共查询到20条相似文献,搜索用时 15 毫秒
1.
In green tissues of plants under illumination, photosynthesis is the primary source of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is utilized in reductive reactions such as carbon fixation and nitrogen assimilation. In non-photosynthetic tissues or under non-photosynthetic conditions, the oxidative pentose phosphate pathway contributes to basic metabolism as one of the major sources of NADPH. The first and committed reaction is catalyzed by glucose-6-phosphate dehydrogenase (G6PDH). We characterized the six members of the G6PDH gene family in Arabidopsis. Transit peptide analysis predicted two cytosolic and four plastidic isoforms. Five of the six genes encode active G6PDHs. The recombinant isoforms showed differences in substrate requirements and sensitivities to feedback inhibition. Plastidic isoforms were redox sensitive. One cytosolic isoform was insensitive to redox changes, while the other was inactivated by oxidation. The respective genes had distinct expression patterns that did not correlate with the activity of the proteins, implying a regulatory mechanism beyond the control of mRNA abundance. Two cytosolic and one plastidic isoform were detected in vivo using zymograms, and the respective genes were identified using T-DNA insertion lines. The activity of a plastidic isoform was detected in all tissues including photosynthetic tissues despite its sensitivity to reduction observed in vitro. Genomic data, gene expression, and in vivo enzyme activity data were integrated with in vitro biochemical data to propose in vivo roles for individual G6PDH isoforms in Arabidopsis. 相似文献
2.
Addition of [gamma -32P]ATP to a 2% Brij-78 40,000g supernatant of sea urchin sperm results in the cAMP-dependent phosphorylation of eight to ten proteins. One phosphoprotein of Mr 190 kD is sperm adenylate cyclase (AC). An antiserum to the AC immunoprecipitates the Mr 190 kD protein. Peptide maps of immunoprecipitates show that the AC is the only phosphoprotein present in the Mr 200 kD range. With respect to the in vitro phosphorylation of AC, the endogenous kinase has a Km for ATP of 5.2 microM and is maximally stimulated by 4-8 microM cAMP. The protein kinase inhibitors H8 (9 microM) and PKI (30 U/ml) inhibit the phosphorylation of the AC. The catalytic subunit of bovine cAMP-dependent protein kinase phosphorylates the AC on the same peptides as the endogenous protein kinase. Cyanogen bromide generated peptide maps of the phosphorylated AC show a minimum of five sites of phosphorylation. No change in the Km or Vmax of the sperm AC resulted from the additional phosphorylation by bovine kinase. Calcium ions at submicromolar concentrations completely block the in vitro phosphorylation of the AC, suggesting the presence in the preparation of a Ca2(+) -activated protein phosphatase. To our knowledge, this is the first report of the phosphorylation of an AC by cAMP-dependent protein kinase. 相似文献
3.
The embryo of the sea urchin Strongylocentrotus purpuratus hatches from the fertilization envelope (FE) via synthesis and secretion of a hatching enzyme and by ciliary activity. Although the basic characteristics of the hatching enzyme are known, little is understood about changes in the FE during hatching. We have studied the biochemical changes in FEs during hatching. Polyacrylamide gel analysis revealed an increasingly complex polypeptide spectrum of the extractable fraction of FEs isolated during development. Immunoblotting of these polypeptides (using antiserum against the soluble polypeptides extracted from FEs isolated at 30 minutes postinsemination) revealed a decrease in the soluble FE components during hatching. Immunochemical analysis of hatching medium showed a strong correlation between the soluble FE components released and the hatching interval. Immunoblotting of hatching media indicated the presence of soluble FE polypeptides of similar and lower molecular weights than those obtained for extracts of FEs. These results imply that the hatching-associated changes in the FE of S purpuratus occur via proteolysis of FE components, which are derived from the paracrystalline protein fraction, a subset of cortical granule proteins. 相似文献
4.
Richard M. Baginski Paul J. McBlaine Edward J. Carroll 《Molecular reproduction and development》1982,6(1):39-52
We have developed two procedures to collect total cortical granule exudate in a soluble form from eggs of the sea urchin Strongylocentrotus purpuratus. Egg suspensions were either treated with dithiothreitol to disrupt the vitelline envelope or divalent cations were removed postinsemination to prevent the normal vitelline-to-fertilization envelope transition. Rapid acidification of the insemination mixture (dithiothreitol-treated eggs) to pH 6.0 prevented precipitation of the paracrystalline protein fraction described by Bryan [1970a]. Exudate was partitioned into three fractions. The pH 8.0-insoluble fraction appeared to be identical to the paracrystalline protein fraction. The pH 8.0-soluble fraction was separated into pH 4.0-soluble and-insoluble fractions. Analysis for peroxidase and protease activities showed that peroxidase activity was localized in all three fractions whereas protease activity was restricted to the pH 4.0 insoluble fraction as reported [Carroll and Epel, 1975]. A minimum of six major proteins were detected on native polyacrylamide gels of total exudate. Under reducing and denaturing conditions, 12 polypeptides ranging from 19,000 to 165,000 in molecular weight were detected in total exudate; six polypeptides were recovered in the pH 8.0-insoluble fraction. To test the hypothesis that protease and peroxidase activities process cortical granule proteins after secretion, we inseminated eggs in solutions containing peroxidase and protease inhibitors. The paracrystalline protein fraction crystallized slowly from insemination mixtures containing both inhibitors compared to controls and there were dramatic differences in exudate electrophoretic patterns. We suggest that cortical granule protease and peroxidase activities process the exudate so that the paracrystalline protein fraction rapidly crystallizes during normal fertilization. 相似文献
5.
The presence of the initial enzymes of the pentose phosphate pathway, namely glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase, has been demonstrated in dormant seed of wild oat. Before a partial characterization of these enzymes was made, an inherent NADP-reducing activity and an enzyme deactivating component, both present in the crude extract, were removed by ammonium sulphate precipitation and subsequent desalting. Both enzymes were then shown to be NADP-specific. Typical Michaelis-Menten kinetics were shown by each enzyme towards NADP and their respective substrates. Soluble cytoplasmic dehydrogenase enzymes were present in both embryo and endosperm extracts. 相似文献
6.
Antonio Ayala Isabel Fabregat Alberto Machado 《Molecular and cellular biochemistry》1990,95(2):107-115
Summary Previous studies examining regulation of synthesis of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase in rat liver have focussed on the induction of these enzymes by different diets and some hormones. However, the precise mechanism regulating increases in the activities of these enzymes is unknown and the factors involved remain unidentified. Considering that many of these metabolic conditions occur simultaneously with the increase of some NADPH consuming pathway, in particular fatty acid synthesis, we suggest that the activities of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase could be regulated through a mechanism involving changes in the NADPH requirement. Here, we have studied the effect of changes in the flux through different NADPH consuming pathways on the NADPH/NADP ratio and on Glucose-6-Phosphate and 6-Phosphogluconate levels. The results show that: i) an increase in consumption of NADPH, caused by activation of fatty acid synthesis or the detoxification system which consumes NADPH, is paralleled by an increase in levels of these enzymes; ii) when increase in consumption of NADPH is prevented, Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase levels do not change.Abbreviations G6PDH
Glucose-6-Phosphate Dehydrogenase
- 6PGDH
6-Phosphogluconate Dehydrogenase
- ME
Malic Enzyme
- NF
Nitrofurantoin
- CumOOH
Cumene Hydroperoxide
- t-BHP
t-Butyl hydroperoxide
- BCNU
1,3,-Bis (2-chloroethyl)-1-nitrosourea
- GR
Glutathione Dehydrogenase
- 2-ME
2-Mercaptoethanol
- DTT
Dithiothreitol
- NADP
B-Nicotinamide-Adenine Dinucleotide Phosphate
- NADPH
B-Nicotinamide-Adenine Dinucleotide Phosphate Reduced
- EDTA
Ethylenediaminetetraacetic Acid
- GSH
Glutathione Reduced Form
- GSSG
Glutathione Oxidized Form 相似文献
7.
Eugene E. Quist 《Biochemical and biophysical research communications》1980,92(2):631-637
In the presence of 1.0 mM ATP and MgCl2, the specific viscosity of suspensions of human erythrocyte ghosts decreases 35% in 20 minutes at 22°C. The changes in viscosity are a sensitive index of Mg-ATP dependent shape changes in these membranes. Low concentrations of Ca2+ (1 to 5 μM) inhibit Mg-ATP dependent viscosity changes. If ghosts were preincubated with 1 mM Mg-ATP and 20 μM A23187 to produce a maximal decrease in viscosity, addition of 10 μM Ca2+ to the preincubated ghosts increased the viscosity to levels observed in ghosts preincubated without ATP. Ca2+ (1 to 5 μM) also inhibited Mg2+ dependent phosphorylation 30% and stimulated dephosphorylation 25% in ghost membranes. These effects of Ca2+ on viscosity and phosphorylation may be due to a membrane bound Ca2+ phosphatase activity which dephosphorylates membranes phosphorylated by a Mg2+ dependent kinase activity. 相似文献
8.
Although mutations in the glucose-6-phosphate dehydrogenase (G6PD) gene result in several blood-related diseases in humans, they also confer resistance to malarial infection. This association between G6PD and malaria was supported by population genetic analyses of the G6PD locus, which indicated that these mutations may have recently risen in frequency in certain geographic regions as a result of positive selection. Here we characterize nucleotide sequence variation in a 5.2-kb region of the G6PD locus in a population sample of 56 chimpanzees, as well as among 7 other nonhuman primates, to compare with that in humans in determining whether other primates that are impacted by malaria also exhibit patterns of G6PD polymorphism or divergence consistent with positive selection. We find that chimpanzees have several amino acid variants but that the overall pattern at G6PD in chimpanzees, as well as in Old and New World primates in general, can be explained by recent purifying selection as well as strong functional constraint dating back to at least 30-40 MYA. These comparative analyses suggest that the recent signature of positive selection at G6PD in humans is unique. 相似文献
9.
Leaves of 15 - 30-d-old plants of sunflower and jute were harvested at 10.00 or 23.00 (local time) and measured immediately,
or those harvested at 10.00 were incubated for one hour in sunlight either in water or 5 mM methionine sulfoximine (MSX) solution
and then for three hours in dark either in water or 15 mM KNO3 solution. Nitrate feeding during dark incubation, in general,
increased nitrate reductase (NR) and nitrite reductase (NiR) activities, and NADH and soluble sugar contents. Increase in
tissue nitrate concentration in MSX fed but not in control samples suggested reduction of nitrate in dark. NADPH-dependent
NR activity increased considerably upon feeding with nitrate in dark. Concomitantly, NADPH phosphatase activity was also increased
in nitrate treated, dark incubated leaves. It is proposed that nitrate regulates dark nitrate reduction by facilitating generation
of NADH from NADPH by NADPH phosphatase. High amounts of ammonia accumulated in MSX treated, but not in control leaves, upon
dark incubation. Relative activities of NR and NADPH phosphatase, and amounts of soluble sugar and NADH were low in MSX fed
samples compared to that of control. So, high amount of ammonia might partially repress NADPH phosphatase and consequently
deprive NR of reducing equivalents.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
10.
NADP reduction was shown to occur in a crude cytosolic extract from the cotyledonary material of hazel seed prior to the addition of erogenous dehydrogenase substrate. This activity interfered with the assay of glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase activities. The inherent NADP reduction was removed by ammonium sulphate fractionation. Subsequent de-salting of the resulting partially-purified fraction permitted assay of G6PDH and 6PGDH. Both enzymes were shown to be NADP specific. Typical Michaelis-Menten kinetics were shown for each enzyme, towards NADP and their respective substrate. 相似文献
11.
Renee C. Geck Nicholas R. Powell Maitreya J. Dunham 《American journal of human genetics》2023,110(2):228-239
- Download : Download high-res image (126KB)
- Download : Download full-size image
12.
An efficient in planta sugarcane-based production system may be realized by coupling the synthesis of alternative products to the metabolic intermediates of sucrose metabolism, thus taking advantage of the sucrose-producing capability of the plant. This was evaluated by synthesizing sorbitol in sugarcane (Saccharum hybrids) using the Malus domestica sorbitol-6-phosphate dehydrogenase gene (mds6pdh). Mature transgenic sugarcane plants were compared with untransformed sugarcane variety Q117 by evaluation of the growth, metabolite levels and extractable activity of relevant enzymes. The average amounts of sorbitol detected in the most productive line were 120 mg/g dry weight (equivalent to 61% of the soluble sugars) in the leaf lamina and 10 mg/g dry weight in the stalk pith. The levels of enzymes involved in sucrose synthesis and cleavage were elevated in the leaves of plants accumulating sorbitol, but this did not affect sucrose accumulation in the culm. The activity of oxidative reactions in the pentose phosphate pathway and the non-reversible glyceraldehyde-3-phosphate dehydrogenase reaction were elevated to replenish the reducing power consumed by sorbitol synthesis. Sorbitol-producing sugarcane generated 30%-40% less aerial biomass and was 10%-30% shorter than control lines. Leaves developed necrosis in a pattern characteristic of early senescence, and the severity was related to the relative quantity of sorbitol accumulated. When the Zymomonas mobilis glucokinase (zmglk) gene was co-expressed with mds6pdh to increase the production of glucose-6-phosphate, the plants were again smaller, indicating that glucose-6-phosphate deficiency was not responsible for the reduced growth. In summary, sorbitol hyperaccumulation affected sugarcane growth and metabolism, but the outcome was not lethal for the plant. This work also demonstrated that impressive yields of alternative products can be generated from the intermediates of sucrose metabolism in Saccharum spp. 相似文献
13.
We studied the maternal effect for two enzymes of the pentose cycle, 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD), using a genetic system based on the interaction of Pgd? and Zw? alleles, which inactivate 6PGD and G6PD, respectively. The presence and formation of the enzymes was investigated in those individuals that had not received the corresponding genes from the mother. We revealed maternal forms of the enzymes, detectable up to the pupal stage. The activities of “maternal” 6PGD and G6PD per individual increased 20-fold to 30-fold from the egg stage to the 3rd larval instar even in the absence of normal Pgd and Zw genes. Immunologic studies have shown that the increase in 6PGD activity is due to an accumulation of the maternal form of the enzyme molecules. We revealed a hybrid isozyme resulting from an aggregation of the subunits of isozymes controlled by the genes of the mother and embryo itself. These results indicate that the maternal effect in the case of 6PGD is due to a long-lived stable mRNA transmitted with the egg cytoplasm and translated during the development of Drosophila melanogaster. 相似文献
14.
Oliveira RA Oshiro M Hirata MH Hirata RD Ribeiro GS Medeiros TM de O Barretto OC 《Genetics and molecular biology》2009,32(2):251-254
In this study, we used red cell glucose-6-phosphate dehydrogenase (G6PD) activity to screen for G6PD-deficient individuals in 373 unrelated asymptomatic adult men who were working with insecticides (organophosphorus and carbamate) in dengue prevention programs in 27 cities in São Paulo State, Brazil. Twenty-one unrelated male children suspected of having erythroenzymopathy who were attended at hospitals in São Paulo city were also studied. Fifteen of the 373 adults and 12 of the 21 children were G6PD deficient. G6PD gene mutations were investigated in these G6PD-deficient individuals by using PCR-RFLP, PCR-SSCP analysis and DNA sequencing. Twelve G6PD A-202A/376G and two G6PD Seattle844C, as well as a new variant identified as G6PD São Paulo, were detected among adults, and 11 G6PD A-202A/376G and one G6PD Seattle844C were found among children. The novel mutation c.660C > G caused the replacement of isoleucine by methionine (I220M) in a region near the dimer interface of the molecule. The conservative nature of this mutation (substitution of a nonpolar aliphatic amino acid for another one) could explain why there was no corresponding change in the loss of G6PD activity (64.5% of normal activity in both cases). 相似文献
15.
Changes in ribonucleases (RNases) and glucose-6-phosphate dehydrogenase (G6P DH) activities, their content and subcellular
localisation were studied in relation to virus multiplication in susceptible (cv. Samsun) or resistant (transgenic breeding
line NCTG 83) tobacco plants infected with the potato virus YN (necrotic strain of PVY). Activities of RNases and G6P DH from diseased susceptible tobacco plants were markedly increased
during the experimental period and significantly correlated with the multiplication curve of the PVYN. In contrast, the activities of RNases and G6P DH were not changed after PVY inoculation of resistant breeding line NCTG
83 producing the CP mRNA of PVY. Changes in the content and in the subcellular localisation of RNases and G6P DH isozymes
were also determined in mesophyll protoplasts isolated from healthy as well as PVYN infected plants of both cultivars by differential centrifugation of broken protoplasts on day eight post inoculation (the
culmination of multiplication curve of PVY and enhanced activity of both enzymes). The chloroplasts fraction from infected
protoplasts showed an enhanced content of RNases (192.4% when compared with that from healthy control ones), and of G6P DH
(174.4 %). The cytosol fraction from infected protoplasts contained slightly enhanced levels of G6P DH (117.4 %) and considerably
enhanced levels of RNases (141.7 %). No significant differences in the activities, contents and subcellular localisation of
RNases and/or G6P DH isozymes were observed in the resistant line NCTG 83. This is in accordance with no detectable contents
of PVY.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
16.
Muhammet Serhat Özaslan; 《Journal of molecular recognition : JMR》2024,37(3):e3083
Glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are pentose phosphate pathway enzymes. Compounds with a heterocyclic pyrrole ring system containing this atom can be derivatized with various functional groups into highly effective bioactive agents. In this study, pyrrole derivatives on these enzyme's activity were investigated. The IC50 values of different concentrations of pyrrole derivatives for G6PD were found in the range of 0.022–0.221 mM Ki values 0.021 ± 0.003–0.177 ± 0.021 and for 6PGD IC50 values 0.020–0.147, mM Ki values 0.013 ± 0.002–0.113 ± 0.030 mM. The 2-acetyl-1-methylpyrrole (1g) showed the best inhibition value for G6PD and 6PGD enzymes. In addition, in silico molecular docking experiments were performed to elucidate how these pyrrole derivatives (1a–g) interact with the binding sites of the target enzymes. The study's findings on pyrrole derivatives could be used to create innovative therapeutics that could be a treatment for many diseases, especially cancer manifestations. 相似文献
17.
目的:与定量比值法比较,探讨全自动直接定量法检测红细胞葡糖-6-磷酸脱氢酶(G-6-PD)活性的可行性。方法:同时采用定量比值法(即硝基四氮唑蓝定量法)和全自动直接定量法,检测219例肝素抗凝静脉血标本的红细胞G-6-PD活性。结果:定量比值法检测G-6-PD缺乏的阳性率为9.13%,全自动直接定量法检测的G-6-PD缺乏阳性率为9.58%,两种方法检测结果无显著性差异(P>0.05)。结论:定量比值法简单易行,适用于卫生条件有限的基层医疗单位;全自动直接定量法快速准确,是一种可批量检测的理想筛选方法。 相似文献
18.
Hepatic cholesterol in lead nitrate induced liver hyperplasia 总被引:4,自引:0,他引:4
Wistar rats treated with lead nitrate were used in these experiments to provide evidence of the possible correlation between hyperplasia, induced cholesterol synthesis and the levels of glucose-6-phosphate dehydrogenase (G-6-PD) in the liver. Lead treatment increases liver weight, hepatic cholesterol esters and the relative content of free cholesterol. An increase of the incorporation of tritiated water in free and cholesterol esters was also observed. The effect of lead resulted in an increase of hepatic G-6-PD at all times considered. The correlation between these parameters and hyperplasia are discussed. 相似文献
19.
Activities of alcohol dehydrogenase, hexokinase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase were significantly inhibited by cadmium in germinating pea (Pisum sativum L. cv. Bonneville) seeds. The effect was concentration dependent in the range of 0.25 to 1.0 mM CdCl2. The magnitude of detrimental effect on these enzymes was reduced during later stage of germination (9 d) largely because of fall in the activities of these enzymes in the control seeds germinated in water. In vitro, activities of hexokinase, glucose-6-phosphate dehydrogenase, and alcohol dehydrogenase were inhibited at 0.5 mM Cd2+ in the reaction mixture by 62, 67, and 36 %, respectively, however, 6-phosphogluconate dehydrogenase was insensitive to Cd2+. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
20.
Two anodic isoenzymes of glucose-6-phosphate dehydrogenase (G6PDH) were isolated from tobacco suspension culture WR-132, utilizing fractional ammonium sulfate precipitation and DEAE-cellulose chromatography. The pH optimum was 9.0 for isoenzyme G6PDH I and 8.0–8.3 for G6PDH IV. Isoenzyme G6PDH I exhibited Michaelis-Menten kinetics for both substrates, G6P and NADP+, with Km's of 0.22 mM and 0.06 mM, respectively. G6PDH IV exhibited Michaelis-Menten kinetics for G6P with a Km of 0.31 mM. The NADP+ double reciprocal plot showed an abrupt transition between two linear sections. This transition corresponds to an abrupt increase in the apparent Km and Vmax values with increasing NADP+, denoting negative cooperativity. The two Km's for high and low NADP+ concentrations were 0.06 mM and 0.015 mM, respectively. MWs of the isoenzymes as determined by SDS disc gel electrophoresis were 85 000–91 000 for G6PDH I and 54 000–59 000 for G6PDH IV. Gel filtration chromatography on Sephadex G-150 showed MW's of 91 000 for G6PDH I and 115 000 for G6PDH IV. A probable dimeric structure for IV is suggested, with two NADP+ binding sites. 相似文献