rhythm research studies employing young subjects and have broader implications for women's health issues relating to these topics.  相似文献   

3.
Middle-aged and elderly populations exhibit gender differences in polysomnographic (PSG) sleep; however, whether young men and women also show such differences remains unclear. Thirty-one young healthy sleepers (16 men and 15 women, aged 18 to 30 yr, mean+/-SD, 20.5+/-2.4 yr) completed 3 consecutive overnight sessions in a sleep laboratory, after maintaining a stable sleep-wake cycle for 1 wk before study entry. Standard PSG sleep and self-rated sleepiness data were collected each night. Across nights, women showed better sleep quality than men: they fell asleep faster (shorter sleep onset latency) and had better sleep efficiency, with more time asleep and less time awake (all differences showed large effect sizes, d=0.98 to 1.12). By contrast, men were sleepier than women across nights. Both men and women demonstrated poorer overall sleep quality on the first night compared with the subsequent 2 nights of study. We conclude young adult healthy sleepers show robust gender differences in PSG sleep, like older populations, with better sleep quality in women than in men. These results highlight the importance of gender in sleep and circadian rhythm research studies employing young subjects and have broader implications for women's health issues relating to these topics.  相似文献   

4.
Shiftworkers are often required to sleep at inappropriate phases of their circadian timekeeping system, with implications for the dynamics of ultradian sleep stages. The independent effects of these changes on cognitive throughput performance are not well understood. This is because the effects of sleep on performance are usually confounded with circadian factors that cannot be controlled under normal day/night conditions. The aim of this study was to assess the contribution of prior wake, core body temperature, and sleep stages to cognitive throughput performance under conditions of forced desynchrony (FD). A total of 11 healthy young adult males resided in a sleep laboratory in which day/night zeitgebers were eliminated and ambient room temperature, lighting levels, and behavior were controlled. The protocol included 2 training days, a baseline day, and 7?×?28-h FD periods. Each FD period consisted of an 18.7-h wake period followed by a 9.3-h rest period. Sleep was assessed using standard polysomnography. Core body temperature and physical activity were assessed continuously in 1-min epochs. Cognitive throughput was measured by a 5-min serial addition and subtraction (SAS) task and a 90-s digit symbol substitution (DSS) task. These were administered in test sessions scheduled every 2.5?h across the wake periods of each FD period. On average, sleep periods had a mean (± standard deviation) duration of 8.5 (±1.2) h in which participants obtained 7.6 (±1.4) h of total sleep time. This included 4.2 (±1.2) h of stage 1 and stage 2 sleep (S1–S2 sleep), 1.6 (±0.6) h of slow-wave sleep (SWS), and 1.8 (±0.6) h of rapid eye movement (REM) sleep. A mixed-model analysis with five covariates indicated significant fixed effects on cognitive throughput for circadian phase, prior wake time, and amount of REM sleep. Significant effects for S1–S2 sleep and SWS were not found. The results demonstrate that variations in core body temperature, time awake, and amount of REM sleep are associated with changes in cognitive throughput performance. The absence of significant effect for SWS may be attributable to the truncated range of sleep period durations sampled in this study. However, because the mean and variance for SWS were similar to REM sleep, these results suggest that cognitive throughput may be more sensitive to variations in REM sleep than SWS. (Author correspondence: )  相似文献   

5.
Neocortical EEG slow wave activity (SWA) in the delta frequency band (0.5–4.0 Hz) is a hallmark of slow wave sleep (SWS) and its power is a function of prior wake duration and an indicator of a sleep need. SWS is considered the most important stage for realization of recovery functions of sleep. Possibility of impact on characteristics of a night sleep by rhythmic (0.8–1.2 Hz) subthreshold electocutaneous stimulation of a hand during SWS is shown: 1st night—adaptation, 2nd night—control, 3d and 4th nights—with stimulation during SWA stages of a SWS. Stimulation caused significant increase in average duration of SWS and EEG SWA power (in 11 of 16 subjects), and also well-being and mood improvement in subjects with lowered emotional tone. It is supposed that the received result is caused by functioning of a hypothetical mechanism directed on maintenance and deepening of SWS and counteracting activating, awakening influences of the afferent stimulation. The results can be of value both for understanding the physiological mechanisms of sleep homeostasis and for development of non-pharmacological therapy of sleep disorders.  相似文献   

6.

Aromatherapy with essential oils is one of the most popular complementary medical tools for improving sleep quality. However, only a few reports have objectively measured the effects of essential oils on sleep. Here, we used objective and subjective measures to analyze the effects of the essential oils of lavender (Lavandula angustifolia) and sweet orange (Citrus sinensis) on the sleep quality of healthy university students. The participants were monitored for 15 consecutive nights as they inhaled lavender oil and sweet orange oil, in a crossover design. Their sleep was monitored objectively by actigraphy, and total sleep time (TST), sleep efficiency, sleep latency, and wake after sleep onset (WASO) were analyzed. Their sleep was analyzed subjectively using Oguri–Shirakawa–Azumi (OSA) sleep inventory scores. Inhalation of an essential oil improved sleep measures only in participant whose sleep quality was poor in the control condition. Lavender seemed more effective than sweet orange in objective measures, especially in improving sleep latency. In the subjective sleep analysis, the essential oils improved sleep maintenance, dreaming, and sleep length in subjects who had poor sleep quality. Sweet orange seemed more effective than lavender in the subjective sleep measures. The difference between the two oils suggests that expectancy bias had little effect on the hypnotic effect of lavender on objective sleep. Although no obvious effect was observed in good sleepers, the inhalation of lavender oil could be effective for helping poor sleepers improve objective sleep quality.

  相似文献   

7.
《Chronobiology international》2013,30(4-5):691-719
Odor performance varies by clinical state and gender, though little is known about its variation by season or time of day. Many odors, including lavender, induce transient mood changes. This study explored discrimination differences between various lavender oil blends and their effects on transient mood in the morning and evening in depressed and nondepressed adults. We also determined seasonal influences on these measures. A total of 169 subjects, 98 women and 71 men (mean age ± SD, 19.3 ± 1.6 y) participated, with different subjects studied at different times of the year. The Beck Depression Inventory (BDI) classified subjects as depressed (score ≥10; N = 57) or nondepressed (score <10; N = 112). In the discrimination test, subjects compared pairs of two different lavender oil blends or a control. Transient change in mood was assessed by the Profile of Mood States (POMS) after each trial of five lavender blends interspersed by three control odors. Tests were conducted in the morning (08:00–10:00 h) and evening (18:00–20:00 h). In all subjects, discrimination was significantly better for some odor pairs than for others, thus demonstrating test specificity. Discrimination was better overall in the fall than winter/spring and better in depressed than nondepressed subjects for specific odor pairs. No significant gender or time-of-day differences in discriminability were detected. There were, however, significant group differences in transient mood profiles. Current depressed state affected mood response, with lavender increasing anger in depressed subjects only. In addition, depressed subjects and men, whether or not depressed, exhibited diurnal mood variation, with better mood in the evening; the former group also showed more evening energy. All subjects were more confused in the morning than evening. Season also affected transient mood; winter/spring-tested subjects reported more vigor than fall-tested subjects. In addition, summer-tested subjects showed more tension in the morning, whereas fall-tested subjects showed the opposite pattern in the evening. In all subjects, lavender increased fatigue, tension, confusion, and total mood disturbance, and it decreased vigor. The study showed that both chronobiological (seasonal and time-of-day) and clinical factors modify discrimination and mood response to odors. Brief lavender odor presentation may serve as a nonphotic method for altering mood in young depressed and nondepressed adults particularly during the fall, a time of heightened discriminability.  相似文献   

8.
The effects of six graded and measured exercise activities on sleep patterns were investigated in two healthy young men. Electrophysiological recording were made continuously throughout the night to distinguish sleep states. This experiment was designed to test the hypothesis of a relation between physical activity and slow-wave sleep (SWS: stages 3 and 4 of non-REM sleep). A progressive increase in SWS over the whole-night sleep record was found with progressively increasing physical fatigue. A fall in rapid-eye-movement (REM) sleep and at higher exercise levels, of stage 2 sleep, was found. The results support the hypothesis that SWS is involved in the recovery process from fatigue.  相似文献   

9.
Summary Sleep and wake states were monitored polygraphically in the rookCorvus frugilegus, under the natural photoperiod and temperature. The indices of sleep and wake states in the rook were similar to those described previously for birds in general. The appearance of sleep episodes was confined to the dark part of the photoperiod. Slow wave sleep (SWS) showed a tendency to increase during the course of the night, while paradoxical sleep (PS) showed the opposite trend. The distribution of short SWS episodes were clustered into two groups, one group occurred in the period following the onset of sleep and the other, less prominent group occurred towards the end of sleep. The longest episodes of SWS appeared in the second half of the night, whereas those of PS appeared after onset of sleep.Abbreviations EMG electromyogram - EOG electrooculogram - PS paradoxical sleep - SWS slow wave sleep - W wake state  相似文献   

10.
The effects of long hours of work by junior doctors are the subject of growing concern. Experimental investigations of the effects of night duty on young doctors are few and have given inconclusive results. To measure the effects of long hours of work and reduced sleep on cognitive performance and mood 20 house officers (14 men and six women; mean age 25, range 24-35) were examined for 35 minutes in one session towards the end of a normal working day and in a second session at the same time after working for up to 31 continuous hours with reduced sleep. The order of the sessions was counterbalanced across the subjects. Each session comprised a series of cognitive tests: choice reaction time, vigilance reaction time, and haptic sorting tests and completion of a profile of mood states and a general questionnaire. After night duty there was a significant slowing in cognitive processing together with a decline in reaction times in the vigilance test. Loss of sleep contributed only to increased variability in the choice reaction time. Significant deleterious changes in mood after night duty occurred in all the mood scales after night duty. Continuous working may adversely affect the cognitive function and mood to the detriment of the welfare of doctors and their patients.  相似文献   

11.
Intolerance to shift work may result from individual susceptibility to an internal desynchronization. Some shift workers (SW) who show desynchronization of their circadian rhythms (e.g., sleep‐wake, body temperature, and grip strength of both hands) exhibit symptoms of SW intolerance, such as sleep alteration, persistent fatigue, sleep medication dependence, and mood disturbances, including depression. Existing time series data previously collected from 48 male Caucasian French SW were reanalyzed specifically to test the hypothesis that internal synchronization of circadian rhythms is associated with SW intolerance and symptoms. The entry of the subjects into the study was randomized. Three groups were formed thereafter: SW with good tolerance (n=14); SW with poor tolerance, as evident by medical complaints for at least one year (n=19); and former SW (n=15) with very poor tolerance and who had been discharged from night work for at 1.5 yr span but who were symptom‐free at the time of the study. Individual and longitudinal time series of selected variables (self‐recorded sleep‐wake data using a sleep log, self‐measured grip strength of both hands using a Colin Gentile dynamometer, and oral temperature using a clinical thermometer) were gathered for at least 15 days, including during one or two night shifts. Measurements were performed 4–5 times/24 h. Power spectra that quantify the prominent period (τ) and t‐test, chi square, and correlation coefficient were used as statistical tools. The mean (±SEM) age of SW with good tolerance was greater than that of SW with poor tolerance (44.9±2.1 yrs vs. 40.1±2.6 yrs, p<.001) and of former SW discharged from night work (very poor tolerance; 33.4±1.7, p<.001). The shift-work duration (yrs) was longer in SW with good than poor tolerance (19.9±2.2 yrs vs. 15.7±2.2; p<0.002) and former SW (10.7±1.2; p<.0001). The correlation between subject age and shift-work duration was stronger in tolerant SW (r=0.97, p<.0001) than in non‐tolerant SW (r=0.80, p<0.001) and greater than that of former SW (r=0.72, p<.01). The mean sleep‐wake rhythm τ was 24 h for all 48 subjects. The number of desynchronized circadian rhythms (τ differing from 24 h) was greater in non‐tolerant than in tolerant SW (chi square=38.9, p<.0001). In Former SW (i.e., 15 individuals assessed in follow‐up studies done 1.5 to 20 yrs after return to day work), both symptoms of intolerance and internal desynchronization were reduced or absent. The results suggest that non‐tolerant SW are particularly sensitive to the internal desynchronization of their circadian time organization.  相似文献   

12.
Odor performance varies by clinical state and gender, though little is known about its variation by season or time of day. Many odors, including lavender, induce transient mood changes. This study explored discrimination differences between various lavender oil blends and their effects on transient mood in the morning and evening in depressed and nondepressed adults. We also determined seasonal influences on these measures. A total of 169 subjects, 98 women and 71 men (mean age +/- SD, 19.3 +/- 1.6 y) participated, with different subjects studied at different times of the year. The Beck Depression Inventory (BDI) classified subjects as depressed (score > or =10; N= 57) or nondepressed (score <10; N= 112). In the discrimination test, subjects compared pairs of two different lavender oil blends or a control. Transient change in mood was assessed by the Profile of Mood States (POMS) after each trial of five lavender blends interspersed by three control odors. Tests were conducted in the morning (08:00-10:00 h) and evening (18:00-20:00h). In all subjects, discrimination was significantly better for some odor pairs than for others, thus demonstrating test specificity. Discrimination was better overall in the fall than winter/spring and better in depressed than nondepressed subjects for specific odor pairs. No significant gender or time-of-day differences in discriminability were detected. There were, however, significant group differences in transient mood profiles. Current depressed state affected mood response, with lavender increasing anger in depressed subjects only. In addition, depressed subjects and men, whether or not depressed, exhibited diurnal mood variation, with better mood in the evening; the former group also showed more evening energy. All subjects were more confused in the morning than evening. Season also affected transient mood; winter/spring-tested subjects reported more vigor than fall-tested subjects. In addition, summer-tested subjects showed more tension in the morning, whereas fall-tested subjects showed the opposite pattern in the evening. In all subjects, lavender increased fatigue, tension, confusion, and total mood disturbance, and it decreased vigor. The study showed that both chronobiological (seasonal and time-of-day) and clinical factors modify discrimination and mood response to odors. Brief lavender odor presentation may serve as a nonphotic method for altering mood in young depressed and nondepressed adults particularly during the fall, a time of heightened discriminability.  相似文献   

13.
Objective: To compare the eating and sleep‐wake patterns of persons with the night eating syndrome (NES) with those of matched control subjects. Research Methods and Procedures: Forty‐six overweight/obese NES subjects (mean age 43.3 ± 9.8 years; 32 women) and 43 similar controls (mean age 39.0 ± 11.0 years; 28 women) wore wrist actigraphs for 7 days and completed sleep and food diaries at home. Results: There was no difference between the total energy intake of the NES and the control subjects, but the pattern of energy intake differed greatly. Relative to control subjects, the temporal pattern of food intake of night eaters was delayed. Food intake after the evening meal, as a proportion of the 24‐hour intake, was more than 3‐fold greater in NES subjects than in controls (34.6 ± 10.1% vs. 10.0 ± 6.9%, p = 0.001). NES subjects had sleep onset, offset, and total sleep duration times comparable with those of controls. NES subjects reported more nocturnal awakenings than did controls (1.5 ± 1.0 per night vs. 0.5 ± 0.5; p < 0.001), and their actigraphically monitored arousals occurred earlier during sleep (at 128 minutes after sleep onset vs. 193 minutes, p = 0.01). NES subjects consumed food on 74% of the awakenings vs. 0% for the controls. Discussion: The pattern of cumulative energy intake of the night eaters suggests a phase delay in energy consumption relative to sleep‐wake times. NES may involve a dissociation of the circadian control of eating relative to sleep.  相似文献   

14.
The present study investigated chemosensory gender differences by means of ratings of total nasal chemosensory intensity, unpleasantness and sensory irritation and simultaneous recordings of chemosensory event-related potentials (CSERPs) for three concentrations of the olfactory/trigeminal stimulus pyridine in 19 women and 17 men, all young adults. Results show that, compared to men, women gave higher intensity and unpleasantness ratings, in particular for the highest stimulus concentration. The gender differences in perceived intensity are reflected in the signal-to-noise ratio of the individual CSERP averages, revealing more identifiable early components (P1, N1) in women than in men. The late positive component, labeled P2/P3, displayed larger amplitudes at all electrode sites and shorter latencies at Cz, in women compared to men. The effects of increased pyridine concentration on perception (larger in women) and CSERPs (similar across gender) imply that the two measures involve partially different neural processing. CSERP component identifiability is proposed here as a general means of assessing signal-to-noise ratio of the CSERPs.  相似文献   

15.
《Chronobiology international》2013,30(8):1016-1023
Artificial nighttime illumination has recently become commonplace throughout the world; however, in common with other animals, humans have not evolved in the ecological context of chronic light at night. With prevailing evidence linking the circadian, endocrine, immune, and metabolic systems, understanding these relationships is important to understanding the etiology and progression of several diseases. To eliminate the covariate of sleep disruption in light at night studies, researchers often use nocturnal animals. However, the assumption that light at night does not affect sleep in nocturnal animals remains unspecified. To test the effects of light at night on sleep, we maintained Swiss-Webster mice in standard light/dark (LD) or dim light at night (DLAN) conditions for 8–10 wks and then measured electroencephalogram (EEG) and electromyogram (EMG) biopotentials via wireless telemetry over the course of two consecutive days to determine differences in sleep timing and homeostasis. Results show no statistical differences in total percent time, number of episodes, maximum or average episode durations in wake, slow-wave sleep (SWS), or rapid eye movement (REM) sleep. No differences were evident in SWS delta power, an index of sleep drive, between groups. Mice kept in DLAN conditions showed a relative increase in REM sleep during the first few hours after the dark/light transition. Both groups displayed normal 24-h circadian rhythms as measured by voluntary running wheel activity. Groups did not differ in body mass, but a marked negative correlation of body mass with percent time spent awake and a positive correlation of body mass with time spent in SWS was evident. Elevated body mass was also associated with shorter maximum wake episode durations, indicating heavier animals had more trouble remaining in the wake vigilance state for extended periods of time. Body mass did not correlate with activity levels, nor did activity levels correlate with time spent in different sleep states. These data indicate that heavier animals tend to sleep more, potentially contributing to further weight gain. We conclude that chronic DLAN exposure does not significantly affect sleep timing or homeostasis in mice, supporting the use of dim light with nocturnal rodents in chronobiology research to eliminate the possible covariate of sleep disruption.  相似文献   

16.
The neuropeptides growth hormone (GH)-releasing hormone (GHRH) and corticotropin-releasing hormone (CRH) regulate sleep and nocturnal hormone secretion in a reciprocal fashion, at least in males. GHRH promotes sleep and GH and inhibits hypothalamo-pituitary-adrenocortical (HPA) hormones. CRH exerts opposite effects. In women, a sexual dimorphism was found because GHRH impairs sleep and stimulates HPA hormones. Sleep deprivation (SD) is the most powerful stimulus for inducing sleep. Studies in rodents show a key role of GHRH in sleep promotion after SD. The effects of GHRH and CRH on sleep-endocrine activity during the recovery night after SD are unknown. We compared sleep EEG, GH, and cortisol secretion between nights before and after 40 h of SD in 48 normal women and men aged 19-67 yr. During the recovery night, GHRH, CRH, or placebo were injected repetitively. After placebo during the recovery night, non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS) increased and wakefulness decreased compared with the baseline night. After GHRH, the increase of NREMS and the decrease of wakefulness were more distinct than after placebo. Also, after CRH, NREMS increased higher than after placebo, and a positive correlation was found between age and the baseline-related increase of slow-wave sleep. REMS increased after placebo and after GHRH, but not after CRH. EEG spectral analysis showed increases in the lower frequencies and decreases in the higher frequencies during NREMS after each of the treatments. Cortisol and GH did not differ between baseline and recovery nights after placebo. After GHRH, GH increased and cortisol decreased. Cortisol increased after CRH. No sex differences were found in these changes. Our data suggest that GHRH and CRH augment NREMS promotion after SD. Marked differences appear to exist in peptidergic sleep regulation between spontaneous and recovery sleep.  相似文献   

17.
Our aim was to evaluate whether age-related changes in the phase of the output of the circadian timing system (CTS) can explain age differences in habitual bedtime/wake time and in sleep consolidation parameters. Analyses focused on a group of healthy elderly people (older than 70 years) with no sleep problems and with similar subjective sleep quality as a young control group. The 2-week sleep diary data and 24h laboratory temperature recordings were examined for 70 subjects (22 young men [YM], 19 old men [OM], 29 old women [OW]). Polysomnographic (PSG) sleep data recorded during temperature data acquisition were also available for 62 subjects. These analyses made use of our recently developed technique to demask temperature rhythm data. As expected, compared to the young subjects, older subjects showed earlier habitual bedtime and wake time, more disturbed sleep, and a tendency for an earlier minimum of the circadian temperature rhythm. Despite sleep consolidation differences, the groups showed very similar habitual phase-angle differences (interval between the time occurrence of the fitted temperature minimum and habitual wake time). Both elderly and young subjects woke up on average 3h after the temperature minimum. After controlling for the effects of age group, habitual bedtime and wake time were related to clock time phase of the circadian temperature rhythm, with an earlier phase associated with earlier habitual bedtime and wake time. None of the sleep consolidation parameters were linked to the temperature phase angle. In conclusion, sleep consolidation changes associated with healthy aging do not appear to be related to changes in the phase-angle difference between the output signal from the CTS and sleep.  相似文献   

18.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n?=?12, mean age?=?25.1 yrs; Protocol 2: n?=?12, mean age?=?23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00?h after ~20?h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00?h after ~30?h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15?min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45?min post-awakening for naps of 40?min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15?min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60?min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45?min after waking.  相似文献   

19.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n = 12, mean age = 25.1 yrs; Protocol 2: n = 12, mean age = 23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00 h after ~20 h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00 h after ~30 h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15 min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45 min post-awakening for naps of 40 min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15 min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60 min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45 min after waking.  相似文献   

20.

Objectives

Conventional scoring of sleep provides little information about the process of transitioning between vigilance-states. We used the state space technique to explore whether rats with chronic upper airway obstruction (UAO) have abnormal sleep/wake states, faster movements between states, or abnormal transitions between states.

Design

The tracheae of 22-day-old Sprague-Dawley rats were surgically narrowed to increase upper airway resistance with no evidence for frank obstructed apneas or hypopneas; 24-h electroencephalography of sleep/wake recordings of UAO and sham-control animals was analyzed using state space technique. This non-categorical approach allows quantitative and unbiased examination of vigilance-states and state transitions. Measurements were performed 2 weeks post-surgery at baseline and following administration of ritanserin (5-HT2 receptor antagonist) the next day to stimulate sleep.

Measurements and Results

UAO rats spent less time in deep (delta-rich) slow wave sleep (SWS) and near transition zones between states. State transitions from light SWS to wake and vice versa and microarousals were more frequent and rapid in UAO rats, indicating that obstructed animals have more regions where vigilance-states are unstable. Ritanserin consolidated sleep in both groups by decreasing the number of microarousals and trajectories between wake and light SWS, and increasing deep SWS in UAO.

Conclusions

State space technique enables visualization of vigilance-state transitions and velocities that were not evident by traditional scoring methods. This analysis provides new quantitative assessment of abnormal vigilance-state dynamics in UAO in the absence of frank obstructed apneas or hypopneas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号