首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Hu J  Fei J  Reutter W  Fan H 《Glycobiology》2011,21(3):329-339
The γ-aminobutyric acid (GABA) transporters (GATs) have long been recognized for their key role in the uptake of neurotransmitters. The GAT1 belongs to the family of Na(+)- and Cl(-)-coupled transport proteins, which possess 12 putative transmembrane (TM) domains and three N-glycosylation sites on the extracellular loop between TM domains 3 and 4. Previously, we demonstrated that terminal trimming of N-glycans is important for the GABA uptake activity of GAT1. In this work, we examined the effect of deficiency, removal or oxidation of surface sialic acid residues on GABA uptake activity to investigate their role in the GABA uptake of GAT1. We found that the reduced concentration of sialic acid on N-glycans was paralleled by a decreased GABA uptake activity of GAT1 in Chinese hamster ovary (CHO) Lec3 cells (mutant defective in sialic acid biosynthesis) in comparison to CHO cells. Likewise, either enzymatic removal or chemical oxidation of terminal sialic acids using sialidase or sodium periodate, respectively, resulted in a strong reduction in GAT1 activity. Kinetic analysis revealed that deficiency, removal or oxidation of terminal sialic acids did not affect the K(m) GABA values. However, deficiency and removal of terminal sialic acids of GAT1 reduced the V(max) GABA values with a reduced apparent affinity for extracellular Na(+). Oxidation of cell surface sialic acids also strongly reduced V(max) without affecting both affinities of GAT1 for GABA and Na(+), respectively. These results demonstrated for the first time that the terminal sialic acid of N-linked oligosaccharides of GAT1 plays a crucial role in the GABA transport process.  相似文献   

2.
Summary. The purpose of this study was to determine whether the γ-aminobutyric acid (GABA) affects the rate of brain protein synthesis in male rats. Two experiments were done on five or three groups of young rats (5 wk) given the diets containing 20% casein administrated 0 mg, 25 mg, 50 mg, 100 mg or 200 mg/100 g body weight GABA dissolved in saline by oral gavage for 1 day (d) (Experiment 1), and given the diets contained 0%, 0.25% or 0.5% GABA added to the 20% casein diet (Experiment 2) for 10 d. The plasma concentration of growth hormone (GH) was the highest in rats administrated 50 mg and 100 mg/100 g body weight GABA. The concentration of serum GABA increased significantly with the supplementation groups. The fractional (Ks) rates of protein synthesis in brain regions, liver and gastrocnemius muscle increased significantly with the 20% casein + 0.25% GABA diet and still more 20% casein + 0.5% GABA compared with the 20% casein diet. In brain regions, liver and gastrocnemius muscle, the RNA activity [g protein synthesized/(g RNA·d)] significantly correlated with the fractional rate of protein synthesis. The RNA concentration (mg RNA/g protein) was not related to the fractional rate of protein synthesis in any organ. Our results suggest that the treatment of GABA to young male rats are likely to increase the concentrations of plasma GH and the rate of protein synthesis in the brain, and that RNA activity is at least partly related to the fractional rate of brain protein synthesis.  相似文献   

3.
Summary The -cells of the pancreatic islets have been shown to contain -aminobutyric acid (GABA) together with insulin. Autoradiographic analysis indicated that high affinity GABA binding sites (GABA receptors) are not present in the pancreas. High affinity GABA uptake sites are present, not in -cells, but in a few cells on the periphery of the islets. These observations cast doubt on the suggestion that GABA has a paracrine role in the pancreas.  相似文献   

4.
Fractions of synaptosomes were used to study the regulation of -aminobutyric acid (GABA) synthesis. The isolated synaptosomes were superfused in media of various compositions. [3H]GABA and GABA released into the medium or remaining in the synaptosomes were analyzed by liquid scintillation and HPLC techniques. Different conditions, designed to increase the GABA efflux rate were used: the rate of superfusion was varied and the concentrations of K+ and Ca2+ were altered. Stimulation of GABA efflux was paralleled with an increased synthesis of GABA, since, in spite of the increased GABA efflux, a relatively constant intraterminal level was found. The findings suggest that the intraterminal concentration of GABA and thus also its synthesis is regulated via product inhibition. In addition, [3H]GABA, exogenous, and GABA, endogenous, responded to external stimulae (Ca2+, veretradine, various GABA concentrations and the glutaminase inhibitor diazo-nor-leucine) in a way which was compatible with them being localized in and/or released from different compartments.  相似文献   

5.
An enzyme activity oxidizing -aminobutyraldehyde (ABAL) to GABA reflecting an alternative pathway for GABA synthesis was assayed in the developing chick embryonic brain and was compared with glutamate decarboxylase (GAD) activity. An enzyme activity oxidizing ABAL to GABA showed almost constant level during development in the chick embryonic brain, and was present at low levels compared with GAD activity. The results indicate that GABA synthesis via an alternative pathway is always much less than synthesis via the GAD-dependent pathway in the developing chick embryonic brain.  相似文献   

6.
In the frog spinal cord primary afferent depolarization (PAD) constitutes a powerful inhibitory control mechanism. It has been suggested that -aminobutyric acid (GABA) is the transmitter substance involved in the genesis of PAD. In these studies we show that maximal glutamic acid decarboxylase activity is localized roughly 400–600 m from the dorsal surface, and that correlates well with the intraspinal distribution of field potentials associated with PAD. Measurement of GABA in serial spinal cord sections cut in a dorsal-ventral direction shows that high levels of GABA are seen at 400–600 m, with a peak at 800 m from the dorsal surface. Stimulation at frequencies shown to produce PAD augments the release of endogenous GABA from a superfused frog hemicord preparation.  相似文献   

7.
The effects were investigated of disulfotetraazaadamantane (DSTA), a blocker of -aminobutyric acid, on summated potentials in field CA 1 of the mouse hippocampus arising in response to electrical stimulation of Shaffer's collateral. At a concentration of 5·10–6–10–5 M, DSTA led to a considerable increase in the amplitude of the main population spike (PS) and the onset of additional PS. The effects induced by DSTA resembled those observed following picrotoxin application, which it exceeded two- to threefold in intensity, however. Findings are reviewed from the standpoint of the effects exerted by the test substance on synaptic processes in the hippocampus in vitro.Institute of Physiologically Active Substances, Academy of Sciences of the USSR, Chernogolovka, Moscow Oblast. Institute of Brain Research, National Scientific Mental Health Center, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 66–70, January–February, 1989.  相似文献   

8.
Summary The distribution in the rat oviduct of -aminobutyric acid and its catabolic enzyme GABA-transaminase was studied by the use of immunocytochemical and enzymehistochemical techniques. At the light-microscopic level, both GABA immunoreactivity and GABA-transaminase enzyme reactivity were found primarily in the tubal epithelium while in the muscle layers of the organ only a faint GABA and GABA-transaminase positive staining could be detected. Electron-microscopic evaluation of the GABA immunoreactivity revealed a heavy labelling of the basal bodies (kinetosomes) and a moderate staining of the cilia. These findings indicate that the role of GABA in the oviduct is not related to neurotransmission but may be related to ciliary functions.  相似文献   

9.
Taurine is essential for the hepatic synthesis of bile salts and, although taurine is synthesized mainly in pericentral hepatocytes, taurine and taurine-conjugated bile acids are abundant in periportal hepatocytes. One possible explanation for this discrepancy is that the active supply of taurine to hepatocytes from the blood stream is a key regulatory factor. The purpose of the present study is to investigate and identify the transporter responsible for taurine uptake by periportal hepatocytes. An in vivo bolus injection of [(3)H]taurine into the rat portal vein demonstrated that 25% of the injected [(3)H]taurine was taken up by the liver on a single pass. The in vivo uptake was significantly inhibited by GABA, taurine, β-alanine, and nipecotic acid, a GABA transporter (GAT) inhibitor, each at a concentration of 10 mM. The characteristics of Na(+)- and Cl(-)-dependent [(3)H]taurine uptake by freshly isolated rat hepatocytes were consistent with those of GAT2 (solute carrier SLC6A13). Indeed, the K(m) value of the saturable uptake (594 μM) was close to that of mouse SLC6A13-mediated taurine transport. Although GABA, taurine, and β-alanine inhibited the [(3)H]taurine uptake by > 50%, each at a concentration of 10 mM, GABA caused a marked inhibition with an IC(50) value of 95 μM. The [(3)H]taurine uptake exhibited a significant reduction when the GAT2 gene was silenced. Immunohistochemical analysis showed that GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. These results suggest that GAT2 is responsible for taurine transport from the circulating blood to hepatocytes predominantly in the periportal region.  相似文献   

10.
The influence of phosphatidylserine (PS) on the isoniazid-induced convulsions has been studied in mice. Sonicated dispersions of this phospholipid given intravenously do not show anticonvulsant activity but they do so when -aminobutyric acid (GABA) is simultaneously injected. GABA alone is inactive. The synergism between PS and GABA is influenced by the structure of the phospholipid liposomes. In contrast to multilamellar vesicles, oligolamellar vesicles are active. Under these conditions the effect shows head group specificity, in that the neutral phosphatidylcholine (PC) or the acidic phosphatidylinositol (PI) are inactive, either in the presence or in the absence of GABA. Lysophosphatidylserine (lysoPS), the deacylated PS derivative, shows increased efficacy as an isoniazid antagonist in the presence of GABA, and has anticonvulsant activity also in the absence of GABA. Other lysophospholipids are inactive. It is suggested that PS, after its metabolic conversion to lysoPS, enhances the anticonvulsant effect of GABA.  相似文献   

11.
Preparations having properties resembling those of synaptosomes have been isolated from whole fly homogenates ofDrosophila melanogaster using ficoll gradient floatation technique. These have been characterized by marker enzymes and electron microscopy and binding of muscarinic antagenist3H Quinuclidinyl benzilate. An uptake system for neurotransmitter, ã-Aminobutyric acid has been demonstrated in these preparations. A high affinity uptake system for L-glutamate has also been studied in these subcellular fractions. This uptake of glutamate is transport into an osmotically sensitive compartment and not due to binding of glutamate to membrane components. The transport of glutamate has an obligatory requirements for either sodium or potassium ions. Kinetic experiments show that two transport systems, withK m values 0.33 X 10-6M and 2.0 X 10-6M, respectively, function in the accumulation of glutamate. ATP stimulates lower affinity transport of glutamate. Inhibition of glutamate uptake by L-aspartate but not by phenylalanine and tyrosine indicates that a common carrier mediates the transport of both glutamate and aspartate. β-N-oxalyl-L-β β-diamino propionic acid and kainic acid, both inhibitors of glutamate transport in mammalian brain preparations, strongly inhibited transport of glutamate inDrosophila preparations Comparison with uptake of ã-aminobutyric acid and glutamate in isolated larval brain is presented to show that the synaptosome-like preparations we have isolated are rich in central nervous system derived structures, and presynaptic endings from neuromuscular junctions.  相似文献   

12.
13.
The multifunctional scaffolding protein gephyrin is a key player in the formation of the postsynaptic scaffold at inhibitory synapses, clustering both inhibitory glycine receptors (GlyRs) and selected GABA(A) receptor (GABA(A)R) subtypes. We report a direct interaction between the GABA(A)R α3 subunit and gephyrin, mapping reciprocal binding sites using mutagenesis, overlay, and yeast two-hybrid assays. This analysis reveals that critical determinants of this interaction are located in the motif FNIVGTTYPI in the GABA(A)R α3 M3-M4 domain and the motif SMDKAFITVL at the N terminus of the gephyrin E domain. GABA(A)R α3 gephyrin binding-site mutants were unable to co-localize with endogenous gephyrin in transfected hippocampal neurons, despite being able to traffic to the cell membrane and form functional benzodiazepine-responsive GABA(A)Rs in recombinant systems. Interestingly, motifs responsible for interactions with GABA(A)R α2, GABA(A)R α3, and collybistin on gephyrin overlap. Curiously, two key residues (Asp-327 and Phe-330) in the GABA(A)R α2 and α3 binding sites on gephyrin also contribute to GlyR β subunit-E domain interactions. However, isothermal titration calorimetry reveals a 27-fold difference in the interaction strength between GABA(A)R α3 and GlyR β subunits with gephyrin with dissociation constants of 5.3 μm and 0.2 μm, respectively. Taken together, these observations suggest that clustering of GABA(A)R α2, α3, and GlyRs by gephyrin is mediated by distinct mechanisms at mixed glycinergic/GABAergic synapses.  相似文献   

14.
Here, we report the presence of the γ-aminobutyric acid (GABA)-ergic system in the calcisponge Leucandra aspera and examine the cellular localization of the components of this system, including GABA-like receptors using immunofluorescence and confocal microscopy. Furthermore, we demonstrate for the first time that GABA plays a functional role as a messenger in regulating sponge-feeding behavior. We found that both GABA(B) R1 and R2 subunits are present in the choanocytes of sponges as well as in the eso- and endopinacocytes. The functional role of GABA in the feeding behavior of this sponge was tested. The involvement of GABA receptors in the endocytic processes in L. aspera was demonstrated with dextran conjugated to Texas Red as a marker for material ingestion and by treating isolated sponge cells with a GABA(B) receptor agonist and an antagonist. The amount of dextran that was ingested increased in dissociated sponge cells when the GABA(B) receptor agonist baclofen was used, and this stimulatory effect was prevented by treatment with the GABA(B) receptor antagonist phaclofen. The baclofen effect on uptake was blocked by treatment with pertussis toxin, thus indicating a role for G proteins in modulating feeding behavior in L. aspera. Moreover, we found evidence that GABA receptors are involved in the consumption of dissolved organic matter by sponge cells. These findings suggest that GABA receptors and their functional role are highly conservative traits in the animal kingdom prenervous system evolution.  相似文献   

15.
The release of [3H]-aminobutyric acid (GABA) from pre-loaded slices of rat cerebral cortex was investigated in the presence and absence of the GABA-transaminase inhibitors gabaculine and -vinyl GABA. In the experiments carried out without an inhibitor, an ion-exchange column chromatographic technique was used to separate [3H]GABA from tritiated metabolites released with it into the superfusate. The presence of gabaculine (5 M) substantially reduced the Ca2+-dependence of the release of [3H]GABA evoked by a 4 min 30 mM K+ pulse, whereas this was not appreciably reduced by the presence of -vinyl GABA (2 mM or 10 mM). Nevertheless, the characteristics of [3H]GABA release were not identical in the presence and absence of either inhibitor.  相似文献   

16.
Both glial and neuronal cells maintained in primary culture were found to accumulate [3H]GABA by an efficient high-affinity uptake system (apparentK m=9 M,V max=0.018 and 0.584 nmol/mg/min, respectively) which required sodium ions and was inhibited by 1 mM ouabain. Strychnine and parachloromercuriphenylsulfonate (pCS) (both at 1 mM) also strongly inhibited uptake of [3H]GABA, but metabolic inhibitors (2,4-dinitrophenol, potassium cyanide, and malonate) were without effect. Only three structural analogs of GABA (nipecotate, -alanine, and 2,4-diaminobutyrate) inhibited uptake of [3H]GABA, while several other compounds with structural similarities to GABA (e.g. glycine,l-proline, and taurine) did not interact with the system. The kinetic studies indicated presence of a second uptake (K m=92 M,V max=0.124 nmol/mg/min) in the primary cultures containing predominantly glioblasts. On the other hand, only one of the neuronal cell lines transformed by simian virus SV40 appeared to accumulate [3H]GABA against a concentration gradient. ApparentK m of this uptake was relatively high (819 M), and it was only weakly inhibited by 1 mM ouabain and 1 mM pCS. The structural specificity also differed from that of the uptake observed in the primary cultures. Significantly, none of the nontransformed continuous cell lines of either tumoral (glioma, C6; neuroblastoma, Ml; MINN) or normal (NN; I6) origin actively accumulated [3H]GABA. It is suggested that for the neurochemical studies related to GABA and requiring homogeneous cell populations, the primary cultures offer a better experimental model than the continuous cell lines.  相似文献   

17.
Abstract

The compound γ-aminobutyric acid (GABA) has many important physiological functions. The effect of glutamate decarboxylases and the glutamate/GABA antiporter on GABA production was investigated in Escherichia coli. Three genes, gadA, gadB, and gadC were cloned and ligated alone or in combination into the plasmid pET32a. The constructed plasmids were transformed into Escherichia coli BL21(DE3). Three strains, E. coli BL21(DE3)/pET32a-gadA, E. coli BL21(DE3)/pET32a-gadAB and E. coli BL21(DE3)/pET32a-gadABC were selected and identified. The respective titers of GABA from the three strains grown in shake flasks were 1.25, 2.31, and 3.98?g/L. The optimal titer of the substrate and the optimal pH for GABA production were 40?g/L and 4.2, respectively. The highest titer of GABA was 23.6?g/L at 36?h in batch fermentation and was 31.3?g/L at 57?h in fed-batch fermentation. This study lays a foundation for the development and use of GABA.  相似文献   

18.
Summary. γ-Aminobutyric acid (GABA), a hypotensive compound, is formed from glutamic acid under anaerobic condition in tea shoots. Glutamic acid was exhausted in the first three hours of anaerobic incubation and the increase of GABA stopped. After that, when tea shoots were released under aerobic condition, glutamic acid reproduced rapidly. After one hour of aerobic incubation, tea shoots were given three hours of anaerobic incubation again and then accumulated glutamic acid changed to GABA. The content of GABA increased much more than usual anaerobic incubation. GABA was more in the tea stem than in the leaf. Received January 4, 2000 Accepted March 1, 2000  相似文献   

19.
4-Aminobutyraldehyde (ABAL) has been shown to cross the blood-brain barrier and to be converted rapidly to -aminobutyric acid (GABA) in various regions of the brain. In this paper, the formation of GABA from ABAL was studied with striatum that had suffered a lesion to GABA synthesis via glutamic acid decarboxylase (GAD). The GABA formation from ABAL was invariably observed in striatum in which GAD was severely inhibited by semicarbazide or kainic acid. Thus, this is another pathway for GABA formation.  相似文献   

20.
The uptake of radioactive -aminobutyric acid (GABA) andd-aspartate and the effect of SKF 89976-A, a non-substrate inhibitor of the GABA transporter, on this uptake have been investigated. Neuronal cultures from eight-day-old chick embryos grown for three or six days in vitro, were used as a model. For comparison, we also used the P2-fraction from rat. Neuronal cultures grown for three and six days expressed high-affinity uptake systems for [3H]GABA and ford-[3H]aspartate with an increasing Vmax during this period. The lipophilic non-substrate GABA uptake inhibitor, SKF 89976-A, inhibited transporter mediated uptake of GABA both in cell cultures from chicken, and in P2-fractions from rat. The results also showed that SKF 89976-A was a poor inhibitor of the uptake ofd-aspartate. We found no non-saturable uptake ofd-aspartate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号