首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Three trials utilizing 231 beef heifers were conducted in 1993 to determine if a timed insemination would result in similar synchronized pregnancy rates as insemination by estrus following synchronization of estrus using the 14-d MGA-prostaglandin system. All heifers were fed 0.5 mg MGA/h/d fof 14 d and given a 25 mg injection of PGF(2)alpha im 17 d after the final day of MGA feeding. Heifers in Group 1 (timed AI treatment) were inseminated at 72 h after the prostaglandin injection independent of whether or not they were observed in estrus. Heifers in Group 2 (AI by estrus) were inseminated 12 to 18 h after the onset of estrus. Since the trial was a significant source of variation for synchronized pregnancy rate, the effect of treatment on pregnancy rate was analyzed for each trial. Synchronized pregnancy rates in Trials 2 and 3 were similar in both treatment groups; 37 vs 35% and 61 vs 58% for the timed AI vs AI by estrus (Groups 1 and 2) in Trials 2 and 3, respectively. In both of these trials the degree of estrous synchrony was high. In Trial 1, the synchronized pregnancy rate in heifers that were time-inseminated was significantly lower than that of heifers that were inseminated by estrus (29 vs 57%). The lower synchronized pregnancy rate of Group 1 (timed AI) heifers in Trial 1 appeared to be due to the low degree of estrous synchrony in this trial. Our results indicate that using timed insemination with the 14-d MGA-prostaglandin system will give similar synchronized pregnancy rates as inseminating by estrus in groups of beef heifers where the degree of synchrony is high. However, in heifers where the degree of estrous synchrony is low, a timed insemination reduces synchronized pregnancy rates.  相似文献   

2.
Artificial insemination (AI) in sheep is currently limited by the poor fertility obtained following non-surgical intracervical insemination of frozen-thawed semen. An exception to this general finding is the non-return rate of around 58% reported for large scale on-farm AI in Norway. The objective of the present study was to determine if similar results could be obtained under Irish conditions. Comparisons were made between semen collected, and frozen, from rams in Norway (NOR) and Ireland (IRL). The effects of synchronisation and inseminator were also examined. Parous ewes (n=297) of various breed types were inseminated to a natural (N) or synchronised (S) oestrus with either fresh (from Irish rams) or frozen-thawed (IRL and NOR) semen. Ewes were randomly assigned, within breed, to the following treatment groups: (i) Fresh-N: n=28, (ii) Fresh-S: n=30, (iii) IRL-N: n=62, (iv) IRL-S: n=50, (v) NOR-N: n=68, (vi) NOR-S: n=59. Within each group, ewes were inseminated by an experienced Norwegian or by an Irish inseminator. Pregnancy rate did not differ significantly between ewes inseminated to a natural or synchronised oestrus nor between Norwegian and Irish frozen semen. The proportion of ewes pregnant after insemination with fresh semen was 0.82 and 0.70 (treatments i and ii) compared with 0.40, 0.52, 0.34 and 0.37 (treatments (iii)-(vi)) for frozen semen (P<0.001). Corresponding litter sizes (+/-S.E.), adjusted for ovulation rate, were 2.9+/-0.22, 3.3+/-0.23, 2.2+/-0.21, 1.7+/-0.21, 2.2+/-0.21 and 2.1+/-0.21 (fresh versus frozen; P<0.001). There was an interaction between semen type (fresh or frozen) and oestrus type (N or S) for litter size due to an increased adverse effect of frozen semen on litter size in synchronised ewes (P<0.05). Pregnancy rate was significantly influenced by breed of ewe (P<0.01) and inseminator (P<0.05). These results suggest that ewe breed may be a critical determinant of the potential for the exploitation of cervical insemination of frozen-thawed semen in sheep breeding programmes.  相似文献   

3.
The objective was to compare pregnancy rates in domestic cats using fresh semen for intravaginal artificial insemination (IVI), either at the time of hCG treatment for induction of ovulation, or 28 h later, and to compare pregnancy rates following IVI or transcervical intrauterine insemination (IUI) of frozen-thawed semen. Eighteen queens were inseminated during 39 estrus cycles. Fresh semen with 13.5+/-5.4 x 10(6) sperm (range, 6.8-22 x 10(6)) collected by electroejaculation from four male cats was used in Experiment 1, and cryopreserved semen (20 x 10(6) sperm, with 70+/-5% post-thaw motility) from one male cat was used in Experiment 2. Serum concentrations of estradiol-17beta and progesterone were determined in most queens on the day of AI and again 30-40 days later. Treatment with 100 IU of hCG 3 days after the onset of estrus induced ovulation in 95% of treated queens. Pregnancy rates to IVI with fresh semen at the time of hCG administration versus 28 h later were not different (P=0.58); overall 33% (5/15) of the queens became pregnant. For frozen-thawed semen, AI was consistently done 28h after hCG administration; IUI and IVI resulted in pregnancy rates of 41.7% (5/12), whereas no queen (0/12) became pregnant by IVI (P=0.0083). In conclusion, an acceptable pregnancy rate was obtained with frozen-thawed semen in the domestic cat by non-surgical transcervical IUI; this method might also be useful in other small felids.  相似文献   

4.
The objectives of this experiment were to compare estrous synchronization responses and AI pregnancy rates of beef heifers using protocols that included either CIDR or MGA as the progestin source. The hypotheses tested were that: (1) estrous synchronization responses after (a) progestin removal, and (b) PGF(2alpha); and, (2) AI pregnancy rates, do not differ between heifers synchronized with either progestin source. At the start of the experiment (Day 0) in both years, heifers were assigned randomly to receive, MGA supplement for 14 days (MGA-treated; n=79) or CIDR for 14 days (CIDR-treated; n=77). On Day 14 progestin was removed and heifers were observed for estrus up to and after PGF(2alpha) on Days 31 and 33 for CIDR-treated and MGA-treated heifers, respectively. Heifers that exhibited estrus within 60h after PGF(2alpha) were inseminated by AI 12h later; the remaining heifers were inseminated at 72h after PGF(2alpha) and given GnRH (100mug). More (P<0.05) CIDR-treated heifers exhibited estrus within 120h after progestin removal than MGA-treated heifers. Intervals to estrus after progestin removal were shorter (P<0.05) for CIDR-treated heifers than MGA-treated heifers. More (P<0.05) CIDR-treated heifers exhibited estrus and were inseminated within 60h after PGF(2alpha) than MGA-treated heifers. Pregnancy rates did not differ (P>0.10) between MGA-treated (66%) and CIDR-treated (62%) heifers. In conclusion, the use of CIDR as a progestin source in a 14-day progestin, PGF(2alpha), and timed AI and GnRH estrous synchronization protocol was as effective as the use of MGA to synchronize estrus and generate AI pregnancies in beef heifers.  相似文献   

5.
In six field trials, doses between 1.0 and 6.0 x 10(6) total sexed, frozen-thawed sperm were inseminated into the uterine body or bilaterally into the uterine horns of heifers and nursing Angus cows 12 or 24h after observed estrus. Except for one comparison in one trial in which uterine body insemination was slightly superior (P<0.05) to uterine horn insemination, there was no significant (P>0.1) difference between sites of semen deposition. Additionally, except for one small study with limited numbers, there was essentially no difference in pregnancy rates in the range between 1.5 and 6 x 10(6) sexed, frozen-thawed sperm per inseminate. Pregnancy rates with smaller doses of sexed sperm averaged about 75% of controls of 20 x 10(6) total frozen-thawed, unsexed sperm. While 1.0 x 10(6) sexed, frozen-thawed sperm per insemination dose resulted in decreased pregnancy rates compared to larger doses, the lesser fertility with sexed sperm could not be compensated by increasing sperm numbers in the range of 1.5-6 x 10(6) sperm per dose. Pregnancy rates with 2 x 10(6) sexed, frozen-thawed sperm per dose were not markedly less than control pregnancy rates with 20 x 10(6) frozen-thawed unsexed sperm/dose in well-managed herds.  相似文献   

6.
Our objective was to determine whether extending the interval from 17 to 19 d between removal of melengestrol acetate (MGA) feed and administration of PGF2 alpha would alter conception rates, pregnancy rates and the degree of synchrony in replacement beef heifers. A commercial heifer operation in north-central Kansas purchased 591 Angus x Hereford heifers from 12 sources. Prior to the spring breeding season, 14% of the heifers were culled. The remaining heifers were assigned randomly to 2 MGA-PGF2 alpha synchronization systems. All heifers were fed MGA (0.5 mg/head/d) for 14 d, and PGF2 alpha was administered either 17 or 19 d after the completion of MGA feeding. Heifers were inseminated artificially for 30 d followed by 30 d of natural mating. Based on each source, first-service conception rates ranged from 66 to 90%, whereas overall pregnancy rates ranged from 91 to 100%. Heifers given PGF2 alpha on Day 17 after MGA had first-service conception rates of 75.9% compared with 81.4% for heifers receiving PGF2 alpha on Day 19. In response to the PGF2 alpha injection, 99% of the Day 19 heifers that were detected in estrus were inseminated artificially by 72 h after the PGF2 alpha injection, whereas 74% of the heifers in the Day 17 treatment were inseminated by that time. Average interval to artificial insemination (AI) after PGF2 alpha was greater (P < 0.01) for the Day 17 heifers (73.1 +/- 1.1 h) than for the Day 19 heifers (56.2 +/- 1.1 h). No differences in conception rates or overall pregnancy rates occurred; however, heifers receiving PGF2 alpha on Day 19 after MGA had shorter intervals to estrus, and a greater proportion was inseminated within 72 h after PGF2 alpha, thus possibly facilitating successful timed insemination of the remaining heifers not yet inseminated by that time.  相似文献   

7.
This study was conducted at Belen de Escobar, Argentina, in March and April 1987. Experimental work on synchronization of estrus, deep-freeze conservation of ram semen and small fertility trials involving cervical and intrauterine (i.u.) insemination methods was undertaken. A total of 80 Corriedale ewes were used in seven insemination trials. Insemination trials were grouped into two experimental groups for comparison of 1) frozen semen diluted with an experimental extender and a control diluent inseminated cervically or i.u. in synchronized/superovulated ewes and 2) cervical insemination of fresh diluted or frozen semen in ewes inseminated at natural estrus or in ewes that were synchronized/superovulated. An overall ovulation rate of 8.7 +/- 0.5 was obtained by using a superovulatory regimen consisting of 3 mg Norgestomet implants and a total dose of 18 mg follicle stimulating hormone-pituitary (FSH-P). Numbers of ova recovered per ewe following superovulation ranged from 4.3 to 5.4. In experimental Group I, fertilization rates improved when laparoscopic intrauterine AI was used compared with cervical insemination (P<0.05). Fertility rates of i.u. and cervical insemination of frozen semen diluted with the experimental extender showed satisfactory fertilizing capacity. In experimental Group II, a lower number of fertilized ova were recovered from ewes inseminated with frozen semen (P<0.02), irrespective of their estrus manipulation.  相似文献   

8.
Ewes in the luteal phase of the estrous cycle were treated with prostaglandin F2α (PGF), mated to rams at the ensuing estrus 2 days later, and necropsied at 2 or 23 hr after mating. At 2 hr after mating, ewes in PGF-regulated estrus had significantly fewer sperm in the middle and anterior one-thirds of the cervix and in the uterus than did ewes mated during natural estrus. At 23 hr, soon after ovulation, significantly fewer ewes in PGF-regulated estrus had sperm in the oviducts than did ewes in natural estrus.In Experiment 2, ewes in PGF-regulated or natural estrus were laparotomized, inseminated by deposition of semen in the uterine lumen, and necropsied 2 or 23 hr later. Intrauterine insemination prevented most of the reduction in sperm numbers in the reproductive tract at PGF-regulated estrus.In Experiment 3, ewes in PGF-regulated or natural estrus were either mated to rams or inseminated in the uterine lumen and necropsied 2 hr later. Sperm were recovered from three segments of the cervix and were counted and evaluated for motility, response to live-dead staining, and acrosomal morphology. Intrauterine insemination again reduced the detrimental effect of PGF-regulated estrus on sperm numbers. However, the percentages of sperm recovered from the cervix that were motile, live, and had normal acrosomes were much lower in ewes in PGF-regulated estrus than in ewes in natural estrus. Compared with natural mating, intrauterine insemination reduced but did not eliminate the detrimental effects of PGF-regulated estrus on the viability and morphology of sperm. Regulating estrus with PGF resulted in damage to sperm in the cervix regardless of whether sperm reached the cervix from the vagina or from the uterus.  相似文献   

9.
The objective of this study was to determine the relative importance of seasonal changes in ovulation rate, fertilization rate and embryo survival as the cause of reduced lambing rates in ewes mated in February compared with those mated in November. The study was conducted at 57 degrees N using mature Mule ewes and Suffolk rams. Sixty ewes were allocated equally to five groups: unbred (UB) or mated at a natural oestrus during November (N) or February (F) by natural (N) or cervical artificial (A) insemination. Groups were maintained separately at pasture supplemented with hay. A raddled vasectomized or non-vasectomized ram was present with UB, NN and NA groups from 26 October 1995 to 1 January 1996 and with UB, FN and FA groups from 25 January 1996 to 31 March 1996. Ewes marked by the ram were recorded twice a day, and those in groups NN, NA, FN and FA were inseminated at their second behavioural oestrus. For all ewes, blood samples were obtained once a day from introduction of the vasectomized rams until 30 days after mating (groups NN, NA, FN and FA) or 20 days after the first oestrus (group UB), and ovulation rate was measured by laparoscopy 7 days after the first oestrus. For ewes in groups NN, NA, FN and FA, ovulation rate was measured again after the second oestrus and ova were recovered from six ewes per group for assessment of fertilization before autotransfer. Pregnancy and lambing rates were recorded at term. Mean (+/- SE) dates of the first recorded oestrus for ewes in groups NN, NA and UB, and FN, FA and UB were 4 +/- 1.1 November and 4 +/- 0.9 February, respectively, and intervals between the first and second oestrus were 16 +/- 0.2 and 17 +/- 0.3 days (P < 0.01), respectively. Ovulation rates were 2.6 +/- 0.08 and 2.0 +/- 0.05 (P < 0.001), and peripheral progesterone concentrations during the luteal phase were 8.5 +/- 0.25 and 7.6 +/- 0.31 ng ml-1 (P < 0.05), for November and February, respectively. The difference in peripheral progesterone concentration was not solely attributable to the difference in ovulation rate. There was no significant effect of month or method of insemination, or of embryo recovery and autotransfer procedures on pregnancy rates and the proportion of ewes that became pregnant were NN 0.92, NA 0.83, FN 0.67 and FA 0.75. For ewes undergoing embryo recovery and autotransfer, ova recovered per corpus luteum were 1.00, 0.93, 1.00 and 0.92, fertilized ova per ovum recovered were 0.69, 0.92, 1.00 and 0.83, and lambs born per corpus luteum were 0.62, 0.79, 0.78 and 0.58 for NN, NA, FN and FA groups, respectively. There were no significant seasonal effects on fertilization rate or embryo survival. It is concluded that a seasonal decline in ovulation rate is the primary cause of reduced lambing rates in ewes mated in February compared with those mated in November. Pregnancy rates were high after mating in both periods and were not enhanced by the use of cervical insemination.  相似文献   

10.
The widespread use of artificial insemination (AI) in sheep is currently prevented due to the lack of a cost effective insemination technique utilising frozen-thawed semen. The objective of the present study was to determine if the deposition of frozen-thawed semen in the vaginal fornix would result in a pregnancy rate comparable to that achieved following cervical insemination. Multiparous ewes of various breeds were synchronised and inseminated into either the vaginal fornix (n=78) or the cervix (n=79), at 57 h post sponge removal, with frozen-thawed semen. Information on mucus secretion and the depth to which it was possible to penetrate the cervix at insemination (cervically inseminated ewes only) was recorded at the time of AI. Pregnancy rate was subsequently determined either by return to service (oestrus) or after slaughter 30 days post insemination. Insemination site did not significantly influence pregnancy rate using frozen-thawed semen (36.2% compared to 27.6% for cervical and vaginal fornix insemination, respectively; P=0.26). Whilst depth of cervical penetration was positively associated with pregnancy rate (P<0.05), this association needs to be interpreted with caution as none of the ewes where the cervix could not be penetrated (score=0) was pregnant. In conclusion, pregnancy rate following insemination of frozen-thawed semen into the vaginal fornix was within 10% points of that obtained following cervical AI of frozen-thawed semen. As insemination into the vaginal fornix is technically easier than cervical insemination, it may be more practical for use in large scale applications.  相似文献   

11.
After lambing in late November, oestrus and ovulation were induced by using a CIDR device and PMSG in early weaned (N = 13) or lactating (N = 14) Border Leicester x Scottish Blackface ewes between 23 and 29 days after parturition. Ewes were intrauterine inseminated under laparoscopic visualization 54-55 h after CIDR-device withdrawal and eggs recovered on Day 3 of the cycle. Ovum recovery and fertilization rates were higher in lactating than in early weaned ewes, with fertilization being achieved as early as 24 days post partum in both groups. Of the 7 early weaned and 11 lactating ewes yielding eggs, fertilization occurred in 4 and 7 ewes respectively. A total of 20 embryos were transferred to the normal uterine environment of 15 recipient ewes in which the interval from parturition was greater than 150 days. Pregnancies were successfully established in 9 recipient ewes, resulting in the birth of 10 viable lambs. Prolactin concentrations were significantly higher (P less than 0.001) in lactating than in early weaned ewes throughout the study. Nevertheless, normal luteal function (as assessed by daily progesterone concentrations) was exhibited by 12 of 14 lactating and 8 of 13 early weaned ewes. Two post-partum donors in which the corpora lutea completely failed to secrete progesterone yielded fertilized eggs which developed to term when transferred to a normal uterine environment. The results show that sheep oocytes can be fertilized using laparoscopic intrauterine insemination as early as 24 days after parturition and that the resulting embryos are viable when recovered on Day 3 after oestrus and transferred to a normal uterine environment.  相似文献   

12.
Progestagen-impregnated vaginal sponges + PMSG were used to synchronize oestrus in crossbred adult ewes which were inseminated 56 h after sponge removal with 0.5 ml diluted semen containing 400, 200, 100, 50 or 25 x 10(6) spermatozoa per insemination. The diluent was skim milk-citrate or pooled seminal plasma. There was no difference in reproductive performance due to the insemination medium. Fertility (no. of ewes lambing) after insemination of 400 or 200 x 10(6) spermatozoa was 68% and was similar to that observed after natural service at progestagen-induced oestrus. When less than or equal to 100 x 10(6) spermatozoa were inseminated, fertility fell markedly and the number of lambs per ewe inseminated decreased. A decrease in litter size also occurred. The data indicate that insemination of 200 x 10(6) spermatozoa, i.e. less than 10% of the number in a single ram ejaculate, allows normal conception rates in progestagen-treated ewes.  相似文献   

13.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

14.
The aim of this field study was to investigate the relationship of plasma urea nitrogen (PUN) with the pregnancy rate in lactating Awassi × Merino ewes. One hundred and eighty-five Awassi × Merino ewes were used in the present study. Ewes were fed a diet containing 17.4% crude protein and were milked twice a day by the milking machine. The ewes were synchronized for estrus by insertion of intravaginal sponges containing 30 mg flurogestone acetate for 14 days. At the time of sponge removal each ewe was administered eCG (600 IU). All ewes were inseminated twice with fresh semen into the external os of the cervix at 48 and 56 h after sponge removal. The day of insemination was considered as Day 0 for calculating the gestational period. Blood samples were collected from each ewe at Days 0, 18 for measurement of PUN concentrations and at Day 22 after AI for measurement of pregnancy-associated glycoprotein (PAG) by radioimmunoassay (RIA). Thirty-eight ewes (20.5%) were confirmed pregnant by PAG-RIA test at Day 22 and by ultrasonography at Day 80. The mean (±S.D.) concentration of PUN in all ewes at Day 0 was 12.7±4.6 mmol/L. There were non-significant differences in the level of PUN between pregnant and non-pregnant ewes at Days 0 (12.2±4.2 mmol/L vs. 12.8±4.7 mmol/L, respectively) and 18 (9.6±2.9 mmol/L vs. 10.4±4.0 mmol/L, respectively) after AI. Mean PUN concentrations decreased significantly from Day 0 to Day 18 after AI in both pregnant and non-pregnant ewes. By using logistic regression analysis, there was no effect of PUN concentrations on the probability of pregnancy occurrence in the studied ewes (odds ratio: 0.97; 95% confidence interval: 0.9-1.05; P=0.45). In conclusion, there was no evidence of a relationship between PUN concentration and pregnancy rate for lactating Awassi × Merino ewes in the present study because of low pregnancy rate observed.  相似文献   

15.
We wished to evaluate the effects of FSH/LH ratio and number of doses of p-FSH during a superovulatory treatment on ovulation rate and embryo production (Experiment I). In Experiment II, we studied the efficacy of fertilization after various insemination schedules in superovulated donors. In Experiment I estrus was synchronized in 40 ewes (FGA, for 9 days plus PGF2alpha on Day 7) and the ewes were randomly assigned to four treatment groups as follows (n = 10 ewes each): Group A: four p-FSH doses with the FSH/LH ratio held constant (1.6); Group B: four p-FSH doses with the FSH/LH ratio decreasing (FSH/LH 1.6-1.0-0.6-0.3); Group C: eight p-FSH doses with the FSH/LH ratio held constant (1.6); Group D: eight p-FSH doses and FSH/LH ratio decreasing (1.6-1.6, 1.0-1.0, 0.6-0.6, 0.3-0.3). p-FSH administrations were performed twice daily 12 h apart. The ewes were mated at the onset of estrus and again after 12 and 24 h; then, one ram per four ewes was maintained with the ewes for two additional days. Ovarian response and embryo production were assessed on Day 7 after estrus. Experiment II. Three groups (n = 10 each) of superovulated ewes were inseminated as follows: Group M: mated at onset of estrus; Group AI: artificial insemination 30 h after onset of estrus; M + AI) mating at onset of estrus and intrauterine AI performed 30 h from estrus with fresh semen. Results of Experiment I showed that treatment (D) improved (P < 0.05) ovulatory response in comparison to Groups (C) and (A). The fertilization rate was lower (P < 0.01) in Group D) than Group (A). Also the proportion of transferable embryos was lower in Group (D) in comparison to all the other treatments (P < 0.01). Group A gave the best production of embryos (7.3/ewe; 89.0% transferable). In Experiment II, combined mating plus AI improved fertilization rate (80.3%) compared to both mating (P < 0.01) and AI (P < 0.02) alone.  相似文献   

16.
Estrus synchronization using prostaglandins was applied to a well-developed system of AI in beef cattle. Cows and heifers were selected to be free from infectious disease. Cows were run at pasture in a single group and estrus was detected visually twice a day without the use of any aids. Estrous cows were removed from the group each morning. Cows detected in estrus in the morning were inseminated that afternoon and cows detected in the afternoon were inseminated the next morning. The AI program ran for 25 to 42 days and was evaluated by rectal pregnancy palpation about 42 days after the last insemination. Calves were produced at an average cost of $26. The only management systems of synchronization using prostaglandins that could match this cost was the 10 day program with one treatment of 10 or 12.5 mg prostaglandin F2α on day 5. Management systems using two treatments of PGF2α, 12 days apart, increased calf costs to $160, $100, and $45, respectively, with two or one timed insemination or insemination after detection of estrus.The most significant efficiency factor was the ratio of the number of cows inseminated to the number of cows put into the AI program and this ratio was statistically the same in normal AI (72%) and AI with synchronization and detection of estrus (74%). About half of the cattle not inseminated had ovarian activity, palpable follicles or corpora lutea but had not yet come into estrus. Pregnancy rates per insemination and the number of cows pregnant per 100 cows in an AI program were the same but the labor input was reduced by synchronization.Responses to prostaglandin F2α treatment were the same over the range of dose rates from 8 to 20 mg. The 10 day AI program with a single treatment of 10 or 12.5 mg PGF2α has been used commercially in Australia for 6 years with other management systems being tailored to particular needs.  相似文献   

17.
A total of 540 cyclic ewes were randomly allocated to 1 of 6 groups according to synchronization or not with melengestrol acetate (MGA), insemination with fresh or frozen semen, and insemination during the first or second estrus post treatment. The MGA was effective in synchronizing estrus, since the percentage of ewes showing estrus during the first 6 days after treatment was significantly higher (P<0.05) for treated (79.5%) than for nontreated ewes (33.5%); 74% of the treated ewes showed estrus during a 72-h period. Progesterone concentrations in plasma samples obtained at random from 34 treated ewes on Day 8 post estrus revealed that 94% of them ovulated and formed a functional CL. Synchronization was maintained during the second estrus post treatment, since 71.9% of the ewes showed the second estrus during a 72-h period. Treatment with 0.22 mg of MGA/head/d for 14 d had a detrimental effect on fertility when insemination was carried out during the first estrus post treatment. Delaying insemination until the second estrus post treatment caused a less marked reduction in conception rates. Thus, MGA can be a useful alternative for estrus synchronization of a large number of ewes. Artificial insemination can be delayed until the second estrus post treatment, improving fertility without loosing the advantages of estrus synchronization.  相似文献   

18.
The objective was to improve pregnancy per artificial insemination (P/AI; 35-42 d after AI) in virgin Jersey heifers bred by AI of sex-sorted semen after being detected in estrus. Giving 100 μg of GnRH at first detection of estrus, with AI 12 h later, did not affect P/AI in Experiment I [GnRH = 47.2% (100/212) vs. No GnRH = 51.7% (104/201); P = 0.38] or Experiment II [GnRH = 53.1% (137/258) vs. No GnRH = 48.6% (122/251); P = 0.43]. In these two experiments, estrus detection was done with tail-head chalk or a HeatWatch® system, respectively. In Experiment III, a single insemination dose (2.1 × 106 sperm) 12 h after estrus detection (n = 193), a double dose at 12 h (n = 193), or a double dose involving insemination 12 and 24 h after estrus detection (n = 190) did not affect P/AI (87/193 = 45.1%, 85/193 = 44.0%, and 94/190 = 49.5%, respectively; P = 0.51). However, P/AI was influenced by the number of AI service (First, 115/208 = 55.3%a; Second, 94/204 = 46.1%a; and Third, 57/165 = 34.8%b; P = 0.004). In Experiment IV, the P/AI of heifers inseminated from 12 to 16 h after the onset of estrus (40/106 = 37.7%) was less (P = 0.03) than those inseminated from 16.1 to 20 h (85/164 = 51.8%), and 20.1 to 24 h (130/234 = 55.6%). However, the P/AI for heifers inseminated from 24.1 to 30 h (61/134 = 45.5%) did not differ from that of any other interval. In conclusion, in Jersey heifers inseminated with sex-sorted semen, P/AI was not significantly affected by giving GnRH at detection of estrus or a double insemination dose, but it was higher with AI 16.1 to 24 h vs. 12 to 16 h after the onset of estrus.  相似文献   

19.
《Theriogenology》1996,45(8):1523-1533
Exogenous oxytocin aids in the transcervical passage of an AI gun into the uterus of ewes, and it may be an effective adjunct to sheep AI procedures. However, the effects of oxytocin on sperm transport and fertility are unclear. Thus, experiments were conducted to evaluate the effects of oxytocin on variables that may affect fertility. In Experiment 1, five ewes/group received intravenous injections of 0, 50, 100, 200 or 400 USP units of oxytocin. Oxytocin enhanced (P < 0.001) uterine entry; the rates were 0% for control, 60% for the 50- and 100-unit doses, and 100% for the 200- and 400-unit doses. In Experiment 2, five ewes/group received intravenous injections of 0, 50, 100, 200, or 400 USP units of oxytocin, and the effect on uterine contractions was observed with a laparoscope. Oxytocin induced myometrial tetany within 2 min. The dose affected (P < 0.05) the duration of tetany, which was 0, 21, 27, 29, and 41 min for the 0-, 50-, 100-, 200- and 400-unit doses, respectively. In Experiment 3, either 0 or 200 USP units of oxytocin were injected intravenously 52 h after removal of progestogen pessaries from 20 ewes. Ewes were inseminated laparoscopically 10 min later with fresh, extended semen (500 × 106 sperm cells) into the right uterine horn. Ewes were slaughtered 20 h after AI, and the numbers of spermatozoa were determined. Oxytocin did not affect (P > 0.05) the movement of spermatozoa throughout the uterus and into both oviducts. In summary, oxytocin induced myometrial tetany and permitted the passage of the tip of an AI gun into the uterus. However, oxytocin did not disrupt sperm transport to the oviducts. We conclude that oxytocin-induced cervical dilation may be a useful adjunct to transcervical intrauterine AI procedures for sheep.  相似文献   

20.
Two experiments were conducted to compare pregnancy rates when GnRH or estradiol were given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based estrus synchronization program. Crossbred beef cattle were fed melengestrol acetate (MGA, 0.5 mg per day) for 7 days (designated days 0-6, without regard to stage of the estrous cycle) and given cloprostenol (PGF; 500 microg intramuscular (im)) on day 7. In Experiment 1, lactating beef cows (n=140) and pubertal heifers (n=40) were randomly allocated to three groups to receive 100 microg gonadorelin (GnRH), 5 mg estradiol-17beta and 100 mg progesterone (E+P) in canola oil or no treatment (control) on day 0. All cattle were observed for estrus every 12 h from 36 to 96 h after PGF. Cattle in the GnRH group that were detected in estrus 36 or 48 h after PGF were inseminated 12 h later; the remainder were given 100 microg GnRH im 72 h after PGF and concurrently inseminated. Cattle in the E+P group were randomly assigned to receive either 0.5 or 1.0 mg estradiol benzoate (EB) in 2 ml canola oil im 24 h after PGF and were inseminated 30 h later. Cattle in the control group were inseminated 12 h after the first detection of estrus; if not in estrus by 72 h after PGF, they were given 100 microg GnRH im and concurrently inseminated. In the absence of significant differences, all data for heifers and for cows were combined and the 0.5 and 1.0 mg EB groups were combined into a single estradiol group. Estrus rates were 57.6, 57.4 and 60.0% for the GnRH, E+P and control groups, respectively (P=0.95). The mean (+/-S.D.) interval from PGF treatment to estrus was shorter (P<0.001) and less variable (P<0.001) in the E+P group (49.0+/-6.1 h) than in either the GnRH (64.2+/-15.9 h) or control (66.3+/-13.3 h) groups. Overall pregnancy rates were higher (P<0.005) in the GnRH (57.6%) and E+P (55.7%) groups than in the control group (30.0%) as were pregnancy rates to fixed-time AI (47.5, 55.7 and 28.3%, respectively). In Experiment 2, 122 crossbred beef heifers were given either 100 microg GnRH or 2 mg EB and 50 mg progesterone in oil on day 0 and subsequently received either 100 microg GnRH 36 h after PGF and inseminated 14 h later or 1 mg EB im 24 h after PGF and inseminated 28 h later in a 2 x 2 factorial design. Pregnancy rates were not significantly different among groups (41.9, 32.2, 33.3 and 36.7% in GnRH/GnRH, GnRH/EB, EB/GnRH and EB/EB groups, respectively). In conclusion, GnRH or estradiol given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based synchronization regimen resulted in acceptable pregnancy rates to fixed-time insemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号