首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Oecologica》2004,25(1-2):103-110
I examined the effects of seed mass on performance of seedlings of Artocarpus heterophyllus L. (Moraceae), a large evergreen late successional shade-tolerant tree species in three contrasting light conditions. Seed mass varied many fold from 1.5 to 14 g in A. heterophyllus. Germination and germination time showed a significant correlation with seed mass. Germination differed significantly among three light regimes (50%, 25% and 3%). Seed mass and light level significantly affected seedling survival. The seedlings that emerged from large seeds survived better than those from small seeds under all light regimes. Survival of seedlings was maximum in 25% light regime for all seed mass classes but did not differ significantly from that at 50% light regime. Survival was significantly lower in 3% light as compared to 50% and 25% light regimes. Seedling vigor (expressed in terms of seedling height, leaf area and dry weight) was also significantly affected by seed mass and light regimes. Seedlings that emerged from larger seeds and grew under 50% light regime produced the heaviest seedlings, while those resulting from smaller seeds and grown under 3% light regime produced the lightest seedlings. Resprouting capacity of seedlings after clipping was significantly affected by seed mass and light regime. Seedlings emerging from larger seeds were capable of resprouting several times successively. Resprouting was more pronounced under 50% and 25% light regimes as compared to 3% light. Success of A. heterophyllus regeneration appears to be regulated by an interactive effect of seed mass and light regime.  相似文献   

2.
Quercus forest regeneration is limited by different factors, post-dispersal predation being one of the most critical stages. We analysed seed removal of four coexisting Quercus species (Q. ilex, Q. suber, Q. faginea and Q. pyrenaica) in a Mediterranean forest located in Southern Spain. Marked and weighed acorns from each of the species were placed in experimental units with or without exclusion of large herbivores and in two microhabitat types (Q. ilex shade or open). Acorn removal was monitored for 120?days in order to test the effect of exclusion of large herbivore and microhabitat type on seed removal rates and species selection. Interestingly, the results of microhabitat and species selection differed depending on the presence of large herbivores. Removal was faster in sites without exclusion, where most seeds (??85%) disappeared during the first 9?days. In these sites, no differences in seed removal were found between different microhabitats, but seeds of two species, those with higher seed mass (Q. suber and Q. pyrenaica) were most preferred. However, under exclusion of large herbivores, seed removal was affected by the microhabitat, this being greater in Q. ilex shaded microhabitats, which showed a higher structural diversity. Also, species selection was completely different under exclusion of large herbivores, and seeds of Q. ilex and Q. faginea were removed faster. These results highlight the importance of large herbivore activity on seed removal and its effect on microhabitat and species selection. Therefore, specific selection by seed consumers may modify seedling recruitment and may have an important influence on the relative abundance of coexisting Quercus species.  相似文献   

3.
Anatomical changes at the cotyledonary node from the embryo to the seedling stage in Quercus coccifera, Q. ilex, and Q. humilis were investigated by light and scanning electron microscopy techniques. Mature embryos of Q. humilis possess 2-3 pairs of leaf primordia and a pair of cotyledonary buds, whereas in Q. coccifera and Q. ilex there are two incipient primordia, and cotyledonary buds are not observed until 1 wk after germination. In all three species the cotyledonary buds multiply, forming bud clusters, and a vascular connection is well established within 5-6 wk after germination. As development proceeds, the cotyledonary region becomes woody, but buds, which are exogenous in origin, never become embedded in the periderm. In comparison with Q. suber, another native Mediterranean Basin oak, the cotyledonary node is short and axillary buds are not present below the insertion of cotyledons. In addition, starch accumulation in the cotyledonary region is not observed from histological analysis in the three oaks. Therefore, in Q. coccifera, Q. ilex, and Q. humilis seedlings the cotyledonary node can be considered to be an important regenerative structure enabling them to resprout after the elimination of the shoot above the cotyledons, despite the absence of a lignotuberous structure.  相似文献   

4.
The relationship between seed size and fitness in plants may depend on offspring density, especially in cases where seed size affects the outcome of competition. We investigated the relationship between seed mass, germination, intraspecific competition and seedling height in a glasshouse experiment on three European white oak species (Quercus robur, Q. petraea, Q. pubescens). Within offspring families, seed mass showed a moderate, but statistically significant effect on seedling height, i.e. seedlings from heavier seeds were slightly taller. In contrast, competition caused pronounced inequality in seedling height in pairs of competing seedlings, but in only 55.2% of all pairs the dominant competitor arose from the heavier seed. It is thus possible that a positive effect of seed mass on seedling growth can be mediated through the density of conspecific seedlings and that heterogeneity in offspring density will contribute to the maintenance of seed mass variation in oak populations.  相似文献   

5.
Chloroplast DNA variation was studied in three evergreen Quercus species (Q. suber L., Q. ilex L. and Q. coccifera L.) from the Western Mediterranean Basin using PCR-RFLP. We studied five primer pair/enzyme combinations, four of them previously used in other European Quercus, obtaining a large number of haplotypes (81) grouped in three main types (suber type, ilex-coccifera I type and ilex-coccifera II type). Such level of haplotype diversity is higher than previously reported for the genus. Remarkable differences in haplotype richness between species have been found. Q. ilex and Q. coccifera usually share the same haplotypes, while a number of Q. suber populations possesses variants of the ilex-coccifera I type. This fact is interpreted as a result of genetic introgression between Q. suber and Q. ilex. Reproductive factors that could determine this exchange are discussed, as well as the influence of different species histories on the present structure of evergreen Quercus in the Western Mediterranean Basin.  相似文献   

6.
To cope with the limiting light conditions in the rain forest understory, many tropical tree species have evolved large seeds that provide the emerging seedlings with nutritional reserves. Habitat fragmentation might change the adaptive value of seed size by modifying the biotic and physical conditions of the forest understory. We experimentally assessed the potential of fragmentation to alter how seed mass affects seedling survival, vigor, and attack by natural enemies of the tropical tree Nectandra ambigens. Seeds from different mother trees (families) were individually weighed and sown in experimental sites established in continuous forest and in forest fragments. Seedling survival, vigor, and damage by herbivores and pathogens were recorded periodically. While seedlings derived from larger seeds had higher survival rates in both habitats, seedling survival and vigor were significantly greater in forest fragments, and the seedlings also suffered fewer attacks by natural enemies. We found genetic variance for seed mass among families with a heritability value (h2) of 0.66, and we found evidence for selection on seed size. Average seed size differed between dead and living seedlings in three sites. In one fragment, seed size was selectively neutral in relation to survival. Overall, selection for seed size promoted survival and thus appears to affect the distribution of this trait. The maintenance of genetic variance could be related to the stochastic nature of the formation of light gaps. Our results highlight the importance of evaluating the adaptive value of traits susceptible to environmental changes for conservation purposes.  相似文献   

7.
Root:shoot (R:S) biomass partitioning is one of the keys to the plants' ability to compensate for limiting resources in the environment and thus to survive and succeed in competition. In adult plants, it can vary in response to many factors, such as nutrient availability in the soil or reserves in the roots from the previous season. The question remains whether, at the interspecific level, reserves in seeds can affect seedlings' R:S ratio in a similar way. Proper allocation to resource‐acquiring organs is enormously important for seedlings and is likely to determine their survival and further success. Therefore, we investigated the effect of seed mass on seedling R:S biomass partitioning and its interaction with nutrient supply in the substrate. We measured seedling biomass partitioning under two different nutrient treatments after 2, 4, 6, and 12 weeks for seventeen species differing in seed mass and covering. We used phylogenetically informed analysis to determine the independent influence of seed mass on seedling biomass partitioning. We found consistently lower R:S ratios in seedlings with higher seed mass. Expectedly, R:S was also lower with higher substrate nutrient supply, but substrate nutrient supply had a bigger effect on R:S ratio for species with higher seed mass. These findings point to the importance of seed reserves for the usage of soil resources. Generally, R:S ratio decreased over time and, similarly to the effect of substrate nutrients, R:S ratio decreased faster for large‐seeded species. We show that the seed mass determines the allocation patterns into new resource‐acquiring organs during seedling development. Large‐seeded species are more flexible in soil nutrient use. It is likely that faster development of shoots provides large‐seeded species with the key advantage in asymmetric above‐ground competition, and that this could constitute one of the selective factors for optimum seed mass.  相似文献   

8.
Andrew L. Mack 《Biotropica》1998,30(4):604-608
Although large seeds might be more attractive and apparent to seed predators, large seed size could enable tolerance of seed predators. If seeds are large enough to sustain damage that would kill smaller seeds yet still produce viable seedlings, investment above the minimum by the maternal plant could be advantageous. I tested this hypothesis by removing 0–80 percent of the cotyledons of four large-seeded (4–180 g) tree species from Papua New Guinea and monitoring germination and seedling growth for eight months. All species showed little negative effect on seedling size with up to 50 percent removal of cotyledons and the larger species showed a less serious effect on growth than smaller-seeded species above 50 percent removal. Large-seeded species clearly have more than the minimum-required cotyledonary reserves. Observations of viable seedlings with heavily damaged cotyledons suggest that these species withstand attack by rodents and beetles by virtue of their large size.  相似文献   

9.
Gene flow is particularly frequent in the genus Quercus (oaks), especially between closely related species. We focus here on Quercus ilex and the cork-producing Quercus suber , which occasionally hybridize although they are phylogenetically markedly separated. Morphological observations were combined with both allozymic and chloroplastic diagnostic markers to characterize hybridization and introgression and to infer their dynamics in two French regions (French Catalonia and Provence), which are separated by several hundred kilometres. Some hybrids were found in both regions, indicating recent hybridization events. As expected from previous studies, most hybrids resulted from ♀ Q. ilex  × ♂ Q. suber crosses, but our data showed that the reciprocal cross is also possible. Partial independence between nuclear and chloroplastic introgression was observed in the two species. Nuclear introgression was limited in both species and both regions, with no preferred direction. In Provence, chloroplastic introgression was very rare in both species. Conversely, all Q. suber individuals from French Catalonia were introgressed by Q. ilex chlorotypes. This might be explained by introgression in the Iberian Peninsula antedating the first occurrence of the two species in French Catalonia. We also observed a new chlorotype that was created locally, and was exchanged between the two species. However, the two species still remain genetically differentiated. The dynamics and complexity of exchanges and the factors determining them (including human management of Q. suber ) are discussed.  相似文献   

10.
Chloroplast (cp) and mitochondrial (mt) DNA variation were studied in 97 populations of cork oak (Quercus suber) in Morocco; in 31 of these populations, holm oak (Quercus ilex), a clearly distinct species, also occurred and was compared with Q. suber. Three cpDNA and one mtDNA primer pairs were used in the survey, each in combination with one restriction enzyme. Six haplotypes belonging to two very divergent lineages were detected; one lineage predominates in each species, and is probably ancestral, as inferred from comparisons with other oak species. In the mixed-species populations, cytoplasmic genomes were frequently shared across species, as indicated by an introgression ratio of 0.63. This index is a new measure of the propensity of species to share locally genetic markers, varying from zero (complete differentiation) to one (no differentiation). By contrast, more closely related deciduous oak species (Q. robur, Q. petraea and Q. pubescens) have introgression ratios varying from 0.82 to 0.97. The introgression events appear to have been more frequent in the direction Q. ilex (female) x Q. suber (male), a finding which seems attributable to the flowering phenology of these two species. This asymmetry may have favoured immigration of Q. suber beyond its main range, in regions already colonized by Q. ilex. There, rare hybridization and further introgression through long distance pollen flow have established populations that are morphologically indistinguishable from Q. suber but that have cytoplasmic genomes originating from the local Q. ilex populations.  相似文献   

11.
Seed germination triggered by light exposure (positive photoblastism) has been determined in quantitative studies for numerous plant families and species. For Cactaceae, positive photoblastism is thought to be associated with life form and seed mass, but this association has never been evaluated. To explore hypotheses on associations between seed mass, seed dispersal, seed dormancy, life form, taxa and plant height with Relative Light Germination (RLG) in Cactaceae, we evaluated the effect of light on seed germination of 136 taxa. The taxa studied are native to several countries: México, Chile, Argentina, Brazil, Perú, USA, and Venezuela. Seed traits contrasted with RLG were life form, seed mass, seed dispersal, seed dormancy, adult plant height and taxon. We found some differences between RLG among taxa; Cacteae, Pachycereeae and Trichocereeae had higher RLG than Notocacteae. RLG was lower for seeds from taller than for shorter taxa, and lower for taxa with heavier seeds than for taxa with lighter seeds. Dispersal syndrome groups varied with RLG. RLG did not differ between cylindrical and globose taxa. Trends found here were in agreement with expectations for small-seeded species to have a light requirement to germinate more often than large-seeded species. This is the first time that cactus height is related to photoblastism. It is possible that seeds from tall plants are larger and thus have the capacity to produce taller seedlings than those from small plants, and that seedlings from large seeds with more resources have the ability to emerge from greater soil depths than those from small seeds.  相似文献   

12.
In moist temperate and tropical environments species that typically become established in closed, shaded habitats tend to have larger seeds than those that regenerate in open, secondary habitats. Despite this common pattern and the frequency with which benefits of small seed size for early successional species (large number, enhanced dispersal potential) have been discussed, little attention has focused on the advantages of large seeds for species that regenerate in closed, late successional associations. It is generally considered that large seeds enhance seedling survivorship at low light intensities. However, light intensity is only one of several factors that differ between shaded and sunlit habitats. This review examines microclimatic and biotic differences between shaded subcanopy habitats in mature tropical forests and those in sunlit, light gap habitats in which the early stages of tropical forest succession occur. Each factor is examined as a possible selective agent responsible for maintaining seed size differences between two guilds of tropical rainforest trees; the pioneer species that have small seeds and typically become established in large, sunlit gaps in the forest canopy and the persistent, relatively shade-tolerant species that have larger seeds and produce seedlings that survive for variable periods of time in the shade beneath the forest canopy. Three microclimatic factors that differ in subcanopy and gap habitats are examined; temperature, moisture, and light intensity. It is unlikely that temperature has been an important selective agent in maintaining the differences in seed sizes observed between the pioneer and persistent tree guilds. However, greater desiccation stress in light gaps might prevent successful regeneration of larger seeds in this habitat and thus might impose the smaller mean seed sizes of pioneer species. Reduced light intensities in subcanopy habitats also could favor larger seeds in the persistent guild because large seed reserves might 1) enhance the abilities of seeds to persist until suitable light (or moisture) conditions arise by providing for metabolic requirements of seeds during quiescent periods, 2) provide secondary compounds for defense of persistent seedlings against pathogens and predators during periods of low energy availability, 3) provide energy for construction of large amounts of photosynthetic tissue needed to maintain a positive net energy balance when light conditions are just above the leaf light compensation point of the plant, 4) provide energy for growth into higher light intensity strata, and 5) provide nutrients for replacement of lost or damaged tissues in persistent seedlings. Differences between soils in light gaps and subcanopy habitats are considered briefly. It is concluded that too little is known for predictions to be made regarding the probable effects of soil differences on the sizes of seeds able to survive in each habitat. Finally, differences between the two habitats in four biotic factors (competition, predation, pathogens, and mycorrhizal availability) are considered. Of these, greater competition for nutrients in the subcanopy habitat, and competition among co-germinating seedlings for light could have been important in favoring large seeds in the guild of persistent species. Pathogens are known to be more effective in shaded habitats, but data on seedling resistance to pathogens do not provide support for a role of seed size in enhancing resistance. Although differences in predation intensity and in mycorrhizal abundance in the two habitats have not been evaluated in the field, potential roles of these two factors in maintaining the seed size differential between these two guilds of forest trees are discussed. Despite the existence of numerous potential benefits of large seed reserves, seed sizes often must reflect compromises between conflicting selective pressures. Environmental conditions (e.g., moisture availability) can impose upper limits on seed size. Enhanced dispersal potential and greater total propagule numbers from maternal energy reserves are benefits of small seed size that can counterbalance selection for large seed reserves. The interactions between selective forces in molding seed sizes are discussed in a final section.  相似文献   

13.
It is generally accepted that seedlings from large seeds are more tolerant to defoliation than those from small seeds due to the additional metabolic reserves present in the large seeds. However, information on the effects of amount of seed reserves (cotyledon removal) from seedlings resulting from large vs. small seeds on seedling growth and long‐term survival in the field is limited. Five legume species with different sizes of seeds were sown in the field and none, one, or both cotyledons removed 7 days after seedling emergence. Seedling biomass, relative growth rate (RGR) and survival were determined at different time. Cotyledon removal, species, and their interaction had significant effects on seedling growth and survival. During the period between 33 and 70 days, seedlings from large seeds had a significantly lower RGR than those from small seeds. Biomass, RGR, and survival of seedlings from large seeds were significantly reduced by removal one or both cotyledons, whereas those of seedlings from small seeds were not affected. Seed energy reserves are more important for the early growth of seedlings from large seeds than for those from small seeds. The overall effect of cotyledon removal on growth and survival varies with seed size (i.e., energy reserves) with seedlings from small seeds being less sensitive than those from large seeds under field conditions.  相似文献   

14.
1 We tested whether seedlings of small‐seeded species were more reliant on soil nutrients than large‐seeded ones by growing 21 species from three woody genera ( Eucalyptus, Hakea and Banksia ) along a gradient of nutrient availability.
2 At very low nutrient availability, larger seeds produced larger seedlings. This was seen especially among the eucalypts, but the difference was eliminated at optimal soil nutrient levels. Hakea species with large seed mass, and all Banksia species, appeared unable to exploit additional soil nutrients for growth, whatever the level supplied.
3 Larger seeds tended to have proportionately higher contents of N, P and K and, under nutrient‐poor conditions, supplied more of these to their seedlings, although at a diminishing rate.
4 We suggest that large‐seededness could be an adaptation to the high‐light, nutrient‐impoverished habitats in which these species occur by providing the seedling with the mineral nutrients, rather than carbon‐based metabolites, needed for maximizing initial root growth. Reaching reliable moisture before summer (drought avoidance) is an alternative strategy to physiological tolerance of drought.  相似文献   

15.
In a greenhouse experiment, seedling survival of two oak species (Quercus rugosa and Q. laurina) was greatly affected by the excision of cotyledons 1 mo after germination, with a greater impact on Q. laurina. The effect of seed size was also significant for both species, with a positive correlation between seed mass and survival and growth. The effect of cotyledon excision on seedling growth persisted throughout the first growing season in Q. rugosa and was not analyzed for Q. laurina due to the low number of seedlings that survived cotyledon excision. Seed size significantly affected seedling height, diameter, leaf area, and biomass at 6 mo. Seed size and cotyledon retention affected the ability of Q. rugosa to recover from herbivory, as both factors had a significant effect on relative growth rates after aerial biomass removal. The results show that seedlings originating from large seeds can better endure loss of cotyledons and aerial biomass and thus are better equipped to confront stress early in their lives.  相似文献   

16.
Smaller seeds might encounter more severe selective pressure than larger ones because they have fewer food reserves and are more easily buried; thus, seed mass can be considered to be directly related to the effect of light on germination. To investigate the effect of light on seed germination and associated seed mass variation within a whole plant community, we compiled germination data for common herbaceous species from an alpine meadow on the eastern Qinghai‐Tibet plateau. The results showed the following. (i) Light had a general positive effect on seed germination. Under light, the proportion of species with lower germinability was decreased, mean germination percentage was increased by 20% and the speed of germination was doubled. (ii) Irrespective of light environment, species with medium‐sized seeds (seed mass ranging from 0.11 to 0.5 mg) had higher germination percentage and speed when compared with species within the largest seed mass group. (iii) The germination of smaller‐seeded species was more dependent on light stimulation than larger‐seeded ones. In darkness, the species within the smallest seed mass group had the lowest percentage and speed of germination; however, under light, the species within the largest seed mass group had the lowest percentage and speed of germination. Our results suggested that the germination characteristics and especially seeds’ response to light among species in the alpine meadow might be an adaptation to natural selective pressure.  相似文献   

17.
To investigate the existence of coordinated sets of seedling traits adapted to contrasting establishment conditions, we examined evolutionary convergence in seedling traits for 299 French Guianan woody plant species and the stress response in a shadehouse of species representing seed size gradients within five major cotyledon morphology types. The French Guianan woody plant community has larger seeds than other tropical forest communities and the largest proportion of hypogeal cotyledon type (59.2%) reported for tropical forests. Yet the community includes many species with intermediate size seeds that produce seedlings with different cotyledonal morphologies. A split-plot factorial design with two light levels (0.8% and 16.1% PAR) and four damage treatments (control, seed damage, leaf damage, stem damage) was used in the shadehouse experiment. Although larger-seeded species had higher survival and slower growth, these patterns were better explained by cotyledon type than by seed mass. Even larger-seeded species with foliar cotyledons grew faster than species with reserve-type cotyledons, and survival after stem grazing was five times higher in seedlings with hypogeal cotyledons than with epigeal cotyledons. Thus, to predict seedling performance using seed size, seedling morphology must also be considered.  相似文献   

18.
To investigate how seed reserves affect early seedling performance, we conducted a factorial greenhouse experiment using Lithocarpus densiflora (Tanoak). Seedlings were grown from large (5.8±0.7 g) and small (3.2±0.4 g) seeds and, following shoot emergence, seeds were either removed or left attached. Seedlings were harvested for quantification of biomass and 13C at seven time periods following seed removal (2, 4, 8, 16, 32, 64, 128 days) and seedling photosynthesis was measured three separate time periods (2–4, 49–82, 95–128 days after seed removal). Biomass increased for all seedlings, but the increase was significantly larger for seedlings with attached seeds than with removed seeds. Seed removal just after shoot emergence significantly decreased seedling biomass, but seed removal 64 days after shoot emergence had no effect on seedling biomass. Seedling photosynthesis per unit leaf area varied by time and seed presence, but not by seed size. At the first period, seedlings with attached seeds had significantly higher photosynthetic rates than seedlings with removed seeds, at the second period there was no effect of seed removal, and at the third time period seedlings with attached seeds had significantly lower photosynthetic rates than seedlings with removed seeds. Despite temporal variation in photosynthesis per unit leaf area, seedlings with attached seeds always had significantly greater leaf area than seedlings with removed seeds, resulting in significantly higher total plant photosynthesis at all three time periods. The 13C values of both the leaves and roots were more similar to that of the seed for seedlings with attached seeds than for seedlings with removed seeds, however, seed removal and seed size strongly affected root 13C. This study demonstrates that seed reserves have important effects on the early growth, physiology, and 13C of L. densiflora seedlings.  相似文献   

19.
Nardini  A.  Lo Gullo  M. A.  Salleo  S. 《Plant Ecology》1998,139(1):81-90
This paper deals with the possibility of relating root hydraulic parameters to an ecological index describing the continentality/oceanicity of four forest trees. Root hydraulic conductance ($K_R$) of seedlings of Fagus sylvatica L., Quercus ilex L., Quercus suber L. and Quercus pubescens Willd. was measured in May, August and November 1996. $K_R$ was calculated in terms of the relation of the water flow through intact root systems in situ measured with the pressure chamber, and the pressure driving the flow. The sufficiency of the root system to supply the foliage was estimated by dividing $K_R$ by the seedlings leaf surface area ($A_L$) thus obtaining $K_RL$. In the spring, $K_RL$ was largest in F. sylvatica and smallest in Q. pubescens with intermediate values recorded in Q. ilex and Q. suber. All the species studied showed a large decline in $K_RL$ just prior to the winter rest except for Q. suber which mantained $K_RL$ approximately constant through the period of study. In most cases, $K_RL$ changed in accordance with analogous changes in the flow. When the total seedlings' leaf surface area ($A_L$) was plotted versus $K_RL$, it appeared that $K_RL$ of Q. pubescens increased with $A_L$, proportionally, while $K_RL$ of F. sylvatica was inversely related to $A_L$. This, together with the largest $K_RL$ recorded in the summer in Q. pubescens, was interpreted as advantageous to this species (which is adapted to semi-arid environments) in that: (a) roots could supply water to foliage efficiently even during the adverse season and (b) the foliage growth could be sustained even in summer.No statistically significant relation of $K_RL$ to the continentality index calculated for the four species studied on the basis of their European distribution, was found to exist. Nonetheless, our data appear to be encouraging for future research aimed at better interpreting the typical distribution areas of plant species.  相似文献   

20.
Seed reserves play an essential role during germination and seedling establishment and are particularly important for species that grow in seasonal ecosystems with a short growing season. In this study, we examined (a) how and when the seedlings change their dependence from seed resources to external resources, (b) the lipid, nitrogen, and non-structural carbohydrate reserve translocation from seeds to seedlings over time, and (c) whether reserve translocation may be correlated to cotyledon and leaf lifespan of seedlings for eight tree species in a tropical deciduous forest in north-western Mexico. Our results showed that the cotyledon lifespan was not related to the cotyledon type (photosynthetic or reserve) and that the cotyledon biomass did not decrease significantly until germination. In six of the eight studied species, biomass allocation to the leaves was favored; lipids were the first reserve exhausted before the first leaves were totally expanded in seven of the eight study species. Species with the highest N concentration had expanded leaves and lost their cotyledons faster than species with a low N concentration. Our results suggest that tropical deciduous forest species employ different strategies to survive the dry season and re-sprout in the next growing season mediated by seed reserve concentrations, translocation patterns and subsequent biomass allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号