首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant.  相似文献   

2.
Numerous traditional methods are available for the conversion of waste to energy (WTE) such as incineration, anaerobic digestion, pyrolysis, gasification. Most of them suffer from low efficiency and high energy requirements. Microbial fuel cell (MFC) technology is an excellent alternative for the generation of renewable and sustainable energy and has the potential to help alleviate the current global energy crisis. The total wastewater generated in India is almost 250% of the total treatment capacity, and the Government is, therefore, looking for a sustainable solution for the treatment of waste. Indian population consumes around 700 billion cubic meters of water annually, and this figure will rise to 950 and 1422 billion m3 by 2025 and 2050 respectively. Although treatment of wastewater is a serious concern, the energy recovery potential of wastewater has not yet been fully developed. A survey has been conducted through this study, and it was estimated that MFC technology has the potential to generate around 23.3 and 40 Tera Watt (TW) power by 2025 and 2050 by treating wastewater generated throughout India (urban areas) if utilized properly. This review article presents a various aspect of MFC technology for a proper understanding by the readers. This will be a unique study wherein the energy recovery potential of the wastewater produced in the Indian subcontinent has been estimated through MFC technology. A number of factors affecting the performance of MFC such as electron losses, reactor configuration, and varying concentration must be taken into account to augment output energy. The article summarizes an extensive literature survey of some selected papers published in the last decade.  相似文献   

3.

Purpose

The aim of this research was to determine the optimum way of recovering energy from the biodegradable fractions of municipal waste. A part-life cycle study was carried out on the following wastes: paper, food waste, garden waste, wood, non-recyclable mixed municipal waste and refuse-derived fuel. The energy recovery processes considered were incineration, gasification, combustion in dedicated plant, anaerobic digestion and combustion in a cement kiln.

Methods

The life cycle assessment (LCA) was carried out using WRATE, an LCA tool designed specifically for waste management studies. Additional information on waste composition, waste collection and the performance of the energy recovery processes was obtained from a number of UK-based sources. The results take account of the energy displaced by the waste to energy processes and also the benefits obtained by the associated recycling of digestates, metals and aggregates as appropriate.

Results and discussion

For all the waste types considered the maximum benefits in terms of climate change and non-renewable resource depletion would be achieved by using the waste in a cement kiln as a substitute fuel for coal. When considering the impacts in terms of human toxicity, aquatic ecotoxicity, acidification and eutrophication, direct combustion with energy recovery was the best option. The results were found to be highly sensitive to the efficiency of the energy recovery process and the conventional fuel displaced by the recovered energy.

Conclusions and recommendations

This study has demonstrated that LCA can be used to determine the benefits and burdens associated with recovering energy from municipal waste fractions. However, the findings were restricted by the lack of reliable data on the performance of waste gasification and anaerobic digestion systems and on the burdens arising from collecting the wastes. It is recommended that further work is carried out to address these data gaps.  相似文献   

4.
The liquefaction of rice hull (a typical agricultural waste) has been conducted with n-butanol solvent at various reaction temperatures ranging from 260 to 320°C. As a result, it was found that biomass conversion rates were increased with increasing temperature up to 320dgC. However, it was observed that its rate of conversion to liquid was about 83% at 320°C for 30 min. The crude oil yield with rice hull increased up to 1,273 mg/g/L at 300°C, but the yield of Fraction 1 at 280°C was raised suddenly, and peaked at 2 times that of the initial input amount of feedstock. Furthermore, the calorific values of crude oil and Fraction 1 from rice hull were about 5,843 and 8,061 kcal/kg and were enhanced 163 and 225%, respectively, relative to its feedstock as rice hull, respectively. Fraction 1 may be suitable as an alternative liquid fuel of gasoline, based on an engine performance test. Sixty species of organic compounds in crude oil were categorized into 8 classes of compounds, including acids, alcohols, aliphatic hydrocarbons, ethers, esters, ketones, phenol, and aromatics, and others. In the crude oil from rice hull, the most common chemical types were esters and ethers accounting for 32.0 and 19.2% of the total extract, respectively. Analysis of Fraction 1 revealed that the main chemical components were C5H12O, C7H14O2, C8H16O2, and C12H26O2. Therefore, for producing clean and green fuel energy with plant biomass liquefaction it is necessary to further investigate crude oil and to further refine Fraction 1 through catalytic cracking or hydro-de-oxygenation (HDO).  相似文献   

5.
Anaerobic digestion is a promising option for recycling agricultural by-products and some organic wastes. While both agricultural by-products and wastes have no direct commercial value, their management is both complicated and costly. One option to simplify by-product management and reduce the costs associated with biogas plant feedstock is to substitute dedicated crops with vegetal by-products. Given that the chemical composition of some of these by-products can differ considerably from more typical biogas plant feedstock (such as maize silage), more complete knowledge of these alternatives to produce environmentally friendly energy is warranted. To this end, batch trials under mesophilic conditions were conducted to evaluate the potential biogas yield of many agricultural by-products: maize stalks, rice chaff, wheat straw, kiwi fruit, onions, and two expired organic waste products (dairy and dry bread) from the retail mass-market. Among the considered biomasses, the highest methane producer was the expired dairy product mixture, which yielded 554 lNCH4 kg−1 volatile solids (VS). Maize stalks and wheat straw produced the lowest yields of 214 and 285 lNCH4 kg−1VS, respectively. An assessment of the biogas and methane yields of each biomass was also undertaken to account for the specific chemical composition of each biomass as it can affect the anaerobic digestion operating system. Finally, the total Italian green energy production that might be derived from feeding all these biomasses to a biogas digester was estimated, in order to understand its potential impact.  相似文献   

6.
Pyrolysis of agricultural waste to produce fuel gas involves formation of tars as noxious by-products. In this paper the qualitative analysis of tars formed during pyrolysis of rice husks is presented, based on identification by gas chromatography—mass spectrometry and interpolation of retention times on a polyaromatic hydrocarbon index scale. The influence of some reaction parameters on product formation is briefly discussed.  相似文献   

7.
Major contribution (over 90 %) to the world’s rice production is coming from Asia, where metal contamination of agricultural lands is often reported. Thus the present paper reviews the sources and current status of heavy metal contamination of paddy lands in the region. Apart from the natural sources, agrochemicals, wastewater irrigation, sewage sludge application, livestock manures, mining and fly ash etc., could be identified as the key sources of metal contamination in Asia. Accumulation of heavy metals and metalloids (Cd, Zn, Cu, Pb, Cr, Ni, Fe, Zn, Co, Hg and As) in different parts of the rice plant (roots, straw, hull and grain) is reported at varying degrees. Rice grain accumulates the least amount of toxic metals compared to hull, straw and roots. Most importantly, a greater number of investigations confirmed that the metal contents in rice grains are within the permissible limits of Codex recommendations of joint Food and Agriculture Organization/World Health Organization Food Standards Programme and/or food regulations imposed by the respective governments. However, due to the fact that rice is a main route of human exposure to heavy metals, appropriate preventive and remedial measures should be enforced in the areas with potential risk of metal contamination.  相似文献   

8.
In this study, Bacillus sphaericus NRC 69 was grown in culture media, in which 12 agricultural wastes were tested as the main carbon, nitrogen and energy sources under solid state fermentation. Of the 12 tested agricultural by-products, wheat bran was the most efficient substrate for the production of B. sphaericus mosquitocidal toxins against larvae of Culex pipiens (LC50 1.2 ppm). Mixtures of tested agricultural wastes separately with wheat bran enhanced the produced toxicity several folds and decreased LC50 between 3.7- and 50-fold in comparison with that of agricultural wastes without mixing. The toxicity of B. sphaericus grown in wheat bran/rice hull at 8/2 (g/g) and wheat bran/barley straw at 1/4 (g/g) showed the same toxicity as that in wheat bran medium (LC50 decreased 17- and 16-fold, in comparison with that in rice hull or barely straw media, respectively). In wheat bran medium, the maximum toxicity of the tested organism obtained at 50% moisture content, inoculum size 84 × 106 CFU/g wheat bran and incubation for 6 days at 30°C. Addition of cheese whey permeate at 10% to wheat bran medium enhanced the toxicity of B. sphaericus NRC 69 about 46%.  相似文献   

9.
Goal, Scope and Background Life Cycle Assessment (LCA) remains an important tool in Dutch waste management policies. In 2002 the new National Waste Management Plan 2002–2012 (NWMP) became effective. It was supported by some 150 LCA studies for more than 20 different waste streams. The LCA results provided a benchmark level for new waste management technologies. Although not new, operational techniques using combined pyrolysis/gasification are still fairly rare in Europe. The goal of this study is to determine the environmental performance of the only full scale pyrolysis/gasification plant in the Netherlands and to compare it with more conventional techniques such as incineration. The results of the study support the process of obtaining environmental permits. Methods In this study we used an impact assessment method based on the guidelines described by the Centre of Environmental Science (CML) of Leiden University. The functional unit is defined as treatment of 1 ton of collected hazardous waste (paint packaging waste). Similar to the NWMP, not only normalized scores are presented but also 7 aggegated scores. All interventions from the foreground process (land use, emissions, final waste) are derived directly from the site with the exception of emissions to soil which were calculated. Interventions are accounted to each of the different waste streams by physical relations. Data from background processes are taken from the IVAM LCA database 4.0 mostly originating from the Swiss ETH96 database and adapted to the Dutch situation. Allocation was avoided by using system enlargement. The study has been peer reviewed by an external expert. Results and Discussion It was possible to determine an environmental performance for the pyrolysis/ gasification of paint packaging waste. The Life Cycle Inventory was mainly hampered by the uncertainty occurred with estimated air emissions. Here several assumptions had to be made because several waste inputs and two waste treatment installations profit from one flue gas cleaning treatment thus making it difficult to allocate the emission values from the flue gasses. Compared to incineration in a rotary kiln, pyrolysis/gasification of hazardous waste showed better scores for most of the considered impact categories. Only for the impact categories biodiversity and life support the incineration option proved favorable due to a lower land use. Several impact categories had significant influence on the conclusions: acidification, global warming potential, human toxicity and terrestrial ecotoxicity. The first three are related to a better energy efficiency for pyrolysis/gasification leading to less fossil energy consumption. Terrestrial ecotoxicity in this case is related to specific emissions of mercury and chromium (III). A sensitivity analysis has been performed as well. It was found that the environmental performance of the gasification technique is sensitive to the energy efficiency that can be reached as well as the choice for the avoided fossil energy source. In this study a conservative choice for diesel oil was made whereas a choice for heavy or light fuel oil would further improve the environmental profile. Conclusions Gasification of hazardous waste has a better environmental performance compared to the traditional incineration in rotary kilns mainly due to the high energy efficiency. As was determined by sensitivity analysis the differences in environmental performance are significant. Improvement options for a better performance are a decrease of process emissions (especially mercury) and a further improvement of the energy balance by decreasing the electricity consumption for shredders and oxygen consumption or making more use of green electricity. Recommendations and Perspectives Although the life cycle inventory was sufficiently complete, still some assumptions had to be made in order to establish sound mass balances on the level of individual components and substances. The data on input of waste and output of emissions and final waste were not compatible. It was recommended that companies put more emphasis on data storage accounted to particular waste streams. This is even more relevant since more companies in the future are expected to include life cycle impacts in their environmental performance.  相似文献   

10.
Access to proper sanitation is still elusive in many parts of Africa. While significant improvement in global sanitation has been realised, the sanitation situation in Africa is still appalling with almost 20 % of the population reported to still practice open defecation in Sub Saharan Africa. The impacts of poor sanitation systems range from negatively impacting natural resources water quality, to causing health risks to the populations involved. Obviously, the current sanitation systems have gaps and can barely help the situation, which points to the necessity of a paradigm shift in the wastewater management to include interventions that would make proper sanitation achievable for all. Such interventions include decentralisation and resource recovery, which will not only produce environmentally acceptable effluents, but are also pertinent in achieving decreased costs for sanitation systems, hence making them more affordable. The decentralised system is cheaper than the centralised system, mainly due to decreased sewer needs and combining it with resource recovery. This provides an opportunity of decreasing costs further due to the several economic benefits attached to the recovered products. Whereas sanitation involves both wastewater and solid waste, this review paper discusses the current sanitation situation in Africa and proposes a wastewater management plan that could contribute to improvement for small agricultural communities. The plan encourages zero waste generation through decentralisation and recovery of water, energy and by-products such as nutrients and organics relevant to the local community. Apart from the proposed technological strategies, a winning sanitation management plan should also be appreciated and supported by all stakeholders, which can be achieved through proper communication and integration of local user needs.  相似文献   

11.
Pa A  Bi XT  Sokhansanj S 《Bioresource technology》2011,102(10):6167-6177
The replacement of natural gas combustion for district heating by wood waste and wood pellets gasification systems with or without emission control has been investigated by a streamlined LCA. While stack emissions from controlled gasification systems are lower than the applicable regulations, compared to the current base case, 12% and 133% increases are expected in the overall human health impacts for wood pellets and wood waste, respectively. With controlled gasification, external costs and GHG emission can be reduced by 35% and 82% on average, respectively. Between wood pellets and wood waste, wood pellets appear to be the better choice as it requires less primary energy and has a much lower impact on the local air quality.  相似文献   

12.
The selection of a municipal solid waste (MSW) treatment alternative is a complex task in which a widespread set of criteria must be taken into account. Additionally to economic or social aspects, the decision process should consider the environmental perspective. With the purpose of quantifying the environmental burdens, a wide variety of environmental and sustainability indicators have been developed in the last years. Furthermore, integrative frameworks have been highlighted as the best option to achieve more comprehensive assessments.In this work, four different options of MSW treatment were ranked from an environmental point of view applying two methods: (1) the ecological footprint (EF) as single composite indicator and (2) multi-criteria analysis (MCA) integrating the EF together with other material flow indicators related to water consumption, emissions to air and water and occupied landfill volume. The MCA methods selected were a combination of Analytic Hierarchy Process (AHP) and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) aided by Geometrical Analysis for Interactive Aid (GAIA). The objective was twofold: on the one side, the identification of the most beneficial waste treatment alternative (including thermal plasma gasification which as yet has not been assessed systematically) from an environmental perspective and, on the other side, the comparison of the results yielded by the two ranking methods proposed.The ranking obtained in both cases was (from best to worst): thermal plasma gasification, biological treatment of organic fraction with energy recovery from refuse derived fuel, incineration with energy recovery and landfilling. Hence, the EF proved to be a good screening indicator although it did not provide a comprehensive measure of environmental impacts associated to the waste treatment options considered. Besides, the combined application of AHP and PROMETHEE/GAIA as MCA methodology was found to be a suitable way, not very complex at user level, to integrate the information provided by a set of environmental criteria and to aid decision making.  相似文献   

13.
In West Africa, rice is grown in three constrasting ecosystems, upland, phreatic, and lowland, which is characterized by differing water availability and soil properties. These ecosystems influence the predisposition of rice to disease problems, including the grain discoloration complex. Discoloration of the hull was found to be most severe in the upland, less in the phreatic, and least in the water-saturated lowland ecosystem. Caryopsis discoloration, however, showed no consistent pattern in relation to the three ecosystems and was not correlated with hull discoloration, indicating that other factors are involved.  相似文献   

14.
In developing grains of rice (Oryza sativa L.) of the dormant variety H4, peroxidase activity decreased sharply about a week before grain maturity without any change in grain dormancy and oxygen uptake of intact grain. During storage or after-ripening of mature dormant intact grains of four varieties (H4, H6, Mayang Ebos and Seraup 27) at 25–30°, the critical range in peroxidase activity was 1·0–1·4 μmol purpurogallin/hr/grain above which rice grains were almost completely dormant and below which the grains were almost completely nondormant. The oxygen uptake of intact H4 grain tended to decrease during the loss of dormancy. The decrease in both the peroxidase activity and oxygen uptake could be attributed mainly to the lower activities of the hull. Dehulling of developing and mature H4 grains reduced dormancy and increased the oxygen uptake of the grain. Thus, reduction by the hull of the level of oxygen available to the dehulled grain (embryo) was mainly responsible for grain dormancy in rice.  相似文献   

15.
Climate change is predicted to shift temperature regimes in most agricultural areas with temperature changes expected to impact yields of most crops, including rice. These temperature‐driven effects can be classified into point stresses, where a temperature event during a sensitive stage drives a reduction in yield, or seasonal warming losses, where raised temperature is thought to increase maintenance energy demands and thereby decrease available resources for yield formation. Simultaneous estimation of the magnitude of each temperature effect on yield has not been well documented due to the inherent difficulty in separating their effects. We simultaneously quantified the magnitude of each effect for a temperate rice production system using a large data set covering multiple locations with data collected from 1995 to 2015, combined with a unique probability‐based modeling approach. Point stresses, primarily cold stress during the reproductive stages (booting and flowering), were found to have the largest impact on yield (over 3 Mg/ha estimated yield losses). Contrary to previous reports, yield losses caused by increased temperatures, both seasonal and during grain‐filling, were found to be small (approximately 1–2% loss per °C). Occurrences of cool temperature events during reproductive stages were found to be persistent over the study period, and within season, the likelihood of a cool temperature event increased when flowering occurred later in the season. Short and medium grain types, typically recommended for cool regions, were found to be more tolerant of cool temperatures but more sensitive to heat compared to long grain cultivars. These results suggest that for temperate rice systems, the occurrence of periodic stress events may currently overshadow the impacts of general warming temperature on crop production.  相似文献   

16.
Africa is a continent with abundant, diverse and un-exploited renewable energy resources that are yet to be used for improving the livelihood of the vast majority of the population. The production of biogas via anaerobic digestion of large quantities of agricultural residues, municipal wastes and industrial waste(water) would benefit African society by providing a clean fuel in the form of biogas from renewable feedstocks and help end energy poverty. Biogas technology can serve as a means to overcome energy poverty, which poses a constant barrier to economic development in Africa. Anaerobic digestion of the large quantities of municipal, industrial and agricultural solid waste in developing countries present environmental conditions that make use of anaerobic biotechnology extremely favourable under perspective of sustainable development. However, the use of biogas is not widespread in Africa. There are many reasons of economic, technical and non-technical nature for the marginal use of biogas in Africa. The key issue for biogas technology in Africa is to understand why large scale-up has not occurred despite demonstration by several programmes of the viability and effectiveness of biogas plants. This article provides knowledge-based review of biogas technology status, constraints and prospects in Africa. In addition, recommendations to overcome the technological and non-technological challenges to commercialise biogas are discussed. Recommendations for large scale adoption for biogas technology include establishing national institutional framework, increasing research and development, education and training and providing loans and subsidies and major policy shift in the energy sector. The conclusion is that biogas technology must be encouraged, promoted, invested, researched, demonstrated and implemented in Africa.  相似文献   

17.
Biomass has been recognised as a promising resource for future energy and fuels. The biomass, originated from plants, is renewable and application of its derived energy and fuels is close to carbon-neutral by considering that the growing plants absorb CO2 for photosynthesis. However, the complex physical structure and chemical composition of the biomass significantly hinder its conversion to gaseous and liquid fuels.This paper reviews recent advances in biomass thermochemical conversion technologies for energy, liquid fuels and chemicals. Combustion process produces heat or heat and power from the biomass through oxidation reactions; however, this is a mature technology and has been successfully applied in industry. Therefore, this review will focus on the remaining three thermochemical processes, namely biomass pyrolysis, biomass thermal liquefaction and biomass gasification. For biomass pyrolysis, biomass pretreatment and application of catalysts can simplify the bio-oil composition and retain high yield. In biomass liquefaction, application of appropriate solvents and catalysts improves the liquid product quality and yield. Gaseous product from biomass gasification is relatively simple and can be further processed for useful products. Dual fluidised bed (DFB) gasification technology using steam as gasification agent provides an opportunity for achieving high hydrogen content and CO2 capture with application of appropriate catalytic bed materials. In addition, multi-staged gasification technology, and integrated biomass pyrolysis and gasification as well as gasification for poly-generation have attracted increasing attention.  相似文献   

18.
One of the most common agricultural wastes generated in rice producing countries, rice hull (RH) is considered an environmental problem due to increased rice production and RH accumulation, especially because natural degradation in the environment is very difficult and time-consuming. Currently, RH is mostly used as bed for broiler chickens or burned for energy generation, two processes that prevent environmental accumulation in a sustainable way, without adding value to the RH. To diversificate its use and effectively add some value to the RH, a pretreatment is frequently needed, allowing the application of several biotechnological approaches. In this review, we gather information about biotechnological uses of crude and processed RH, including their use as fertilizers, filler material in natural rubber and incorporation in cement for civil construction purposes, along with their use in processes as silica extraction and adsorption/removal of environmental contaminants as heavy metals and dyes. Finally, we critically evaluate the data published in the literature, and based on our own findings, we point future directions related to RH biodegradation and further methane production.  相似文献   

19.
Grain size is one of the essential components determining rice yield and is a target for both domestication and artificial breeding. Gibberellins (GAs) are diterpenoid phytohormones that influence diverse aspects of plant growth and development. Several quantitative trait loci (QTLs) have been identified that control grain size through phytohormone regulation. However, little is known about the role of GAs in the control of grain size. Here we report the cloning and characterization of a QTL, GW6 (GRAIN WIDTH 6), which encodes a GA‐regulated GAST family protein and positively regulates grain width and weight. GW6 is highly expressed in the young panicle and increases grain width by promoting cell expansion in the spikelet hull. Knockout of GW6 exhibits reduced grain size and weight, whereas overexpression of GW6 results in increased grain size and weight. GW6 is induced by GA and its knockout downregulates the expression of GA biosynthesis genes and decreases GA content in the young panicle. We found that a natural variation in the cis element CAAT‐box in the promoter of GW6 is associated with its expression level and grain width and weight. Furthermore, introduction of GW6 to Oryza indica variety HJX74 can lead to a 10.44% increase in rice grain yield, indicating that GW6 has great potential to improve grain yield in rice.  相似文献   

20.
Zhu BF  Si L  Wang Z  Zhou Y  Zhu J  Shangguan Y  Lu D  Fan D  Li C  Lin H  Qian Q  Sang T  Zhou B  Minobe Y  Han B 《Plant physiology》2011,155(3):1301-1311
The genetic mechanism involved in a transition from the black-colored seed hull of the ancestral wild rice (Oryza rufipogon and Oryza nivara) to the straw-white seed hull of cultivated rice (Oryza sativa) during grain ripening remains unknown. We report that the black hull of O. rufipogon was controlled by the Black hull4 (Bh4) gene, which was fine-mapped to an 8.8-kb region on rice chromosome 4 using a cross between O. rufipogon W1943 (black hull) and O. sativa indica cv Guangluai 4 (straw-white hull). Bh4 encodes an amino acid transporter. A 22-bp deletion within exon 3 of the bh4 variant disrupted the Bh4 function, leading to the straw-white hull in cultivated rice. Transgenic study indicated that Bh4 could restore the black pigment on hulls in cv Guangluai 4 and Kasalath. Bh4 sequence alignment of all taxa with the outgroup Oryza barthii showed that the wild rice maintained comparable levels of nucleotide diversity that were about 70 times higher than those in the cultivated rice. The results from the maximum likelihood Hudson-Kreitman-Aguade test suggested that the significant reduction in nucleotide diversity in rice cultivars could be caused by artificial selection. We propose that the straw-white hull was selected as an important visual phenotype of nonshattered grains during rice domestication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号