首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of pH on the phase transition temperature of 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) and 1,2-dipalmitoyl-sn-glycero-3-thionphosphate (thion-DPPA) has been investigated. The phase transition was detected using the jump like increase effect in the conductance of the planar bilayer membrane. It is shown that the steepness of pH-dependence of the phase transition temperature differs for these two kinds of lipids in the pH range of 3.5-8. This result is explained in terms of decreased intermolecular hydrogen bonding between the head groups of thion-DPPA. Calculations taking into account the ability of DPPA molecules to intermolecular phosphate-phosphate hydrogen bonding were made. The results of calculations are in good agreement with the experimental data obtained in this study.  相似文献   

2.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

3.
Nonhydrolyzable matrices of ether-linked phosphatidylcholines (PCs) and sphingomyelin have been used to study the mechanism of action of lipolytic enzymes. Since ether PCs, sphingomyelin, and ester PCs vary in the number of hydrogen bond donors and acceptors in the carbonyl region of the bilayer, we have examined several physical properties of ether PCs and sphingomyelin in model systems to validate their suitability as nonhydrolyzable lipid matrices. The intermolecular interactions of ether PCs with ester PCs, sphingomyelin, and cholesterol were investigated by differential scanning calorimetry. Phase diagrams constructed from the temperature dependence of the gel to liquid-crystalline phase transition of 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC-ether) and 1,2-O-ditetradecyl-sn-glycero-3-phosphocholine (DMPC-ether) with both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) demonstrated complete lipid miscibility in the gel and liquid-crystalline phases. Additionally, phase diagrams of egg yolk sphingomyelin (EYSM) with DMPC or DMPC-ether and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) or 1,2-O-dioctadecyl-sn-glycero-3-phosphocholine (DSPC-ether) demonstrated no major differences in miscibility of EYSM in ester and ether PCs. The effect of 10 mol % cholesterol on the thermal transitions of mixtures of ester and ether PCs also indicates little preference of cholesterol for either lipid. The fusion of small single bilayer vesicles of DMPC, DMPC-ether, DPPC, and DPPC-ether to larger aggregates as determined by gel filtration indicated that the ester PC vesicles were somewhat more stable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Liu J  Conboy JC 《Biophysical journal》2005,89(4):2522-2532
Sum-frequency vibrational spectroscopy (SFVS) is used to measure the intrinsic rate of lipid flip-flop for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in planar-supported lipid bilayers (PSs). Asymmetric PSLBs were prepared using the Langmuir-Blodgett/Langmuir-Schaefer method by placing a perdeuterated lipid analog in one leaflet of the PSLB. SFVS was used to directly measure the asymmetric distribution of the native lipid within the membrane by measuring the decay in the CH3 v(s) intensity at 2875 cm(-1) with time and as a function of temperature. An average activation energy of 220 kJ/mol for the translocation of DMPC, DPPC, and DSPC was determined. A decrease in alkyl chain length resulted in a substantial increase in the rate of flip-flop manifested as an increase in the Arrhenius preexponential factor. The effect of lipid labeling was investigated by measuring the exchange of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-n,n-Dimethyl-n-(2',2',6',6'-tetramethyl-4'-piperidyl) (TEMPO-DPPC). The rate of TEMPO-DPPC flip-flop was an order-of-magnitude slower compared to DPPC. An activation energy of 79 kJ/mol was measured which is comparable to that previously measured by electron spin resonance. The results of this study illustrate how SFVS can be used to directly measure lipid flip-flop without the need for a fluorescent or spin-labeled lipid probe, which can significantly alter the rate of lipid translocation.  相似文献   

5.
The effect of acyl-chain length of phospholipid on the membrane permeabilizing activity of amphotericin B (AmB) was examined using egg phosphatidylcholine (eggPC) liposomes containing 5% or 20% phosphatidylcholine with various lengths of fatty acyl chains from C(10) to C(18); 1,2-dicapryloyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The membrane activity of AmB was evaluated by two methods; the drug was added to a liposome suspension (added-via-aqua), or mixed with lipids prior to liposome preparation (mixed-with-lipid). In both cases, K(+) influx by AmB was measured as pH change inside liposomes by 31P-NMR. The C(10) and C(12) acyl phospholipids markedly enhanced the activity of AmB, the C(14) and C(16) lipids virtually showed no effect, and the C(18) lipid was inhibitory to the AmB's action. Clear distinction between the C(12) and C(14) lipids, which differ only in acyl chains by two carbons, implies that molecular interaction between phospholipid and AmB is partly due to the matching of their hydrophobic length.  相似文献   

6.
We report here the reversible association of a designed peptide embedded in a lipid membrane through a stimulus-sensitive trigger that changes the physical state of the bilayer matrix. A peptide designed with the classical 4-3 heptad repeat of coiled coils, equipped with leucine residues at all canonical interface positions, TH1, was rendered membrane soluble by replacement of all exterior residues with randomly selected hydrophobic amino acids. Insertion of TH1 into large unilamellar phosphatidylcholine vesicles was followed by monitoring tryptophan fluorescence. Peptide insertion was observed when the lipids were in the liquid-crystalline state [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)] but not when they were in the crystalline phase [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)]. Formation of a trimeric alpha-helical bundle in lipid bilayers was followed by fluorescence resonance energy transfer. Global fit analysis revealed a monomer--trimer equilibrium with a dissociation constant of around 10(-5) [corrected] MF(2). A lipid mixture composed of DPPC and POPC exhibiting a phase transition at 34 degrees C between a crystalline/liquid-crystalline coexistence region and a completely miscible liquid-crystalline phase was used to control the formation of the trimeric peptide bundle. TH1 is phase excluded in crystalline DPPC domains below 34 degrees C, leading to a larger number of trimers. However, when the DPPC domains are dispersed at temperatures above 34 degrees C, the number of trimers is reduced.  相似文献   

7.
Giant unilamellar vesicles (GUVs) containing cholesterol often have a wide distribution in lipid composition. In this study, GUVs of 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)/1,2-distearoyl-sn-glycero-3-phosphocholine(DSPC)/cholesterol and 1,2-diphytanoyl-sn-glycero-3-phosphocholine(diPhyPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)/cholesterol were prepared from dry lipid films using the standard electroformation method as well as a modified method from damp lipid films, which are made from compositional uniform liposomes prepared using the Rapid Solvent Exchange (RSE) method. We quantified the lipid compositional distributions of GUV by measuring the miscibility transition temperature of GUVs using fluorescence microscopy, since a narrower distribution in the transition temperature should correspond to a more uniform distribution in GUV lipid composition. Cholesterol molecules can demix from other lipids in dry state and form cholesterol crystals. Using optical microscopy, micron-sized crystals were observed in some dry lipid films. Thus, a major cause of GUV lipid compositional heterogeneity is the demixing of lipids in the dry film state. By avoiding the dry film state, GUVs prepared from damp lipid films have a better uniformity in lipid composition, and the standard deviations of miscibility transition temperature are about 2.5 times smaller than that of GUVs prepared from dry lipid films. Comparing the two ternary systems, diPhyPC/DPPC/cholesterol GUVs has a larger cholesterol compositional heterogeneity, which directly correlates with the low maximum solubility of cholesterol in diPhyPC lipid bilayers (40.2±0.5mol%) measured by light scattering. Our data indicate that cholesterol interacts far less favorably with diPhyPC than it does with other PCs. The damp lipid film method also has a potential of preparing GUVs from cell membranes containing native proteins without going through a dry state.  相似文献   

8.
A fatty acid spin label, 16-doxyl-stearic acid, was used to determine the percent interdigitated lipid in mixtures of a neutral phospholipid and an acidic phospholipid. Interdigitation of the acidic lipid was induced with polymyxin B (PMB) at a mole ratio of PMB to acidic lipid of 1:5. This compound does not bind significantly to neutral lipids or induce interdigitation of the neutral lipids by themselves. The neutral lipids used were dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or dipalmitoylphosphatidylethanolamine (DPPE), and the acidic lipids were dipalmitoylphosphatidylglycerol (DPPG) or dipalmitoylphosphatidic acid (DPPA). The percent interdigitated lipid was determined from the percent of the spin label which is motionally restricted, assuming that the spin label is homogeneously distributed in the lipid. Assuming further that 100% of the acidic lipid is interdigitated at this saturating concentration of PMB, the percentage of the neutral lipid which can become interdigitated along with it was calculated. The results indicate that about 20 mole % DPPC can be incorporated into and become interdigitated in the interdigitated bilayer of PMB/DPPG at 4 degrees C. As the temperature approaches the phase transition temperature, the lipid becomes progressively less interdigitated; this occurs to a greater degree for the mixtures than for the single acidic lipid. Thus the presence of DPPC promotes transformation of the acidic lipid to a non-interdigitated bilayer at higher temperatures. At the temperature of the lipid phase transition little or none of the lipid in the mixture is interdigitated. Thus the lipid phase transition detected by calorimetry is not that of the interdigitated bilayer. The shorter chain length DMPC can be incorporated to a greater extent than DPPC, 30-50 mol%, in the interdigitated bilayer of PMB-DPPG. This may be a result of reduced exposure of the terminal methyl groups of the shorter myristoyl chains at the polar/apolar interface of the interdigitated bilayer. Less than 29% of the total lipid was interdigitated in a DPPC/DPPA/PMB 1:1:0.2 mixture indicating that none of the DPPC in this mixture becomes interdigitated. This is attributed to the lateral interlipid hydrogen bonding interactions of DPPA which inhibits formation of an interdigitated bilayer. DPPE was found to be incorporated into the interdigitated bilayer of PMB-DPPG to a similar extent as DPPC if the amount of PMB added is sufficient to bind to only the DPPG in the mixture. Differential scanning calorimetry showed that the remaining non-interdigitated DPPE-enriched mixture phase separates into its own domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Changes in membrane fluidity induced by lectin addition to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles containing synthetic glycopeptides were measured by depolarization of the fluorescent probes 8-anilino-1-naphthalenesulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH). In the present synthesized glycopeptides, N-acetylglucosamine (GlcNAc) and a tripeptide were connected by aliphatic chains of different lengths. A pyrenyl group, which is introduced to the peptide moiety, acted as a probe to characterize the distribution of glycopeptides in the membrane on the basis of its excimer formation. The glycopeptide was shown to be distributed to DPPC vesicles with the peptide moiety buried in the hydrophobic core of the lipid bilayer and the glyco moiety exposed to the outside of the membrane. By the addition of wheat germ agglutinin (WGA) to the vesicles containing the glycopeptides, intravesicular cross-linking of glycopeptides in the membrane and aggregation of vesicles were observed. The intravesicular cross-linking was antagonized by GlcNAc above the phase transition temperature. However, the dissociation of aggregation required the addition of a stronger antagonist, N,N'-diacetylchitobiose. The addition of the glycopeptide to DPPC vesicles above the phase transition temperature decreased the membrane fluidity. However, a succeeding addition of WGA caused a large increase of membrane fluidity at either the surface or the hydrophobic core of the lipid bilayer membrane. This increase of membrane fluidity was attributed to two factors by use of two kinds of antagonists having different potencies: one is a WGA-mediated cross-linking of glycopeptides in the membrane, and the other is a close contact of vesicles on aggregation.  相似文献   

10.
Giant unilamellar vesicles (GUVs) composed of different phospholipid binary mixtures were studied at different temperatures, by a method combining the sectioning capability of the two-photon excitation fluorescence microscope and the partition and spectral properties of 6-dodecanoyl-2-dimethylamino-naphthalene (Laurdan) and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE). We analyzed and compared fluorescence images of GUVs composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DLPC/DPPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DLPC/DSPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-diarachidoyl-sn-glycero-3-phosphocholine (DLPC/DAPC), 1, 2-dimyristoyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DMPC/DSPC) (1:1 mol/mol in all cases), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine/1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPE/DMPC) (7:3 mol/mol) at temperatures corresponding to the fluid phase and the fluid-solid phase coexistence. In addition, we studied the solid-solid temperature regime for the DMPC/DSPC and DMPE/DMPC mixtures. From the Laurdan intensity images the generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domains. We found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region for all of the lipid mixtures. At temperatures corresponding to phase coexistence we observed concurrent fluid and solid domains in the GUVs independent of the lipid mixture. In all cases the lipid solid domains expanded and migrated around the vesicle surface as we decreased the temperature. The migration of the solid domains decreased dramatically at temperatures close to the solid-fluid-->solid phase transition. For the DLPC-containing mixtures, the solid domains showed line, quasicircular, and dendritic shapes as the difference in the hydrophobic chain length between the components of the binary mixture increases. In addition, for the saturated PC-containing mixtures, we found a linear relationship between the GP values for the fluid and solid domains and the difference between the hydrophobic chain length of the binary mixture components. Specifically, at the phase coexistence temperature region the difference in the GP values, associated with the fluid and solid domains, increases as the difference in the chain length of the binary mixture component increases. This last finding suggests that in the solid-phase domains, the local concentration of the low melting temperature phospholipid component increases as the hydrophobic mismatch decreases. At the phase coexistence temperature regime and based on the Laurdan GP data, we observe that when the hydrophobic mismatch is 8 (DLPC/DAPC), the concentration of the low melting temperature phospholipid component in the solid domains is negligible. This last observation extends to the saturated PE/PC mixtures at the phase coexistence temperature range. For the DMPC/DSPC we found that the nonfluorescent solid regions gradually disappear in the solid temperature regime of the phase diagram, suggesting lipid miscibility. This last result is in contrast with that found for DMPE/DMPC mixtures, where the solid domains remain on the GUV surface at temperatures corresponding to that of the solid region. In all cases the solid domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This last finding extends previous observations of GUVs composed of DPPE/DPPC and DLPC/DPPC mixtures (, Biophys. J. 78:290-305).  相似文献   

11.
The interaction between 1-decyloxymethyl-3-carbamoylpyridinium salts (PS-X) and two types of vesicles (multilamellar vesicle and sonicated vesicle) was investigated. Vesicles were formed from two classes of phospholipids: 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (DPPE). The PS-X salts used had nitrate, perchlorate, tetrafluoroborate and halides as counterions. Measurements were carried out using differential scanning calorimetry and 1H NMR. All studied compounds decreased the main phase transition temperatures of both DPPC and DPPE bilayers. All of them also decreased the transition enthalpy of DPPC bilayers, however they had a dual effect on the transition enthalpy of DPPE. Namely, at low concentrations the PS-X salts studied significantly increased the main transition enthalpy of DPPE (perchlorate and tetrafluoroborate the least among them) and decreased it at higher concentrations. We have suggested that surfactant rich and pure domains form on the DPPE bilayer in the presence of PS-ClO4, PS-BF4 and PS-NO3, whereas they form on DPPC bilayer only in the presence of PS-ClO4. Results are discussed in terms of counterion molecular geometry and the ability of amide group to form hydrogen bonds with lipids.  相似文献   

12.
Azithromycin is a macrolide antibiotic known to bind to lipids and to affect endocytosis probably by interacting with lipid membranes [Tyteca, D., Schanck, A., Dufrene, Y.F., Deleu, M., Courtoy, P.J., Tulkens, P.M., Mingeot-Leclercq, M.P., 2003. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: studies on Langmuir-Blodgett monolayers, liposomes and J774 macrophages. J. Membr. Biol. 192, 203-215]. In this work, we investigate the effect of azithromycin on lipid model membranes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Thermal transitions of both lipids in contact with azithromycin are studied by (31)P NMR and DSC on multilamellar vesicles. Concerning the DPPC, azithromycin induces a suppression of the pretransition whereas a phase separation between the DOPC and the antibiotic is observed. For both lipids, the enthalpy associated with the phase transition is strongly decreased with azithromycin. Such effects may be due to an increase of the available space between hydrophobic chains after insertion of azithromycin in lipids. The findings provide a molecular insight of the phase merging of DPPC gel in DOPC fluid matrix induced by azithromycin [Berquand, A., Mingeot-Leclercq, M.P., Dufrene, Y.F., 2004. Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim. Biophys. Acta 1664, 198-205] and could help to a better understanding of azithromycin-cell interaction.  相似文献   

13.
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes.  相似文献   

14.
《Biophysical journal》2022,121(13):2550-2556
The (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety tethered to the headgroup of phosphatidylcholine (PC) lipid is employed in spin labeling electron paramagnetic resonance spectroscopy to probe the water dynamics near lipid bilayer interfaces. Due to its amphiphilic character, however, TEMPO spin label could partition between aqueous and lipid phases, and may even be stabilized in the lipid phase. Accurate assessment of the TEMPO-PC configuration in bilayer membranes is essential for correctly interpreting the data from measurements. Here, we carry out all-atom molecular dynamics (MD) simulations of TEMPO-PC probe in single-component lipid bilayers at varying temperatures, using two standard MD force fields. We find that, for a dipalmitoylphosphatidylcholine (DPPC) membrane whose gel-to-fluid lipid phase transition occurs at 314 K, while the TEMPO spin label is stabilized above the bilayer interface in the gel phase, there is a preferential location of TEMPO below the membrane interface in the fluid phase. For bilayers made of unsaturated lipids, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which adopt the fluid phase at ambient temperature, TEMPO is unequivocally stabilized inside the bilayers. Our finding of membrane phase-dependent positioning of the TEMPO moiety highlights the importance of assessing the packing order and fluidity of lipids under a given measurement condition.  相似文献   

15.
Raman scattering spectra of 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) dispersions, mixed with water-soluble porphyrins, i.e. cationic copper(II)-5,10,15,12-tetrakis(4-N-methylpyridyl) and anionic silver(II)-5,10,15,20-tetrakis(4-carboxyphenyl)porphyrins, were measured in the 2800-3100 cm(-1) C-H stretching vibration region as a function of the temperature within the 5-55 degrees C range. Temperature profiles of Raman data were constructed from a quantitative data treatment based on factor analysis. This method is shown to be more efficient than the commonly used approach employing peak intensity ratios. Parameters of the gel phase to liquid crystal phase transition determined from Raman temperature profiles were used to monitor the porphyrin influence on DPPG and DPPC structures. Both negatively and positively charged porphyrins significantly perturb DPPC and DPPG dispersions, causing significant downshift of the transition temperature and broadening of the transition region. Water-soluble porphyrins are assumed to set at the outside part of phospholipid dispersions and interact via coulombic forces with charged lipid heads. For the cationic CuTMPyP, the strongest effect has been observed for negatively charged DPPG. In contrast, anionic AgTPPC4 has been found to interact more efficiently with DPPC possessing both positive and negative charges.  相似文献   

16.
We previously reported that 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) forms an interdigitated gel phase in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine (16:0LPC) at concentrations below 30 mol%. In the present investigation, fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), X-ray diffraction, and differential scanning calorimetry (DSC) were used to investigate the effect of cholesterol on the phase behavior of 16:0LPC/DPPC binary mixtures. At 25 degrees C, 30 mol% 16:0LPC significantly decreases the DPH fluorescence intensity during the transition of DPPC from the L(beta') phase to the L(betaI) phase. However, the addition of cholesterol to 16:0LPC/DPPC mixtures results in a substantial increase in fluorescence intensity. The changes in DPH fluorescence intensity reflect the probe's redistribution from an orientation parallel to the acyl chain to the center of the bilayer, suggesting a bilayer structure transition from interdigitation to noninterdigitation. The normal repeat period of small angle X-ray diffraction patterns can be restored and a reflection appears at 0.42 nm with a broad shoulder around 0.41 nm in wide angle X-ray diffraction patterns when 10 mol% cholesterol is incorporated into 30 mol% 16:0LPC/DPPC vesicles, indicating that the mixtures are in the gel phase (L(beta')). Moreover, DSC results demonstrate that 10 mol% cholesterol is sufficient to significantly decrease the main enthalpy, cooperativity and lipid chain melting of 30 mol% 16:0LPC/DPPC binary mixtures, which are L(betaI), indicating that the transition of the interdigitated phase is more sensitive to cholesterol than that of the noninterdigitated phase. Our data imply that the interdigitated gel phase induced by 16:0LPC is prevented in the presence of 10 mol% cholesterol, but unlike ethanol, an increasing concentration of 16:0LPC is not able to restore the interdigitation structure of the lipid mixtures.  相似文献   

17.
The interaction of phenol (PHE), salicylic acid (SA) and o-acetylsalicylic acid (ASA) with bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was investigated by infrared spectrometry. The temperature of the main gel to liquid crystal phase transition of DPPC is markedly depressed in the presence of the three guest molecules. The temperature depression depends on the nature and concentration of the additives. The temperature of the pretransition is also affected by these guest molecules and the depression in temperature is even more pronounced than that of the main transition temperature. Possible modes of interaction of these guest molecules with the lipid bilayers are discussed.  相似文献   

18.
We utilize in situ, temperature-dependent atomic force microscopy to examine the gel-fluid phase transition behavior in supported phospholipid bilayers constructed from 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The primary gel-fluid phase transition at T(m) occurs through development of anisotropic cracks in the gel phase, which develop into the fluid phase. At approximately 5 degrees C above T(m), atomic force microscopy studies reveal the presence of a secondary phase transition in all three bilayers studied. The secondary phase transition occurs as a consequence of decoupling between the two leaflets of the bilayer due to enhanced stabilization of the lower leaflet with either the support or the water entrained between the support and the bilayer. Addition of the transmembrane protein gramicidin A or construction of a highly defected gel phase results in elimination of this decoupling and removal of the secondary phase transition.  相似文献   

19.
Mixed bilayers of 1-palmitoyl-sn-glycero-3-phosphocholine (palmitoyllysophosphatidylcholine; PaLPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (dipalmitoyl phosphatidylcholine; DPPC) have been investigated by 2H-NMR and 31P-NMR spectroscopy. Binary phospholipid mixtures were studied in which the acyl chains of one or the other component were perdeuterated. At temperatures below the main order-disorder phase transition, the mixed PaLPC/DPPC bilayers appear to coexist with PaLPC micelles. The micelles disappear at temperatures above the phase transition, where mixed bilayers in the liquid-crystalline state are formed. The orientational order of the alkyl chains of the PaLPC component is essentially identical to that of the DPPC component in the mixed bilayers, both in the low temperature and liquid-crystalline phases. However, the presence of PaLPC perturbs the segmental ordering of DPPC as compared to the pure system. The order is increased in the low-temperature phase, where effective diffusion of the chains about their long axes occurs, but is decreased in the liquid-crystalline phase compared to pure DPPC bilayers. The mixed liquid-crystalline bilayers orient preferentially with their director axes perpendicular to the magnetic field. This alignment is easily observed in 31P- and 2H-NMR spectra, where the intensity of the perpendicular edges of the lineshapes is pronounced. One possible explanation of the magnetic alignment involves alteration of the curvature free energy of the DPPC bilayer due to incorporation of PaLPC in the mixed membranes.  相似文献   

20.

Background  

Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs) consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm) embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP) ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号