首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Secretion of triglycerides by the liver in ruminants as components of very low density lipoproteins particles is low as compared with that in primates or rodents. The rate-limiting steps for the hepatic export of very low density lipoproteins have been studied in liver slices to determine the origin of the low lipotropic capacity of calf liver compared to that of rat liver. The rates of production of apolipoprotein B (apo B) and albumin as well as the rate of secretion of VLDL-apolipoproteins were measured during 12-h incubation of liver slices in organo-culture using [35S]methionine-cysteine labeling. Hepatic apo B production was similar in the two animal species but the VLDL-apolipoprotein secretion rate for calf liver slices amounted to only 20% of that observed for rat liver slices. Although calf and rat liver slices synthesized similar amounts of total protein, the hepatic production of albumin, measured in cells and media, was much higher in calf than rat liver slices (around 2.7-fold), whereas the rate secretion of albumin was similar in the two species. Our results showed that the slow rate of secretion of VLDL by calf liver cells was not consecutive to a low rate of synthesis of apo B but rather to a defect in VLDL assembly and/or secretion.  相似文献   

2.
We characterized the lipoproteins produced by perfused rat liver in recirculating and non-recirculating systems. The apolipoprotein (apo) B of the perfusate very low density lipoprotein (VLDL) and low density lipoprotein (LDL) were labeled with a radioactive precursor amino acid in both systems, suggesting that newly synthesized apo B was secreted in association with VLDL and LDL. When the lipoproteins obtained from the non-recirculating perfusate were injected into rats in vivo, the half life of the VLDL was 13 min and most of it was converted to LDL, while that of the LDL was 5.2 h, indicating that the perfusate LDL was different from the VLDL with respect to its metabolic fate. These observations suggest that both VLDL and LDL are produced as independent primary products in the liver, although the majority of LDL is derived from VLDL in vivo. The nascent lipoproteins in the non-recirculating perfusate were richer in apo E than those in the recirculating perfusate, and a part of the apo E disappeared when the VLDL was added to the recirculating perfusate. The particle sizes of the VLDL and LDL were examined by electron microscopy, which revealed that those in the non-recirculating perfusate were more homogeneous and smaller than the plasma counterparts, while those in the recirculating perfusate were more heterogeneous and their mean diameter was closer to that of the plasma lipoproteins, than in the case of non-recirculating perfusate. These observations suggest that apo E secreted with the nascent lipoproteins may be picked up by the liver just after secretion, causing the heterogeneity in size, as observed in the case of plasma lipoproteins.  相似文献   

3.
Summary Confluent monolayers of normal human hepatocytes obtained by collagenase perfusion of liver pragments were incubated in a serum-free medium. Intracellular apolipoproteins apo AI, apo C, apo B, and apo E were detected between Day 1 and Day 6 of the culture by immunoenzymatic staining using polyclonal antibodies directed against these apoproteins and monoclonal antibodies directed against both forms of apo B (B100 and B48). Translation of mRNA isolated from these hepatocytes in an acellular system revealed that apo AI and apo E were synthesized as the precusor forms of mature plasma apo AI and apo E. Three lipoprotein fractions corresponding to the density of very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) were isolated from the medium at Day 5 of culture and examined by electron microscopy after negative staining. VLDL and LDL particles are similar in size and shape to plasma lipoproteins; spherical HDL are larger than normal plasma particles isolated at the same density. Their protein represented 44, 19.5, and 36.5% respectively, of the total lipoprotein protein. The secretion rate of VLDL protein corresponded to that measured in primary cultures of rat hepatocytes. After incorporation of [3H]glycerol, more than 92% of the [3H]triglyceride secreted into the medium was recovered in the VLDL fraction. These results demonstrate that primary cultures of normal human hepatocytes are able to synthesize and secrete lipoproteins and thus could be a useful model to study lipoprotein metabolism in human liver.  相似文献   

4.
Isolation and analysis of lipoproteins secreted by rat liver hepatocytes   总被引:8,自引:0,他引:8  
A procedure has been developed for the small-scale isolation and characterization of lipoproteins secreted by cultured rat liver hepatocytes. The lipoproteins in the culture medium were separated into VLDL, LDL, HDL and a fraction with d greater than 1.21 on single-spin density-gradients. The lipoproteins were removed from the gradients by adsorption onto Cab-O-Sil, a hydrated colloidal silica. The lipid components were extracted from the silica with CHCl3/CH3OH and the apoproteins solubilized in a buffer that contained 2% sodium dodecyl sulfate and 6 M urea. The proteins were analyzed on 3-20% acrylamide electrophoresis gels that contained 1% sodium dodecyl sulfate. The two major rat-plasma lipoproteins, VLDL and HDL, were well separated by the gradients. The Cab-O-Sil was shown to bind 90-95% of the HDL and VLDL in the fractions from the gradient. The recovery of the lipid components was essentially quantitative. The recovery of the apolipoproteins was only about 60% but with very good precision. Over a 20 h period, the lipid phosphorus associated with secreted lipoproteins increased linearly. The secretion of apolipoprotein A1 and apolipoprotein E associated with HDL and apolipoprotein B associated with VLDL also increased as a nearly linear function with time. The secretion of apolipoprotein E associated with VLDL was linear only up to approx. 6 h. The availability of this procedure should greatly facilitate further studies on the characterization of lipoproteins secreted by hepatocytes and mechanisms that regulate lipoprotein synthesis and secretion.  相似文献   

5.
Three separate studies were carried out to test the hypothesis that rat liver secretes vitamin E (alpha-tocopherol) within very low density lipoproteins (VLDL). i) When the clearance of plasma chylomicrons (CM) and VLDL was blocked by the administration of Triton WR-1339, alpha-tocopherol concentrations increased linearly with time in both classes of triacylglycerol-rich lipoproteins, although accumulation rates within VLDL exceeded those within CM. For fasted rats, appearance of alpha-tocopherol in VLDL persisted at slightly reduced rates. alpha-Tocopherol and triglycerides in the VLDL fraction responded to Triton WR-1339 administration by coordinate increases. In contrast to the situation in serum, alpha-tocopherol concentrations decreased in the liver following injection of Triton. ii) In order to inhibit the secretion of hepatic lipoproteins containing apolipoprotein B (apoB), rats were fed a diet containing orotic acid. This resulted in a reduction of apoB and alpha-tocopherol concentrations in serum and VLDL, whereas the vitamin E content of liver was increased. iii) In primary cultures of hepatocytes, alpha-tocopherol was secreted into the culture media predominantly within VLDL. We, therefore, conclude that the liver secretes alpha-tocopherol within VLDL and in this way contributes to the maintenance of serum vitamin E concentrations.  相似文献   

6.
Very low density lipoproteins rich or poor in high molecular weight apolipoprotein B (Bh-rich or Bh-poor VLDL, respectively) were prepared from rats fasted for 2 days and animals fasted and then refed for 2 days, respectively. Bh-rich or Bh-poor VLDL remnants (IDL) were also prepared by in vitro lipolysis of the corresponding VLDL preparations, and their apolipoprotein (apo) profile and lipid composition determined. Bh-rich IDL are richer in esterified cholesterol than Bh-poor IDL, but poorer in apoC and triglycerides. The binding of 125I-labeled Bh-rich IDL and 125I-labeled Bh-poor IDL to rat liver membranes was assessed by saturation-curve studies. Both types of IDL bound to high- and low-affinity sites on rat liver membranes. There were no significant differences between the binding of IDL produced from Bh-rich or Bh-poor VLDL to either the high- or low-affinity sites. However, by masking the low-affinity binding sites with saturating amounts of human high density lipoproteins 3 (HDL3), we were able to demonstrate that Bh-rich IDL bound to high-affinity binding sites with five times less affinity than Bh-poor IDL. These results show that saturating the low-affinity binding sites of rat liver membranes reveals differences in the binding abilities of lipoproteins to the high-affinity sites. Also, an analysis of apo and lipid compositions of the two types of IDL reveals that the apoBh contribution is likely to be responsible for differences in affinities of IDL for the high-affinity binding sites of rat liver membranes.  相似文献   

7.
The effects of oleic acid on the biosynthesis and secretion of VLDL (very-low-density-lipoprotein) apoproteins and lipids were investigated in isolated perfused rat liver. Protein synthesis was measured by the incorporation of L-[4,5-3H]leucine into the VLDL apoproteins (d less than 1.006) and into apolipoproteins of the whole perfusate (d less than 1.21). Oleate did not affect incorporation of [3H]leucine into total-perfusate or hepatic protein. The infusion of oleate, however, increased the mass and radioactivity of the VLDL apoprotein in proportion to the concentration of oleate infused. Uptake of oleate was similar with livers from fed or fasted animals. Fasting itself (24 h) decreased the net secretion and incorporation of [3H]leucine into total VLDL apoprotein and decreased the output of VLDL protein by the liver. A linear relationship existed between the output of VLDL triacylglycerol (mumol/h per g of liver) and secretion and/or synthesis of VLDL protein. Net output of VLDL cholesterol and phospholipid also increased linearly with VLDL-triacylglycerol output. Oleate stimulated incorporation of [3H]leucine into VLDL apo (apolipoprotein) E and apo C by livers from fed animals, and into VLDL apo Bh, B1, E and C by livers from fasted rats. The incorporation of [3H]leucine into individual apolipoproteins of the total perfusate lipoprotein (d less than 1.210 ultracentrifugal fraction) was not changed significantly by oleate during perfusion of livers from fed rats, suggesting that the synthesis de novo of each apolipoprotein was not stimulated by oleate. This is in contrast with that observed with livers from fasted rats, in which the synthesis of the total-perfusate lipoprotein (d less than 1.210 fraction) apo B, E and C was apparently stimulated by oleate. The observations with livers from fed rats suggest redistribution of radioactive apolipoproteins to the VLDL during or after the process of secretion, rather than an increase of apoprotein synthesis de novo. It appears, however, that the biosynthesis of apo B1, Bh, E and C was stimulated by oleic acid in livers from fasted rats. Since the incorporations of [3H]leucine into the VLDL and total-perfusate apolipoproteins were increased in fasted-rat liver when the fatty acid was infused, part of the apparent stimulated synthesis of the VLDL apoprotein may be in response to the increased formation and secretion of VLDL lipid.  相似文献   

8.
Hepatic catabolism of lipoproteins containing apolipoproteins B or E is enhanced in rats treated with pharmacologic doses of 17 alpha-ethinyl estradiol. Liver membranes prepared from these rats exhibit an increased number of receptor sites that bind 125I-labeled human low density lipoproteins (LDL) in vitro. In the present studies, this estradiol-stimulated hepatic receptor was shown to recognize the following rat lipoproteins: LDL, very low density lipoproteins obtained from liver perfusates (hepatic VLDL), and VLDL-remnants prepared by intravenous injection of hepatic VLDL into functionally eviscerated rats. The receptor also recognized synthetic lamellar complexes of lecithin and rat apoprotein E as well as canine high density lipoproteins containing apoprotein E (apo E-HDLc). It did not recognize human HDL or rat HDL deficient in apoprotein E. Much smaller amounts of this high affinity binding site were also found on liver membranes from untreated rats, the number of such sites increasing more than 10-fold after the animals were treated with estradiol. Each of the rat lipoproteins recognized by this receptor was taken up more rapidly by perfused livers from estrogen-treated rats. In addition, enrichment of hepatic VLDL with C-apoproteins lowered the ability of these lipoproteins to bind to the estradiol-stimulated receptor and diminished their rate of uptake by the perfused liver of estrogen-treated rats, just as it did in normal rats. The current data indicate that under the influence of pharmacologic doses of estradiol the liver of the rat contains increased amounts of a functional lipoprotein receptor that binds lipoproteins containing apoproteins B and E. This hepatic lipoprotein receptor appears to mediate the uptake and degradation of lipoproteins by the normal liver as well as the liver of estradiol-treated rats. The hepatic receptor bears a close functional resemblance to the LDL receptor previously characterized on extrahepatic cells.  相似文献   

9.
Restriction fragments isolated from a 17-kb rat genomic DNA clone containing the gene for apolipoprotein (apo) E were radiolabeled and used to screen a rat liver cDNA library. A cDNA clone hybridizing to a 6-kb genomic DNA fragment was isolated and the nucleotide sequence of the cDNA insert determined. The sequence was homologous to the sequence for human apo C-I and was used to derive the corresponding amino acid sequence. Unlike human apo C-I, mature rat apo C-I contains histidine, lacks valine, and has alanine at the C terminus and aspartate as the N terminus. Screening the rat liver cDNA library with a radiolabeled 1.9-kb restriction fragment from the genomic DNA clone containing the rat apo E gene identified another cDNA clone (ECL cDNA). Nucleotide sequencing yielded a derived 75-amino-acid sequence for the ECL protein with a hydrophobicity profile similar to that of rat apo C-I. Northern analysis demonstrated a 0.50-kb band for ECL mRNA. The tissue-specific expression of the gene is similar to that of rat apo C-I. This study indicates that the rat apo C-I and ECL genes are closely linked, about 4.5 and 12 kb downstream of the apo E gene, respectively.  相似文献   

10.
The VLDL (very low density lipoprotein) receptor is a member of the LDL (low density lipoprotein) receptor family. The VLDL receptor binds apolipoprotein (apo) E but not apo B, and is expressed in fatty acid active tissues (heart, muscle, adipose) and macrophages abundantly. Lipoprotein lipase (LPL) modulates the binding of triglyceride (TG)-rich lipoprotein particles to the VLDL receptor. By the unique ligand specificity, VLDL receptor practically appeared to function as IDL (intermediate density lipoprotein) and chylomicron remnant receptor in peripheral tissues in concert with LPL. In contrast to LDL receptor, the VLDL receptor expression is not down regulated by lipoproteins. Recently several possible functions of the VLDL receptor have been reported in lipoprotein metabolism, atherosclerosis, obesity/insulin resistance, cardiac fatty acid metabolism and neuronal migration. The gene therapy of VLDL receptor into the LDL receptor knockout mice liver showed a benefit effect for lipoprotein metabolism and atherosclerosis. Further researches about the VLDL receptor function will be needed in the future.  相似文献   

11.
Feeding xenobiotics such as polychlorinated biphenyls (PCB) causes hypercholesterolemia and fatty liver in rats. The hypercholesterolemia was characterized by high levels of high density lipoproteins (HDL) and apolipoprotein A-I (apo A-I), and by very low density lipoproteins (VLDL) rich in cholesterol and apo E (designated “PCB-VLDL”). The mechanisms for the generation of “PCB-VLDL” and fatty liver, and for hyper-α-lipoproteinemia in rats fed PCB were investigated. The secretion rate of VLDL-lipids was increased by PCB on day 3, while the secretion rate of only VLDL-cholesterol and phospholipid were increased by PCB on days 8 and 57. Although all liver lipids were accumulated by PCB, the accumulation of esterified cholesterol was the most drastic. These results suggested that PCB stimulated the secretion of VLDL at the early period of PCB feeding (on day 3), and that cholesterol-rich VLDL, “PCB-VLDL”, was not generated in the circulation, but was originally secreted from the liver. In spite of the stimulation of VLDL secretion, liver lipids accumulated within 8 days on the PCB diet. On days 3 and 8, serum levels of free fatty acids were not changed by PCB feeding. These data and our previous findings that PCB induced hepatic lipogenic enzymes lead us to speculate that fatty liver induced by PCB may be attributed to a stimulation of de novo synthesis of liver lipids. Even when hepatic secretion of VLDL was blocked by orotic acid, HDL-cholesterol was increased by PCB feeding, suggesting that the increase in serum level of HDL by PCB was not due to stimulation of cholesterol transport into HDL from VLDL.  相似文献   

12.
The nature of the interaction of high density lipoproteins (HDL), formed during lipolysis of human very low density lipoprotein (VLDL) by perfused rat heart, with subfractions of human plasma HDL was investigated. Perfusate HDL, containing apoliproproteins (apo) E, C-II, and C-III but no apo A-I or A-II, was incubated with a subfraction of HDL (HDL-A) containing apo A-I and A-II, but devoid of apo C-II, C-III, and E. The products of the incubation were resolved by heparin-Sepharose or hydroxylapatite chromatography under conditions which allowed the resolution of the initial HDL-A and perfusate HDL. The fractions were analyzed for apolipoprotein content and lipid composition and assessed for particle size by electron microscopy. Following the incubation, the apo-E-containing lipoproteins were distinct from perfusate HDL since they contained apo A-I as a major component and apo C-II and C-III in reduced proportions. However, the HDL-A fraction contained apo C-II and C-III as major constituents. Associated with these changes in apolipoprotein composition, the apo-E-rich lipoproteins acquired cholesteryl ester from the HDL-A fraction and lost phospholipid to the HDL-A fraction. The HDL-A fraction maintained a low unesterified cholesterol/phospholipid molar ratio (0.23), while the apo-E-containing lipoproteins possessed a high ratio (0.75) characteristic of the perfusate HDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Lipoprotein fractions in Rana esculenta were separated using the same salt intervals currently applied for human lipoproteins. Very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL) were analyzed with reference to the electrophoretic pattern. The lipoprotein electrophoretic pattern in males and females throughout the reproductive cycle showed minor differences. In general, each fraction was characterized by a specific apolipoprotein content. VLDL and LDL fractions were dominated by a high molecular weight (MW) band, most likely the counterpart of human Apolipoprotein B (apo B). The apo B in R. esculenta cross reacted, although weakly, with antibodies raised against chicken apo B. The HDL fraction showed a band with an apparent MW of 29 kDa. The electrophoretic mobility of the protein moiety of HDL was similar to human apolipoprotein A-I (apo A-I). However, HDL apolipoprotein of R. esculenta did not cross react with antibodies against chicken apo A-I under either denaturing or native conditions. The HDL apolipoprotein of R. esculenta was purified by DEAE-Sephacel chromatography followed by HPLC. Its amino acid composition showed a moderate correlation with trout, salmon, chicken and human apo A-I.  相似文献   

14.
Human very-low-density lipoproteins (VLDL) have been separated into two discrete subfractions by heparin-Sepharose chromatography. The retained fraction relative to the unretained fraction is characterized by an increased cholesterol ester/triacylglycerol ratio and an increased ratio of apolipoprotein E relative to apolipoprotein C. We have subfractionated VLDL from type IV hyperlipoproteinemic subjects and characterized these subfractions with respect to (i) composition and (ii) the metabolic fate of apolipoprotein B of each subfraction. The unretained fraction accounted for an average of 42% of total VLDL in type IV subjects. A similar distribution was obtained with VLDL from Type III subjects; however, only 25% of normal VLDL is in the unretained fraction. The apolipoprotein E/apolipoprotein C ratio was 2-8-fold higher in the retained fraction. The distribution of apolipoprotein E isomorphs and the individual C apolipoproteins were similar in each fraction. Retained and unretained fractions were labelled with 125I and/or 131I and injected simultaneously into miniature pigs. Apolipoprotein B of retained fractions was catabolized at a greater rate (fractional catabolic rate = 0.98 h-1 vs. 0.54 h-1, n = 7, P less than 0.05) compared to unretained fractions. These results are consistent with the concept that reduced content of C apolipoproteins in VLDL is correlated with enhanced uptake by perfused rat livers. Apolipoprotein B from retained fractions was converted to intermediate-density lipoproteins (IDL) at a greater rate, and apolipoprotein B from both fractions were converted to low-density lipoproteins (LDL). Although the unretained fraction may be the precursor of the retained fraction, the possibility exists that each fraction is largely synthesized and catabolized independently.  相似文献   

15.
Previous studies have shown that very low density lipoproteins (VLDL) from patients with Tangier disease are less effective as a substrate for human milk lipoprotein lipase (LPL) than VLDL from normal controls as assessed by measuring the first order rate constant (k1) of triglyceride hydrolysis. Tangier VLDL also has a higher content of apolipoprotein (apo) A-II than normal VLDL. To explore the possible relationship between the relatively high concentration of apoA-II in VLDL and low k1 values, Tangier VLDL were fractionated on an anti-apoA-II immunosorber. The retained fraction contained a newly identified triglyceride-rich lipoprotein characterized by the presence of apolipoproteins A-II, B, C-I, C-II, C-III, D, and E (LP-A-II:B:C:D:E or LP-A-II:B complex), whereas the unretained fraction consisted of previously identified triglyceride-rich apoB-containing lipoproteins free of apoA-II. In VLDL from patients with Tangier disease or type V hyperlipoproteinemia, the LP-A-II:B complex accounted for 70-90% and 25-70% of the total apoB content, respectively. The LP-A-II:B complexes had similar lipid and apolipoprotein composition; they were poor substrates for LPL as indicated by their low k1 values (0.014-0.016 min-1). In contrast, the apoA-II-free lipoproteins present in unretained fractions were effective substrates for LPL with k1 values equal to or greater than 0.0313 min-1. These results indicate that triglyceride-rich lipoproteins consist of several apoB-containing lipoproteins, including the LP-A-II:B complex, and that lipoprotein particles of similar size and density but distinct apolipoprotein composition also possess distinct metabolic properties.  相似文献   

16.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicrons. Addition of rat apolipoprotein E to small chylomicrons from mesenteric lymph of normal rats did not displace C apolipoproteins and had no effect on the uptake of these particles by the perfused liver, indicating that an increased ratio of E apolipoproteins to C apolipoproteins on chylomicron particles, unaccompanied by depletion of the latter, may not promote recognition by the chylomicron remnant receptor. The hepatic uptake of remnants of rat hepatic very low density lipoproteins (VLDL) and small chylomicrons, which had been produced in functionally eviscerated rats, was also inhibited by addition of C apolipoproteins. These observations are consistent with the hypothesis that the addition of all of the C apolipoproteins to newly secreted chylomicrons and VLDL inhibits premature uptake of these particles by the liver and that depletion of all of these apolipoproteins from remnant particles facilitates their hepatic uptake. Remnants of chylomicrons and VLDL incubated with rat C apolipoproteins efficiently took up C-III apolipoproteins, but not apolipoprotein C-II (the activator protein for lipoprotein lipase). Preferential loss of apolipoprotein C-II during remnant formation may regulate the termination of triglyceride hydrolysis prior to complete removal of triglycerides from chylomicrons and VLDL.  相似文献   

17.
Cultured preadipocytes from rat epididymal fat pads were able to bind, internalize, and degrade human plasma very-low-density lipoproteins (VLDL) more efficiently than low-density lipoproteins (LDL). VLDL, but not LDL, activated acyl-CoA: cholesterol acyltransferase (ACAT) and increased cholesterol accumulation in these cells. However, trypsin-treated VLDL (T-VLDL) lost the capacity to bind, activate ACAT, and increase cholesterol accumulation. After the treatment of VLDL with trypsin, SDS/polyacrylamide-gel electrophoresis and immunoblotting showed that apolipoprotein E (apo E) was completely degraded, whereas apolipoprotein CII (apo C-II) was preserved. ApoE complexed with dimyristoyl phosphatidylcholine (DMPC) was able to complete with VLDL for binding to the cells. Although T-VLDL did not bind to the preadipocytes, these cells accumulate triacylglycerols from T-VLDL, presumably after lipolysis, as efficiently as from native VLDL. Rat smooth muscle cells and skin fibroblasts also bind and metabolize human VLDL better than LDL. However, human skin fibroblasts and omental preadipocytes metabolized LDL better than VLDL. These studies indicate that rat tissues can recognize and metabolize apoE-containing human plasma VLDL although they cannot recognize human LDL.  相似文献   

18.
Northern blot analysis of mRNA prepared from the lung of Suncus murinus (suncus), which was classified as an ancestor of primates, revealed that the expression level of cytochrome P450 2A (CYP2A) mRNA was about 100-fold higher than in the lung from rats and mice. To confirm that the pulmonary CYP2A of the suncus had a catalytic activity, the metabolism of a specific substrate for CYP2A6, (+)-cis-3,5-dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride (SM-12502), was determined. The intrinsic clearance for SM-12502 S-oxidation by the suncus lung microsomes was calculated to be 99-fold higher than that by rat liver microsomes. The mutagen-producing activity of a 9,000 g supernatant fraction prepared from suncus lung was examined using 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as a promutagen. The results showed that the suncus lung possessed 82-fold higher mutagen-producing activity than the rat lung, indicating that NNK was efficiently activated by the CYP2A isoform expressed in the suncus lung and that the suncus was a sensitive animal species to the genotoxicity of NNK contained in tobacco smoke.  相似文献   

19.
Uniformly fatty livers from orotic acid-fed rats secreted almost no very low density lipoproteins (VLDL) but normal amounts of nascent high density lipoproteins (HDL) accumulated in perfusates. When lecithin:cholesterol acyltransferase (LCAT) was inhibited, nascent HDL were uniformly discoidal and lacked cholesteryl esters. Lipid and apoprotein compositions of nascent HDL from normal and fatty livers were similar whether LCAT was inhibited or not. Apolipoprotein B-100 was not detected in perfusates of uniformly fatty livers, but small amounts of apolipoprotein B-48 were present in HDL2 fractions. Nascent lipoproteins were not seen in Golgi compartments, but lipid-rich particles were clearly evident in endoplasmic reticulum cisternae adjacent to the cis face of the Golgi complex, suggesting that orotic acid blocks VLDL secretion by preventing translocation of nascent particles from the endoplasmic reticulum to the cis Golgi compartment. The accumulation of normal amounts of discoidal HDL in liver perfusates despite virtual absence of triglyceride-rich lipoproteins in Golgi secretory compartments, the space of Disse, and the perfusate is inconsistent with the concept that nascent HDL are exclusively a product of surface remnants cast off during lipolysis of chylomicrons and VLDL.  相似文献   

20.
Expression of drug-metabolizing enzymes including cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO) in various tissues of Suncus murinus (Suncus) were examined. Northern blot analysis showed that mRNAs hybridizable with cDNAs for rat CYP1A2, human CYP2A6, rat CYP2B1, human CYP2C8, human CYP2D6, rat CYP2E1, human CYP3A4 and rat CYP4A1 were expressed in various tissues from Suncus. The mRNA level of CYP2A in the Suncus lung was very high. Furthermore, it was found that the level of CYP2A mRNA in the Suncus lung was higher compared to the Suncus liver. The expression level of mRNA hybridizable with cDNA for human CYP3A4 was very low. The presence of CYP3A gene in Suncus was proven by the induction of the CYP with dexamethasone. Very low expression levels of mRNAs hybridizable with cDNAs for rat FMO1, rat FMO2, rat FMO3 and rat FMO5 were also seen in Suncus liver. No apparent hybridization band appeared when human FMO4 cDNA was used as a probe. The hepatic expression of mRNAs hybridizable with cDNAs for UDP-glucuronosyltransferase 1*6, aryl sulfotransferase, glutathione S-transferase 1, carboxyesterase and microsomal epoxide hydrolase in the Suncus were observed. These results indicate that the Suncus is a unique animal species in that mRNAs for CYP3A and FMO are expressed at very low levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号