首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.

Background  

Transmission electron tomography is an increasingly common three-dimensional electron microscopy approach that can provide new insights into the structure of subcellular components. Transmission electron tomography fills the gap between high resolution structural methods (X-ray diffraction or nuclear magnetic resonance) and optical microscopy. We developed new software for transmission electron tomography, TomoJ. TomoJ is a plug-in for the now standard image analysis and processing software for optical microscopy, ImageJ.  相似文献   

2.
Access to structural information at the nanoscale enables fundamental insights into many complex biological systems. The development of the transmission electron microscope (TEM) has vastly increased our understanding of multiple biological systems. However, when attempting to visualize and understand the organizational and functional complexities that are typical of cells and tissues, the standard 2-D analyses that TEM affords often fall short. In recent years, high-resolution electron tomography methods, coupled with advances in specimen preparation and instrumentation and computational speed, have resulted in a revolution in the biological sciences. Electron tomography is analogous to medical computerized axial tomography (CAT-scan imaging) except at a far finer scale. It utilizes the TEM to assemble multiple projections of an object which are then combined for 3-D analyses. For biological specimens, tomography enables the highest 3-D resolution (5 nm spatial resolution) of internal structures in relatively thick slices of material (0.2-0.4 microm) without requiring the collection and alignment of large numbers of thin serial sections. Thus accurate and revealing 3-D reconstructions of complex cytoplasmic entities and architecture can be obtained. Electron tomography is now being applied to a variety of biological questions with great success. This review gives a brief introduction into cryopreservation and electron tomography relative to aspects of cytoplasmic organization in the hyphal tip of Aspergillus nidulans.  相似文献   

3.
In electron tomography the sample is tilted in the electron microscope and projections are recorded at different viewing angles. In the correct geometric setting, the tilt-axis of the object under scrutiny is perpendicular to the beam direction. However, we will demonstrate that this does not necessarily apply to all electron microscopes equipped with the default column alignment. The resulting effect is that a conical tilt is performed, which has to be considered in the reconstruction to avoid artifacts and to improve the resolution. A novel solution, with significantly improved convergence properties, will be introduced for calculating the three-dimensional marker model, which is necessary for the alignment of the tilt-series. Thereby, the angle between the beam direction and the tilt-axis is calculated, together with other geometrical distortions, like magnification and rotation changes, and incorporated in the reconstruction. Hereby, artifacts can be eliminated at the image processing basis, and the resolution can be significantly improved at the medium to high range frequencies. Synthetical and real data are used to demonstrate the obstructions caused by this effect and the quality improvement of the reconstructions. Finally, we also present a way to align the hardware of the microscope to correct for the non-perpendicularity between the beam direction and the tilt-axis, which is specifically tailored for tomographic applications.  相似文献   

4.
The terminal organelle of Mycoplasma genitalium is responsible for bacterial adhesion, motility and pathogenicity. Localized at the cell tip, it comprises an electron‐dense core that is anchored to the cell membrane at its distal end and to the cytoplasm at its proximal end. The surface of the terminal organelle is also covered with adhesion proteins. We performed cellular cryoelectron tomography on deletion mutants of eleven proteins that are implicated in building the terminal organelle, to systematically analyze the ultrastructural effects. These data were correlated with microcinematographies, from which the motility patterns can be quantitatively assessed. We visualized diverse phenotypes, ranging from mild to severe cell adhesion, motility and segregation defects. Based on our observations, we propose a double‐spring ratchet model for the motility mechanism that explains our current and previous observations. Our model, which expands and integrates the previously suggested inchworm model, allocates specific functions to each of the essential components of this unique bacterial motility system.  相似文献   

5.
Classification and averaging of sub-tomograms can improve the fidelity and resolution of structures obtained by electron tomography. Here we present a three-dimensional (3D) maximum likelihood algorithm – MLTOMO – which is characterized by integrating 3D alignment and classification into a single, unified processing step. The novelty of our approach lies in the way we calculate the probability of observing an individual sub-tomogram for a given reference structure. We assume that the reference structure is affected by a ‘compound wedge’, resulting from the summation of many individual missing wedges in distinct orientations. The distance metric underlying our probability calculations effectively down-weights Fourier components that are observed less frequently. Simulations demonstrate that MLTOMO clearly outperforms the ‘constrained correlation’ approach and has advantages over existing approaches in cases where the sub-tomograms adopt preferred orientations. Application of our approach to cryo-electron tomographic data of ice-embedded thermosomes revealed distinct conformations that are in good agreement with results obtained by previous single particle studies.  相似文献   

6.
Dynamic macromolecular assemblies, such as ribosomes, viruses, and muscle protein complexes, are often more amenable to visualization by electron microscopy than by high-resolution X-ray crystallography or NMR. When high-resolution structures of component structures are available, it is possible to build an atomic model that gives information about the molecular interactions at greater detail than the experimental resolution, due to constraints of modeling placed upon the interpretation. There are now several competing computational methods to search systematically for orientations and positions of components that match the experimental image density, and continuing developments will be reviewed. Attention is now also moving toward the related task of optimization, with flexible and/or multifragment models and sometimes with stereochemically restrained refinement methods. This paper will review the various approaches and describe advances in the authors' methods and applications of real-space refinement.  相似文献   

7.
Zhang L  Ren G 《PloS one》2012,7(1):e30249
The dynamic personalities and structural heterogeneity of proteins are essential for proper functioning. Structural determination of dynamic/heterogeneous proteins is limited by conventional approaches of X-ray and electron microscopy (EM) of single-particle reconstruction that require an average from thousands to millions different molecules. Cryo-electron tomography (cryoET) is an approach to determine three-dimensional (3D) reconstruction of a single and unique biological object such as bacteria and cells, by imaging the object from a series of tilting angles. However, cconventional reconstruction methods use large-size whole-micrographs that are limited by reconstruction resolution (lower than 20 Å), especially for small and low-symmetric molecule (<400 kDa). In this study, we demonstrated the adverse effects from image distortion and the measuring tilt-errors (including tilt-axis and tilt-angle errors) both play a major role in limiting the reconstruction resolution. Therefore, we developed a “focused electron tomography reconstruction” (FETR) algorithm to improve the resolution by decreasing the reconstructing image size so that it contains only a single-instance protein. FETR can tolerate certain levels of image-distortion and measuring tilt-errors, and can also precisely determine the translational parameters via an iterative refinement process that contains a series of automatically generated dynamic filters and masks. To describe this method, a set of simulated cryoET images was employed; to validate this approach, the real experimental images from negative-staining and cryoET were used. Since this approach can obtain the structure of a single-instance molecule/particle, we named it individual-particle electron tomography (IPET) as a new robust strategy/approach that does not require a pre-given initial model, class averaging of multiple molecules or an extended ordered lattice, but can tolerate small tilt-errors for high-resolution single “snapshot” molecule structure determination. Thus, FETR/IPET provides a completely new opportunity for a single-molecule structure determination, and could be used to study the dynamic character and equilibrium fluctuation of macromolecules.  相似文献   

8.
Robinson H  Ang MC  Gao YG  Hay MT  Lu Y  Wang AH 《Biochemistry》1999,38(18):5677-5683
The X-ray structure of an engineered purple CuA center in azurin from Pseudomonas aeruginosa has been determined and refined at 1.65 A resolution. Two independent purple CuA azurin molecules are in the asymmetric unit of a new P21 crystal, and they have nearly identical conformations (rmsd of 0.27 A for backbone atoms). The purple CuA azurin was produced by the loop-engineering strategy, and the resulting overall structure is unperturbed. The insertion of a slightly larger Cu-binding loop into azurin causes the two structural domains of azurin to move away from each other. The high-resolution structure reveals the detailed environment of the delocalized mixed-valence [Cu(1.5).Cu(1.5)] binuclear purple CuA center, which serves as a useful reference model for other native proteins, and provides a firm basis for understanding results from spectroscopic and functional studies of this class of copper center in biology. The two independent Cu-Cu distances of 2.42 and 2.35 A (with respective concomitant adjustments of ligand-Cu distances) are consistent with that (2.39 A) obtained from X-ray absorption spectroscopy with the same molecule, and are among the shortest Cu-Cu bonds observed to date in proteins or inorganic complexes. A comparison of the purple CuA azurin structure with those of other CuA centers reveals an important relationship between the angular position of the two His imidazole rings with respect to the Cu2S2(Cys) core plane and the distance between the Cu and the axial ligand. This relationship strongly suggests that the fine structural variation of different CuA centers can be correlated with the angular positions of the two histidine rings because, from these positions, one can predict the relative axial ligand interactions, which are responsible for modulating the Cu-Cu distance and the electron transfer properties of the CuA centers.  相似文献   

9.
The short and intense pulses of the new X-ray free electron lasers, now operational or under construction, may make possible diffraction experiments on single molecule-sized objects with high resolution, before radiation damage destroys the sample. In a single molecule imaging (SMI) experiment thousands of diffraction patterns of single molecules with random orientations are recorded. One of the most challenging problems of SMI is how to assemble these noisy patterns of unknown orientations into a consistent single set of diffraction data. Here we present a new method which can solve the orientation problem of SMI efficiently even for large biological molecules and in the presence of noise. We show on simulated diffraction patterns of a large protein molecule, how the orientations of the patterns can be found and the structure to atomic resolution can be solved. The concept of our algorithm could be also applied to experiments where images of an object are recorded in unknown orientations and/or positions like in cryoEM or tomography.  相似文献   

10.
There is no doubt that distance is the principal parameter that sets the order of magnitude for electron-tunneling rates in proteins. However, there continue to be varying ways to measure electron-tunneling distances in proteins. This distance uncertainty blurs the issue of whether the intervening protein medium has been naturally selected to speed or slow any particular electron-tunneling reaction. For redox cofactors lacking metals, an edge of the cofactor can be defined that approximates the extent in space that includes most of the wavefunction associated with its tunneling electron. Beyond this edge, the wavefunction tails off much more dramatically in space. The conjugated porphyrin ring seems a reasonable edge for the metal-free pheophytins and bacteriopheophytins of photosynthesis. For a metal containing redox cofactor such as heme, an appropriate cofactor edge is more ambiguous. Electron-tunneling distance may be measured from the conjugated heme macrocycle edge or from the metal, which can be up to 4.8 A longer. In a typical protein medium, such a distance difference normally corresponds to a approximately 1000 fold decrease in tunneling rate. To address this ambiguity, we consider both natural heme protein electron transfer and light-activated electron transfer in ruthenated heme proteins. We find that the edge of the conjugated heme macrocycle provides a reliable and useful tunneling distance definition consistent with other biological electron-tunneling reactions. Furthermore, with this distance metric, heme axially- and edge-oriented electron transfers appear similar and equally well described by a simple square barrier tunneling model. This is in contrast to recent reports for metal-to-metal metrics that require exceptionally poor donor/acceptor couplings to explain heme axially-oriented electron transfers.  相似文献   

11.
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists. This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2-5 nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method. Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.  相似文献   

12.
The architecture of grana membranes from spinach chloroplasts was studied by cryo electron tomography. Tomographic reconstructions of ice-embedded isolated grana stacks enabled to resolve features of photosystem II (PSII) in the native membrane and to assign the absolute orientation of individual membranes of granal thylakoid discs. Averaging of 3D sub-volumes containing PSII complexes provided a 3D structure of the PSII complex at 40 ? resolution. Comparison with a recently proposed pseudo-atomic model of the PSII supercomplex revealed the presence of unknown protein densities right on top of 4 light harvesting complex II (LHCII) trimers at the lumenal side of the membrane. The positions of individual dimeric PSII cores within an entire membrane layer indicates that about 23% supercomplexes must be of smaller size than full C(2)S(2)M(2) supercomplexes, to avoid overlap.  相似文献   

13.
Errors in three dimensions   总被引:1,自引:0,他引:1  
J Janin 《Biochimie》1990,72(10):705-709
Now that some protein X-ray structures have been proved to contain major errors, the question of the precision of 3-dimensional structures is taken seriously by crystallographers and NMR spectroscopists. Errors which cannot be avoided during model building in electron density maps, should correct themselves during crystallographic refinement, and the precision of the refined model should reach 0.15 to 0.25 A depending on the resolution of the data. Independent estimates based on homologous protein structures confirm that better than 0.5 A precision is commonly achieved, at least for C alpha and main chain atoms. The precision of NMR structures is less easily evaluated, but it should be better than 2 A when a sufficient number of NOE distance constraints are available. One may deplore the fact that not all published structures meet these standards, but possible errors should not be an excuse for not depositing atomic co-ordinates in data banks.  相似文献   

14.
We use visual information to guide our grasping movements. When grasping an object with a precision grip, the two digits need to reach two different positions more or less simultaneously, but the eyes can only be directed to one position at a time. Several studies that have examined eye movements in grasping have found that people tend to direct their gaze near where their index finger will contact the object. Here we aimed at better understanding why people do so by asking participants to lift an object off a horizontal surface. They were to grasp the object with a precision grip while movements of their hand, eye and head were recorded. We confirmed that people tend to look closer to positions that a digit needs to reach more accurately. Moreover, we show that where they look as they reach for the object depends on where they were looking before, presumably because they try to minimize the time during which the eyes are moving so fast that no new visual information is acquired. Most importantly, we confirmed that people have a bias to direct gaze towards the index finger’s contact point rather than towards that of the thumb. In our study, this cannot be explained by the index finger contacting the object before the thumb. Instead, it appears to be because the index finger moves to a position that is hidden behind the object that is grasped, probably making this the place at which one is most likely to encounter unexpected problems that would benefit from visual guidance. However, this cannot explain the bias that was found in previous studies, where neither contact point was hidden, so it cannot be the only explanation for the bias.  相似文献   

15.
The current model for the ultrastructure of the interlamellar membranes of molluscan nacre imply that they consist of a core of aligned chitin fibers surrounded on both sides by acidic proteins. This model was based on observations taken on previously demineralized shells, where the original structure had disappeared. Despite other earlier claims, no direct observations exist in which the different components can be unequivocally discriminated. We have applied different labeling protocols on non-demineralized nacreous shells of the bivalve Pteria. With this method, we have revealed the disposition and nature of the different fibers of the interlamellar membranes that can be observed on the surface of the nacreous shell of the bivalve Pteria hirundo by high resolution scanning electron microscopy (SEM). The minor chitin component consists of very thin fibers with a high aspect ratio and which are seemingly disoriented. Each fiber has a protein coat, which probably forms a complex with the chitin. The chitin-protein-complex fibers are embedded in an additional proteinaceous matrix. This is the first time in which the sizes, positions and distribution of the chitin fibers have been observed in situ.  相似文献   

16.
The structures of large macromolecular complexes in different functional states can be determined by cryo-electron microscopy, which yields electron density maps of low to intermediate resolutions. The maps can be combined with high-resolution atomic structures of components of the complex, to produce a model for the complex that is more accurate than the formal resolution of the map. To this end, methods have been developed to dock atomic models into density maps rigidly or flexibly, and to refine a docked model so as to optimize the fit of the atomic model into the map. We have developed a new refinement method called YUP.SCX. The electron density map is converted into a component of the potential energy function to which terms for stereochemical restraints and volume exclusion are added. The potential energy function is then minimized (using simulated annealing) to yield a stereochemically-restrained atomic structure that fits into the electron density map optimally. We used this procedure to construct an atomic model of the 70S ribosome in the pre-accommodation state. Although some atoms are displaced by as much as 33 Å, they divide themselves into nearly rigid fragments along natural boundaries with smooth transitions between the fragments.  相似文献   

17.
目的 扩散光学层析成像(diffuse optical tomography,DOT)在女性大尺寸乳腺检测时因信噪比低,导致其成像分辨率较低。本文基于计算机断层扫描激光乳腺成像系统(computed tomography laser mammography,CTLM),提出一种提高乳腺扩散光学层析成像分辨率的方式。方法 本文首先通过仿体实验探讨仿体直径和目标深度对扩散光学层析成像分辨率的影响;其次,本文使用高透性的光敏树脂通过3D打印制作外壳定位件,在验证其对扩散光学层析成像分辨率无显著影响后,利用外壳定位件对被测物进行约束压缩,以减小被测物直径来提高信噪比,优化扩散光学层析成像分辨率。结果 本文通过仿体实验验证了仿体直径的增加和目标深度的变化均会在一定程度上影响成像分辨率,随着仿体直径的增加,其感兴趣区(region of interests,ROIs)宽轴和长轴半高宽基本属于上升趋势;随着目标深度的增加,也会对ROIs宽轴和长轴半高宽产生影响。同时发现仿体直径对ROIs长轴半高宽有显著影响,目标深度对ROIs宽轴半高宽有显著影响。另外通过仿体实验结果验证了外壳定位件对扩散光学层析成像分辨率无显著影响,利用外壳定位件约束压缩后ROIs长轴半高宽降幅明显,降幅达到30%以上,远大于宽轴半高宽的降幅,达到了提高成像分辨率的作用。结论 本文所提出的方式能够达到提高乳腺扩散光学层析成像分辨率的作用,且所使用的材料和方法简单,具有较强的可实施性,为提高乳腺扩散光层析成像分辨率提供了新思路。  相似文献   

18.
Adaptation is usually conceived as the fit of a population mean to a fitness optimum. Natural selection, however, does not act only to optimize the population mean. Rather, selection normally acts on the fitness of individual organisms in the population. Furthermore, individual genotypes do not produce invariant phenotypes, and their fitness depends on how precisely they are able to realize their target phenotypes. For these reasons we suggest that it is better to conceptualize adaptation as accuracy rather than as optimality. The adaptive inaccuracy of a genotype can be measured as a function of the expected distance of its associated phenotype from a fitness optimum. The less the distance, the more accurate is the adaptation. Adaptive accuracy has two components: the deviance of the genotypically set target phenotype from the optimum and the precision with which this target phenotype can be realized. The second component, the adaptive precision, has rarely been quantified as such. We survey the literature to quantify how much of the phenotypic variation in wild populations is due to imprecise development. We find that this component is often substantial and highly variable across traits. We suggest that selection for improved precision may be important for many traits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号