首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Seedling Growth in Elymus farctus after Episodes of Burial with Sand   总被引:5,自引:0,他引:5  
HARRIS  D.; DAVY  A. J. 《Annals of botany》1987,60(5):587-593
Episodes of burial by wind-blown sand are a frequent hazardfor Elymus farctus in the strandline and foredunes. We haveinvestigated the ability of seedlings to withstand and recoverfrom experimental burial. The burial treatments were appliedat the two-leaf stage, either for one or two weeks, and thegrowth in them was compared with that in unburied controls.The method of B-splines, with knots defined at the beginningand end of the burial period, proved to be appropriate for fittingrelationships between In dry mass and time for growth analysis.The relative growth rates derived from these relationships werepartitioned into component relative growth rates for individualplant organs, to reveal the responses to burial in terms ofdry matter allocation. No plants survived two weeks of burial but all those buriedfor one week recovered. There was respiratory loss of dry massduring burial, although fitted relative growth rates were notsignificantly different from zero. On re-exposure, relativegrowth rates increased to equal the maximum values in unburiedplants. Dry mass losses were from the root and stem fractions.Leaf 1 was unaffected, whereas the development of leaf 2 wascurtailed. Apart from their delayed appearance, leaves 3–5behaved similarly to their non-buried counterparts. The maintenanceof leaves at the expense of other organs during burial may becrucial to the survival of E. farctus seedlings. Sand burial, survival, recovery, growth analysis, splined cubic regression, Elymus farctus, sand couch grass  相似文献   

2.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

3.
Green pepper (Capsicum annuum cv. Bell Boy) plants were exposedin chambers to low (2%) oxygen and controlled carbon dioxideconcentrations. Vegetative and fruiting plants showed short-termincreases in net photosynthesis in low oxygen or elevated carbondioxide (up to 900 µl CO2 l–1). Photosynthesis ofyoung vegetative plants increased in low oxygen in the short-termbut there was no long-term benefit. Low oxygen enhancement ofphotosynthesis declined with time and after 10 d, leaf areaand root dry weight were less than in plants grown in normalair. Labelled assimilates were translocated from leaves to otherregions at similar rates in low oxygen and normal air. Low oxygenreduced respiratory losses from leaves and reduced the proportionof soluble carbohydrate converted to polysaccharide in all plantparts. Thus, low-oxygen environments decrease the utilisationof assimilates which then may lead to inhibition of photosynthesis. Capsicum annuum, photosynthesis, photorespiration, translocation, utilization of assimilates  相似文献   

4.
Mayoral, M. L., Plaut, Z. and Reinhold, L. 1985. Effect of sink-sourcemanipulations on the photosynthetic rate and carbohydrate contentof cucumber cotyledons.-J. exp. Bot. 36 1551–1558. The photosynthetic rate of cucumber cotyledons (Cucumis sativuscv. Dahla) reached a maximum value of 12 mg dm–2 h–1,10 d after emergence. In 12-d-old seedlings removal of one cotyledondoubled the CO2 fixation rate of the other, as observed 3 dafter treatment. When the primary leaf was removed, the photosyntheticrate of the cotyledons was decreased by 33%. At this stage ofgrowth elimination of the roots as a sink for assimilates bygirdling the hypocotyl affected neither the photosynthetic ratenor the carbohydrate content of the cotyledons. By contrast,in 18-d-old seedlings removal of the first leaf brought abouta 42% increase in the photosynthetic rate of the cotyledons.The simultaneous removal of the first leaf and one cotyledondoubled the rate of CO2 fixation of the remaining cotyledon.Girdling the hypocotyl lowered the photosynthetic rate of thecotyledons by 73%. In both 12- and 18-d-old seedlings a decreaseor increase in the sink-source ratio was correlated with anincrease or a decrease respectively in the carbohydrate contentof the cotyledons. The stomatal resistance of the cotyledonswas not affected by any of the treatments. The effect of sink-sourcemanipulations on photosynthesis and on the level of carbohydratespresent in the cotyledons was more evident in those seedlingsgrowing under high light intensity (580 µE m–2 s–1),than in those exposed to 300 µE m–2 s–1 Key words: Sink-source relationship, cotyledons, photosynthesis  相似文献   

5.
Activities of photosynthetic and photorespiratory enzymes viz.,ribulose bisphosphate carboxylase, phosphoenol pyruvate carboxylaseand glycolate oxidase from jute (Corchorus olitorius L.; cv.JRO 632) leaves were compared with those from maize (C4) andsunflower (C3) leaves. The photosynthetic CO2 fixation products,the release of 14CO2 in light and dark following photosynthesisin 14CO2, chlorophyll a: b ratio, gross leaf photosyntheticrate and dry matter production rate were also studied. The resultsshow that jute is a C3 plant. Key words: Jute, Corchorus olitorius, C3 photosynthesis  相似文献   

6.
准噶尔荒漠分布的早春短命植物不仅具有十分独特的生物学特点,而且在荒漠植物群落演替、物种多样性维持及土壤改良与防治水土流失等方面具有重要的生态学价值。该文运用Li-6400开放式气体交换光合作用测定系统,对分布于准噶尔荒漠的16种早春短命植物生长盛期的净光合速率(Pn)、蒸腾速率(Tr)、水分利用效率(WUE)等特征进行了测定,并对其中7种植物与生长相关的生物量分配特征进行了分析。结果表明:1)16种植物的最大Pn、 最大TrWUE分别为8.07~35.96 μmol CO2·m-2·s-1、3.16~29.64 mmol H2O·m-2·s-1、0.54~4.26 μmol CO2·mmol-1H2O;种间最大Pn与最大气孔导度(Stomatal conductance, Gs)之间存在正相关关系,其相关系数为0.77(p<0.05),线性回归斜率为26.36 μmol·mmol-1;从光合速率对胞间CO2浓度及光量子通量密度的响应曲线来看,这类植物的表观CO2补偿点均在4~5 Pa之间(28~30 ℃),表观羧化效率为0.64~1.86 μmol CO2·m-2·s-1·Pa-1,表观量子效率为0.05~0.06。2)从生物量分配来看,所测植物的个体生物量为0.05~0.39 g;单株总叶面积为 3.24~51.40 cm2;单位叶面积干重为0.40~0.77 g·m-2,根在总生物量中所占比例为5.72%~19.43%,单株叶面积比在2.92~9.00 m2·kg-1之间。种间根所占生物量的比与对应的WUE之间的比较分析结果表明,二者之间存在显著的正相关关系,其相关系数r为0.93(p<0.01)。这些结果表明,所观测的早春短命植物具有典型的C3植物特征,相比其它类型的荒漠植物具有较高的单位叶面积Pn、高Tr及低WUE,并且在生长发育过程中表现出很低的根/地上生物量比、较高的叶面积比和单位叶面积干重,说明它们具有相对高的生长速率,这与其生长发育节律相一致,反映了它们与准噶尔荒漠环境相适应的特点。  相似文献   

7.
Measurements of microclimate and photosynthesis of lucerne var.Europe were made in the field during the spring of 1976. Themaximum rate of canopy gross photosynthesis (14.3 g CO2 m–2h–1, I = ) was 2.5 times greater than that of S 24 perennialryegrass at the same LAI. This difference was due to differencesin individual leaf photosynthesis. The photosynthetic rate ofthe youngest fully expanded leaf of lucerne remained constantthroughout the experimental period at 3.6 g CO2 m–2 h–1(300 W m–2). Measurements of soil water potential profiles indicated thatlucerne extracted water from the soil to a depth of at least800 mm, with a region of maximum uptake between 400 and 600mm. This capability, with a moderate mean leaf resistance of460 s m–1, conferred a high assimilation efficiency onlucerne, with a mean water use efficiency of 34 g H2O lost pergram of carbohydrate assimilated, compared with 200 g H2O pergram of carbohydrate for S 24. Medicago sativa L, lucerne, photosynthesis, assimilation efficiency  相似文献   

8.
The effects of sink capacity on the regulation of the acclimationof photosynthetic capacity to elevated levels of carbon dioxideare important from a global perspective. We investigated theeffeocts of elevated (750 µmol mol–1) and ambient(350 µmol mol–1) atmospheric CO2 on growth, carbohydratelevels, and photosynthesis in radish seedlings from 15 to 46d after planting. In radish, a major sink is the storage root,and its thickening is initiated early. Elevated CO2 increasedthe accumulation of dry matter by 111% but had no effect onthe acclimation of the rate of photosynthesis or on the levelsof carbohydrates in leaves at dawn. Elevated CO2 increased thedry weight in storage roots by 105% by 46 d after planting,apparently enhancing the sink capacity. This enhanced capacityseemed to be responsible for absorption of elevated levels ofphotosynthate and to result in the absence of any over-accumulationof carbohydrates in source leaves and the absence of negativeacclimation of photosynthetic capacity at the elevated levelof CO2. (Received July 4, 1997; Accepted October 16, 1997)  相似文献   

9.
The effects of abscisic acid (ABA) on photosynthesis in leavesof Helianthus annuus L. were compared with those in leaves ofVicia faba L. After the ABA treatment, the response of photosyntheticCO2 assimilation rate, A, to calculated intercellular partialpressure of CO2, Pi, (A(pi) relationship) was markedly depressedin H. annuus. A less marked depression was also observed inV.faba. However, when the abaxial epidermes were removed fromthese leaves, neither the maximum rate nor the CO2 responseof photosynthetic oxygen evolution was affected by the applicationof ABA. Starch-iodine tests revealed that photosynthesis was not uniformover the leaves of H. annuus treated with ABA. The starch contentwas diffferent in each bundle sheath extension compartment (thesmallest subdivision of mesophyll by veins with bundle sheathextensions, having an area of ca. 0.25 mm2 and ca. 50 stomata).In some compartments, no starch was detected. The distributionof open stomata, examined using the silicone rubber impressiontechniques, was similar to the pattern of starch accumulation.In V.faba leaves, which lack bundle sheath extensions, distributionof starch was more homogeneous. These results indicate that the apparent non-stomatal inhibitionof photosynthesis by ABA deduced from the depression of A(pi)relationship is an artifact which can be attributed to the non-uniformdistribution of transpiration and photosynthesis over the leaf.Intercellular gaseous environment in the ABA-treated leavesis discussed in relation to mesophyll anatomy. 1 Present address: Department of Botany, Duke University, Durham,NC 27706, U.S.A. (Received September 30, 1987; Accepted January 13, 1988)  相似文献   

10.
Photosynthesis by developing embryos of oilseed rape (Brassica napus L.)   总被引:1,自引:0,他引:1  
The aim of this study was to assess the photosynthetic potentialof developing seeds of oilseed rape (Brassica napus L.) andto compare photosynthetic properties of embryo plastids withthose of leaf chloroplasts from the same species. Measurementsof CO2-dependent O2 evolution show that developing seeds ofB. napus are photosynthetically active in vitro. Essentially,all of the photosynthetic activity of the developing seed isaccounted for by the embryo. The rate of photosynthesis by developingembryos increased until the onset of desiccation, after whichit declined, so that by maturity embryos were no longer photosyntheticallyactive. Photosynthetic activity was positively correlated withchlorophyll content throughout development. Comparison of thephotosynthetic characteristics of leaf and embryo chloroplastsrevealed that rates of uncoupled electron transport were 2.5-foldgreater in those from the embryo. Light-saturated rates of CO2-dependentO2 evolution, per unit chlorophyll, and CO2 saturation pointswere similar for chloroplasts from both tissues. However, light-saturationpoints and chlorophyll a/b ratios were lower for embryo thanfor leaf choroplasts. Embryos and embryo chloroplasts also containedconsiderably less ribulose 1,5-bisphosphate carboxylase/oxygenaseprotein per unit total protein, than leaves. Although excisedembryos were capable of high rates of CO2-dependent O2 evolution(90–100 mol mg–1 chlorophyll h–1) under asaturating photosynthetic photon flux density (PPFD), low transmittanceof light through the silique wall (30%), together with the highPPFD required to achieve light compensation points in developingseeds (500 mol m–2 s–1), suggests that photosynthesisin vivo is unlikely to make a net contribution to carbon economyunder normal environmental conditions. Key words: Embryo, development, photosynthesis, chloroplast, Brassica napus L.  相似文献   

11.
Effects of Sodium on Photosynthesis in Panicum coloratum   总被引:2,自引:0,他引:2  
Foliar application of NaCl to sodium-deficient Panicum coloratumstimulated photosynthesis, as did application via roots. Effectsof sodium on photosynthetic responses to internal concentrationsof CO2 under different light intensities and initial productsof 14CO2 fixation suggested that CO2 fixation and aminationof oxalacetate were limited by sodium deficiency. 2 Present address: Institute for Life Science Research, NihonNohyaku Co., Ltd., Kawachi-Nagano, Osaka, 586 Japan.  相似文献   

12.
MARSHALL  B.; VOS  J. 《Annals of botany》1991,68(1):33-39
Measurements of the rate of light-saturated photosynthesis (Pmax)were made on terminal leaflets of potato plants growing in cropssupplied with 0, 3, 6, 12, 24 and 36 g N m–2. Measurementswere made between 100 and 154 d after planting. Two types ofleaf were selected—the fourth leaf on the second-levelbranch (L4, B1) and the youngest terminal leaflet that was measurable(LYM). Later, the total nitrogen concentration of each leaflet(NL) was measured. A linear regression between Pmax and NL,common to both leaf positions, explained 68.5% of the totalvariation. With L4, B1 leaves there was a significant improvementin the proportion of variation explained when regressions withseparate intercepts and a common slope were fitted to individualfertilizer treatments. These results suggest that an increasingproportion of leaf nitrogen was not associated with the performanceof the photosynthetic system with increasing nitrogen supply.This separation between nitrogen treatments was not as clearfor LYM leaves. Stomatal conductance to transfer of water vapourwas neither influenced by leaf position nor directly by nitrogensupply. Rather conductance declined in parallel with the declinein photosynthetic capacity. Solanum tuberosum, potato, nitrogen, photosynthesis, stomatal conductance, leaf  相似文献   

13.
HO  L. C. 《Annals of botany》1976,40(6):1153-1162
The rate of carbon transport from an old tomato leaf (54 days),grown at 80 W m–2, was measured under light flux densitiesbetween 7 and 90 W m–2. Under low light, the rate of carbontransport over a 6 h period was about 1 mg C dm–2 h–1,well in excess of the concurrent photosynthetic rate. The lossfrom these leaves of 14C-leaf assimilate which was fixed beforethe experimental period amounted to 62 per cent of the totalinitial uptake and was higher than that from leaves with higherconcurrent photosynthetic rates. The higher loss of 14C fromleaves with low photosynthetic rates was due to a greater contributionof 14C from the starch and residue fractions. The rate of transportappeared to be determined by the concentration of the labilesucrose, not the total sucrose concentration. In comparisonwith young fully-expanded tomato leaves (Ho, 1976) the sizeof the labile sucrose pool appeared to decrease with age. Thephotosynthesistranslocation coefficient was low (k1k2=0•21)for an old tomato leaf. Based on these results a scheme of carbonpartitioning in relation to translocation is proposed. Criteriafor assessing the efficiency of translocation in leaves arediscussed.  相似文献   

14.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):883-896
Nodulated soya bean (Glycine max L.) plants at the early floweringstage were allowed to assimilate 13CO2 under steady-state conditions,with a constant 13C abundance, for 8 h in the light. The plantswere either harvested immediately or 2 d after the end of the13CO2 feeding, divided into young leaves (including flower buds),mature leaves, stems+petioles, roots and nodules; the 13C abundancein soluble carbohydrates, organic acids, amino acids, starchand poly-ß-hydroxybutyric acid was determined witha gas chromatography-mass spectrometry. The rapid turnover of 13C in the sucrose pools observed in allorgans of the plants showed that sucrose was the principal materialin the translocation stream of primary products of photosynthesis.At the end of the 13CO2 exposure, sucrose in the mature leavesas the major source organs and in the stems+petioles was labelledwith currently assimilated carbon to about 75 per cent, whereasa much higher labelling of sucrose was found in the roots andin the nodules. This suggests the existence of two or more compartmentedpools of sucrose in mature leaves and also in stems+petioles. The relative labelling patterns of individual organic acidsand amino acids were similar in various plant organs. However,the rapid turnover of succinate and glycine was characteristicof nodules. Treatment with a high concentration of nitrate inthe nutrient media increased the turnover rate of amino acidcarbon in shoot organs and roots, while it markedly decreasedthe labelling of amino acids in nodules. The cyclitols, exceptfor D-pinitol, were significantly labelled with assimilated13C in mature leaves, but in nodules, the labelling was verymuch less. In the nodules, which were actively fixing atmospheric nitrogen,a large proportion (80–90 per cent) of currently assimilatedcarbon was found as sucrose and starch at the end of the 13CO2feeding. This was also true of the roots. On the other hand,in young growing leaves, the distribution of currently assimilatedcarbon into sucrose, starch and other soluble compounds wasmuch less. This suggests that a large amount of carbon assimilatedby and translocated to young leaves was used to make up structuralmaterials, mainly protein and cell wall polymers synthesis,during the light period. Glycine max L., soya bean, 13CO2 assimilation, carbon metabolism in nodules  相似文献   

15.
Ward, D. A. and Drake, B. G. 1987. Photoinhibition under atmosphericO2, the activation state of RuBP carboxylase and the contentof photosynthetic intermediates in soybean and wheat.—J.exp. Bot. 38: 1937–1948. Associations between photosynthesis, the activation state ofRuBP carboxylase and the contents of photosynthetic intermediateswere compared in soybean and wheat leaves before and after exposureto photoinhibitory treatments in the presence of atmosphericO2. Exposing attached leaves to a supra-saturating irradiance(3 800 µmol quanta m– 2 s–1) for 2 h in CO2-freeair decreased carboxylation efficiency and the light-saturatedphotosynthetic rate in air by approximately 50%. Exposure tothe photoinhibitory treatment for periods in excess of 2 h didnot cause a further decrease of photosynthesis in soybean. Althoughphotosynthesis was reduced, the initial and total (fully-activated)activities of ribulose 1,5-bisphosphate carboxylase (RuBPCase)in leaf extracts were unaltered in each species by the photoinhibitorytreatment. This was true for leaves sampled under both air andat a rate-limiting intercellular CO2 partial pressure (Ci) of75 µPa Pa–1. The contents of ribulose l,5-bisphosphate(RuBP) and 3-phosphoglyceric acid (3-PGA) were reduced by thephotoinhibitory treatment in soybean leaves sampled in air andat a rate-limiting Ci, although the RuBP/3-PGA ratio was unaffected.The relative reduction of RuBP content in soybean leaves atrate-limiting C1 was similar to the corresponding reductionof carboxylation efficiency. For wheat,the relative reductionof RuBP content at rate-limiting Ci (–19%) caused by thephotoinhibitory treatment was considerably less than the correspondingdecrease of carboxylation efficiency (–49%).The RuBP/3-PGAratio of wheat was also increased significantly by the photoinhibitorytreatment The significance of these observations to the regulationof CO2-limited photosynthesis in leaves experiencing photoinhibitionunder atmospheric oxygen is discussed. Consideration is alsogiven to the previous contention that contemporary measurementsof initial activity in crude extracts may provide a spuriousindication of the amount of the enzyme-CO2-Mg2 + form of RuBPcarboxylase present in the leaf. Key words: Carboxylation efficiency, RuBP carboxylase, photoinhibition, RuBP, 3-PGA  相似文献   

16.
Limitation of photosynthesis and light activation of ribulose,1,5-bisphosphate carboxylase (RuBPCO) were examined in the 5thleaf of seedlings of red clover (Trifolium pratense L. cv. Renova)for 5 d following an increase in photosynthetic photon fluxdensity (PPFD) from 200 to 550µmol quanta m–2 s–1.Net photosynthesis and its stimulation at 2.0 kPa O2 initialactivity of rapidly extracted RuBPCO, standard activity of RuBPCOafter incubation of the extracts in the presence of CO2, Mg2+,and inorganic phosphate and contents of soluble protein, starch,soluble sugars, and various photosynthetic metabolites weredetermined. Photosynthesis decreased and starch content increased.No decrease in photosynthesis was found if, when PPFD was increased,all leaves except the investigated 5th leaf were removed, suggestingthat the decrease in photosynthesis was due to accumulated carbohydrates.The stimulation of photosynthesis at 2.0 kPa O2 did not decreaseand the ratio of the total foliar steady-state contents of triosephosphate to 3-phosphoglycerate increased suggesting that thedecrease in photosynthesis was not due to limiting inorganicphosphate in chloroplasts. Intercellular CO2 partial pressureand RuBP content were not decreased. Nevertheless, the ratioof photosynthesis to initial RuBPCO activity decreased, suggestingthat the catalysis per active RuBPCO site was decreased. Theincrease in PPFD in the growth cabinet and the PPFD at whichleaves were preconditioned for 1 h, affected not only initialactivity but also the standard activity of RuBPCO. The resultssuggest that a varying proportion of RuBPCO was bound to membranesand was contained in the insoluble fraction of the extracts.A comparison of photosynthesis with extracted RuBPCO activitysuggested that membrane bound RuBPCO did not contribute to photosyntheticCO2 fixation and that the binding and release to and from membranesmodulated actual RuBPCO activity in vivo. Key words: Photosynthesis, ribulose 1,5-bisphosphate carboxylase, starch  相似文献   

17.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

18.
Phosphate Regulation of Nitrate Assimilation in Soybean   总被引:24,自引:1,他引:23  
It is known that phosphorus deficiency results in alterationsin the assimilation of nitrogen. An experiment was conductedto investigate mechanisms involved in altered 15NO3 uptake,endogenous 15N translocation, and amino acid accumulation insoybean (Glycine max L. Merrill, cv. Ransom) plants deprivedof an external phosphorus supply for 20 d in solution culture.Phosphorus deprivation led to decreased rates of 15NO3uptake and increased accumulation of absorbed 15N in the root.Both effects became more pronounced with time. Asparagine, theprimary transport amino acid in soybean, accumulated in largeexcess in roots and stems. In roots of phosphorus-deprived plants,concentrations of ATP and inorganic phosphate declined rapidly,but dry weight accumulation was similar to or above that ofthe control even after 20 d of treatment. Arginine accumulationin leaves was greatly enhanced, even though 15N partitioninginto the insoluble reduced-N fraction of leaves was unaffected.The results suggest that decreases in NO3 uptake in lowphosphorus plants could be caused by feedback control factorsand by limited ATP availability. The decline in endogenous Ntransport from the root to the shoot may be associated withchanges in membrane properties, which also result in paralleleffects on hydraulic conductance and the upward flow of waterthrough the plant. Key words: Phosphorus stress, nitrate uptake, nitrate translocation, arginine  相似文献   

19.
Metabolism of Inorganic Carbon Taken Up by Roots in Salix Plants   总被引:1,自引:0,他引:1  
The metabolic products of inorganic carbon taken up throughthe roots from nutrient solution were studied in willow plants.Willow cuttings (Salix cv. Aquatica gigantea) were suppliedwith unlabelled or 14C-labelled NaHC03 for 1, 5, 10, and 24h in light or in darkness. After feeding, the plants were dividedinto six samples (upper and lower leaves and corresponding stems,cuttings and roots), which were frozen in liquid N2. Freeze-driedground samples were extracted into water-soluble, chloroform-solubleand insoluble fractions. The water-soluble fraction was furtherseparated into basic, acidic, and neutral fractions by ion-exchangechromatography. In the light experiment pronase treatment wasused to separate the insoluble fraction into proteins and insolublecarbohydrates. After I h feeding time, most of the 14C was fixed into organicacids and amino acids both in light and in darkness in all partsof the plants. In the roots a large part of the l4C-carbon wasincorporated into the protein and insoluble fractions alreadyduring short feeding times, and the amounts incorporated increasedwith time. In the leaves, after 1 and 5 h the main labelledcompounds were the organic acids and amino acids, but after10 h about half of the total 14C was in protein and in the insolublefraction. A further analysis of amino acids and organic acidswith HPLC showed that C-4 acids were labelled initially andthat over time the proportion of different acids changed. These results indicate that the metabolism of carbon in rootsmight take place via ß-carboxylation of PEP. Partof the fixed 14C is transported from the roots, probably asamino acids and organic acids, to the shoot. In roots the C-4acids are metabolized further into structural compounds (proteinsand insoluble carbohydrates). Key words: DIC, Salix, roots, metabolism, HPLC  相似文献   

20.
The rates of gross photosynthesis of the flag leaf and the nextleaf below (second leaf) in crops of winter wheat were estimatedfrom the 14C uptake of the leaves after exposure to short pulsesof 14CO2. The photosynthetic rates of both leaves during thegrain-filling period decreased with increase in nitrogen fertilizerbecause the intensity of photosynthetically active radiationwas less at the surface of the leaves in the dense crops withadditional nitrogen. In addition, the rate of photosynthesisat saturating light intensity was slightly decreased by nitrogen.The effects of nitrogen, in decreasing the rate of photosynthesisper unit area of leaf and in increasing the leaf-area indexof the top two leaves, were such that the photosynthetic productivityper unit area of land of the flag leaf was increased by nitrogenbut the productivity of the second leaf was unaffected. Applying180 kg N ha–1 increased the productivity of the top twoleaves by a factor of 2.3 but increased grain yield by only1.8. The photosynthetic productivity of the second leaf duringthe grain-filling period was about half that of the flag leaf. There was no difference in photosynthetic rate per unit areaof leaves of Cappelle-Desprez and Maris Huntsman which couldaccount for the larger yield of the latter cultivar. There wasa slight indication that the leaves of the semi-dwarf cultivarsMaris Fundin and Hobbit photosynthesized faster than those ofMaris Huntsman. Triticum aestivum L., winter wheat, photosynthesis, nitrogen fertilizer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号