首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The Notch signaling pathway is conserved in vertebrates and invertebrates and is involved in many developmental processes. Notch receptors and ligands are expressed on the cell surface enabling interactions between adjacent cells upon receptor-ligand binding. Notch signaling molecules have an important well-documented role in vascular development, differentiation, proliferation, apoptosis and tumorigenesis. Recently, several groups have identified the importance of Notch signaling in tumor angiogenesis. Notch activity increases specifically in tumor endothelium and in various tumors types and, in some studies, Notch signaling suppresses angiogenic processes. Because the Notch signaling pathway can mediate communication between various cell types in the tumor microenvironment, interactions between tumor cells and endothelial cells might promote angiogenesis, therefore targeting the Notch pathway might provide a novel strategy for anti-angiogenic therapies. Here, we discuss recent insights of Notch signaling in tumor angiogenesis.  相似文献   

4.
Multicellular development requires the correct spatial and temporal regulation of cell division and differentiation. These processes are frequently coordinated by the activities of various signaling pathways such as Notch signaling. From a screen for modifiers of Notch signaling in Drosophila we have identified the RNA helicase Belle, a recently described component of the RNA interference pathway, as an important regulator of the timing of Notch activity in follicle cells. We found that loss of Belle delays activation of Notch signaling, which results in delayed follicle cell differentiation and defects in the cell cycle. Because mutations in well-characterized microRNA components phenocopied the Notch defects observed in belle mutants, Belle might be functioning in the microRNA pathway in follicle cells. The effect of loss of microRNAs on Notch signaling occurs upstream of Notch cleavage, as expression of the constitutively active intracellular domain of Notch in microRNA-defective cells restored proper activation of Notch. Furthermore, we present evidence that the Notch ligand Delta is an important target of microRNA regulation in follicle cells and regulates the timing of Notch activation through cis inhibition of Notch. Here we have uncovered a complex regulatory process in which the microRNA pathway promotes Notch activation by repressing Delta-mediated inhibition of Notch in follicle cells.  相似文献   

5.
The Notch signaling pathway is important for cell fate decisions in embryonic development and adult life. Defining the functional importance of the Notch pathway in these contexts requires the elucidation of essential signal transduction components that have not been fully characterized. Here, we show that Rabconnectin-3B is required for the Notch pathway in mammalian cells. siRNA-mediated silencing of Rabconnectin-3B in mammalian cells attenuated Notch signaling and disrupted the activation and nuclear accumulation of the Notch target Hes1. Rabconnectin-3B knockdown also disrupted V-ATPase activity in mammalian cells, consistent with previous observations in Drosophila. Pharmacological inhibition of the V-ATPase complex significantly reduced Notch signaling in mammalian cells. Finally, Rabconnectin-3B knockdown phenocopied functional disruption of Notch signaling during osteoclast differentiation. Collectively, these findings define an important role for Rabconnectin-3 and V-ATPase activity in the Notch signaling pathway in mammalian cells.  相似文献   

6.
7.
The Notch signaling pathway is an evolutionarily conserved pathway that is critical for tissue morphogenesis during development, but is also involved in tissue maintenance and repair in the adult. In skeletal muscle, regulation of Notch signaling is involved in somitogenesis, muscle development, and the proliferation and cell fate determination of muscle stems cells during regeneration. During each of these processes, the spatial and temporal control of Notch signaling is essential for proper tissue formation. That control is mediated by a series of regulatory proteins and protein complexes that enhance or inhibit Notch signaling by regulating protein processing, localization, activity, and stability. In this review, we focus on the regulation of Notch signaling during postnatal muscle regeneration when muscle stem cells ("satellite cells") must activate, proliferate, progress along a myogenic lineage pathway, and ultimately differentiate to form new muscle. We review the regulators of Notch signaling, such as Numb and Deltex, that have documented roles in myogenesis as well as other regulators that may play a role in modulating Notch signaling during satellite cell activation and postnatal myogenesis.  相似文献   

8.
The Notch signaling pathway is a critical embryonic developmental regulatory pathway that has been implicated in oncogenesis. In non-small cell lung cancer (NSCLC), recent evidence suggests that Notch signaling may contribute to maintenance of a cancer stem or progenitor cell compartment required for tumorigenesis. We explored whether intact Notch signaling is required for NSCLC clonogenic and tumorigenic potential in vitro and in vivo using a series of genetically modified model systems. In keeping with previous observations, we find that Notch3 in particular is upregulated in human lung cancer lines and that downregulation of Notch signaling using a selective γ-secretase inhibitor (MRK-003) is associated with decreased proliferation and clonogenic capacity in vitro. We show that this phenotype is rescued with the expression of NICD3, a constitutively active cleaved form of Notch3 not affected by γ-secretase inhibition. Using an inducible LSL-KRAS(G12D) model of lung cancer in vivo, we show a transient upregulation of Notch pathway activity in early tumor precursor lesions. However, a more rigorous test of the requirement for Notch signaling in lung oncogenesis, crossing the LSL-KRAS(G12D) mouse model with a transgenic with a similarly inducible global dominant-negative suppressor of Notch activity, LSL-DNMAML (dominant-negative mastermind-like), reveals no evidence of Notch pathway requirement for lung tumor initiation or growth in vivo. Distinct Notch family members may have different and potentially opposing activities in oncogenesis, and targeted inhibition of individual Notch family members may be a more effective anticancer strategy than global pathway suppression.  相似文献   

9.
Endocytosis and trafficking within the endocytosis pathway are known to modulate the activity of different signaling pathways. Epsins promote endocytosis and are postulated to target specific proteins for regulated endocytosis. Here, we present a functional link between the Notch pathway and epsins. We identify the Drosophila ortholog of epsin, liquid facets (lqf), as an inhibitor of cardioblast development in a genetic screen for mutants that affect heart development. We find that lqf inhibits cardioblast development and promotes the development of fusion-competent myoblasts, suggesting a model in which lqf acts on or in fusion-competent myoblasts to prevent their acquisition of the cardioblast fate. lqf and Notch exhibit essentially identical heart phenotypes, and lqf genetically interacts with the Notch pathway during multiple Notch-dependent events in Drosophila. We extended the link between the Notch pathway and epsin function to C. elegans, where the C. elegans lqf ortholog acts in the signaling cell to promote the glp-1/Notch pathway activity during germline development. Our results suggest that epsins play a specific, evolutionarily conserved role to promote Notch signaling during animal development and support the idea that they do so by targeting ligands of the Notch pathway for endocytosis.  相似文献   

10.
TNF-JNK signaling is one of the highly conserved signaling pathways that regulate a broad spectrum of cellular processes including proliferation and apoptosis. Eiger, the sole homologue of TNF in Drosophila, initiates the TNF-JNK pathway to induce cell death. Previously, Deltex (Dx) has been identified as a Notch signaling component that regulates vesicular trafficking of Notch. In the present study, we have investigated the interaction between these two proteins in order to identify how Dx influences the activity of Eiger. Dx is found to act as a novel modulator of JNK-mediated cell death inducing activity of Eiger. Additionally, we observe that dx genetically interacts with eiger during wing development, and these two proteins, Dx and Eiger, colocalize in the cytoplasm. Our analysis reveals that Dx is involved in the cytoplasmic relocalization of Eiger from the cell membrane, thereby influencing Eiger-mediated JNK-activation process. Moreover, we demonstrate that Dx potentiates the activity of Eiger to downregulate Notch signaling pathway by retaining the Notch protein in the cytoplasm. Together, our findings reveal a novel role of Dx to modulate the signaling activity of Eiger and subsequent JNK-mediated cell death.  相似文献   

11.
During Drosophila eye development, localized Notch signaling at the dorsal ventral (DV)-midline promotes growth of the entire eye field. This long-range action of Notch signaling may be mediated through the diffusible ligand of the Jak/STAT pathway, Unpaired (Upd), which was recently identified as a downstream target of Notch. However, Notch activity has not been shown to be cell-autonomously required for Upd expression and therefore yet another diffusible signal may be required for Notch activation of Upd. Our results clarify the Notch requirement, demonstrating that Notch activity at the DV-midline leads to cell-autonomous expression of Upd as monitored in loss and gain-of-function Notch clones. In addition, mutations in the Jak/STAT pathway interact genetically with the Notch pathway by suppressing Notch mediated overgrowth. N(act) clones show non-autonomous effects on the cell cycle anterior to the furrow, indicating function of the Jak/STAT pathway. However, cell-autonomous effects of Notch within and posterior to the furrow are independent of Upd. Here, Notch autonomously maintains cells in a proliferative state and blocks photoreceptor differentiation.  相似文献   

12.
13.
14.
Hepatocellular carcinoma (HCC) is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL), an antioxidant derived from the milk thistle plant (Silybum marianum), has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH) levels and total antioxidant capability (T-AOC) but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS). Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD), RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro) or DAPT (a known Notch1 inhibitor, in vivo) further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro) attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.  相似文献   

15.
16.
杨曦  陈鹏  蒋霞  潘敏慧  鲁成 《昆虫学报》2021,64(2):250-258
Notch 信号通路由 Notch 受体、Notch 配体(DSL 蛋白)、CSL[C promoter binding factor-1(CBF1),Suppressor of hairless(Su(H)),Lag-1]转录因子、其他效应子和Notch调节分子构成,在动物组织的发育和器官的细胞命运决定中起着基础性的...  相似文献   

17.
Notch信号通路是在进化上非常保守的单次跨膜信号受体蛋白家族,广泛表达于脊椎动物与无脊椎动物中,主要由Notch受体、Notch配体及细胞内效应分子CSL蛋白组成。Notch信号通路是多种组织和器官早期发育所必需的细胞间调节信号,参与对细胞增殖、分化、凋亡的调控。近年的研究表明,Notch信号通路参与肺纤维化的发生发展,阻断或激活这一途径可以影响肺纤维化的进展,本文就Notch信号通路与肺纤维化的关系的研究进展做一综述。  相似文献   

18.
Notch信号途径是生物进化过程中高保守的信号通路,对细胞的定向发育及成熟起到决定性的作用。Notch信号途径受到多种分子机制的严格调控。近年来,多项研究均突出了泛素化在调控Notch信号途径活性中的重要性。本文就四种E3泛素连接酶Su(dx)/Itch、Sel-10、LNX以及Neuralized对于调控Notch受体及Notch信号途径配体的研究现况作一综述。  相似文献   

19.
Notch signaling is an evolutionarily conserved pathway involved in intercellular communication and is essential for proper cell fate choices. Numerous genes participate in the modulation of the Notch signaling pathway activity. Among them, Notchless (Nle) is a direct regulator of the Notch activity identified in Drosophila melanogaster. Here, we characterized the murine ortholog of Nle and demonstrated that it has conserved the ability to modulate Notch signaling. We also generated mice deficient for mouse Nle (mNle) and showed that its disruption resulted in embryonic lethality shortly after implantation. In late mNle(-/-) blastocysts, inner cell mass (ICM) cells died through a caspase 3-dependent apoptotic process. Most deficient embryos exhibited a delay in the temporal down-regulation of Oct4 expression in the trophectoderm (TE). However, mNle-deficient TE was able to induce decidual swelling in vivo and properly differentiated in vitro. Hence, our results indicate that mNle is mainly required in ICM cells, being instrumental for their survival, and raise the possibility that the death of mNle-deficient embryos might result from abnormal Notch signaling during the first steps of development.  相似文献   

20.
钟晨  黄瑾 《生物磁学》2011,(20):3981-3983
Noah信号途径是生物进化过程中高保守的信号通路,对细胞的定向发育及成熟起到决定性的作用。Notch信号途径受到多种分子机制的严格调控。近年来,多项研究均突出了泛素化在调控Noah信号途径活性中的重要性。本文就四种E3泛素连接酶Su(dx)Itch、Sel-10、LNX以及Neuralized对于调控Noah受体及Notch信号途径配体的研究现况作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号