首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
AMP-activated protein kinase (AMPK) is a critical regulator of glucose metabolism. To elucidate the biochemical mechanisms by which AMPK regulates glucose and fat metabolism, we conducted a yeast two-hybrid screen to identify its interacting partners. A yeast two-hybrid system was used to screen a mouse embryo cDNA library for proteins able to bind mouse AMPKα1. We also demonstrated an endogenous interaction between AMPKα1 and its interacting partner by co-immunoprecipitation of the endogenous proteins using specific antibodies in HepG2 cells, and in rat kidney, liver, skeletal muscle, and fat tissue. We show that secreted protein acidic and rich in cysteine (SPARC) is an AMPK-interacting protein, and the two proteins enhance each other. AMPK activation increases SPARC expression, and knockdown of AMPK to inhibit endogenous AMPK expression reduces SPARC protein levels. On the other hand, SPARC siRNA reduces AICAR-stimulated AMPK phosphorylation. SPARC affects AMPK-mediated glucose metabolism through regulation of Glut4 expression in L6 myocytes. Our findings suggest that SPARC may be involved in regulating glucose metabolism via AMPK activation. These results provide a starting point for efforts to clarify the relationship between AMPK and SPARC, and deepen our understanding of their roles in fat and glucose metabolism.  相似文献   

2.
AMP-activated protein kinase (AMPK) is emerging as a central cellular signaling hub involved in energy homeostasis and proliferation. The kinase is considered as a suitable target for pharmacological intervention in several energy-related pathologies like diabetes type II and cancer, although its signaling network is still incompletely understood. Here we apply an original two-dimensional in vitro screening approach for AMPK substrates that combines biophysical interaction based on surface plasmon resonance with in vitro phosphorylation. By enriching for proteins that interact with a specific AMPK isoform, we aimed to identify substrates that are also preferentially phosphorylated by this specific AMPK isoform. Application of this screen to full-length AMPK α2β2γ1 and soluble rat liver proteins identified the tumor suppressor fumarate hydratase (FH). FH was confirmed to interact with and to be preferentially phosphorylated by the AMPKα2 isoform by using yeast-two-hybrid and in vitro phosphorylation assays. AMPK-mediated phosphorylation of FH significantly increased enzyme activity in vitro and in vivo, suggesting that it is a bona fide AMPK substrate. In vivo, AMPKα2 is supposed to target the cytosolic/nuclear pools of FH, whose tumor suppressor function relies on DNA damage repair and inhibition of HIF-1α-signaling.  相似文献   

3.
To investigate the biological function of CKII, we have identified proteins that interact with the subunits of CKII using the yeast two-hybrid system. Here we report that SAG, an antioxidant protein containing Ring-H2 finger motif, is a cellular partner associating with the beta subunit of CKII. SAG does not interact with the alpha subunit of CKII. Analysis of SAG deletion mutants indicates that the Ring-H2 motif of SAG is necessary and sufficient for its binding to the beta subunit of CKII. Recombinant SAG can be phosphorylated by CKII in vitro, providing evidence that the beta subunit mediates the interaction of CKII enzyme with substrate proteins. Overlay experiment shows that SAG and the beta subunit of CKII associate directly in vitro and that CKII-mediated phosphorylation of SAG does not affect the interaction between SAG and the beta subunit of CKII. Northern blot analysis indicates that both SAG and the beta subunit of CKII were relatively rich in human heart, liver, skeletal muscle, and pancreas, but were detected in only trace amounts in brain, placenta, and lung. Our present results suggest that CKII may play a role in the regulation of SAG function.  相似文献   

4.
5.
We have expressed in yeast the different subunits of AMP-activated protein kinase (AMPK) and, by using the two-hybrid system, we have found a glucose-regulated interaction between alpha 2 catalytic and gamma 1 regulatory subunits. This regulation was not affected by known regulators of the corresponding yeast orthologue, the SNF1 complex, such as Reg1 or Hxk2, but it was affected by deletion of regulatory subunits of yeast type 2A protein phosphatase (PP2A) complex. We have also found that Tpd3 and PR65 alpha, the corresponding yeast and mammalian A subunits of PP2A, interacted with AMPK alpha 2 both in yeast and mammals, respectively. This interaction occurred only through the regulatory domain of this subunit. These results suggested a direct involvement of PP2A complex in regulating the interaction between AMPK alpha 2 and gamma 1 in a glucose-dependent manner.  相似文献   

6.
The primary objective of this study was to investigate the impact of lipid oversupply on the AMPK pathway in skeletal muscle, liver, and adipose tissue. Male Wistar rats were infused with lipid emulsion (LE) or phosphate‐buffered saline for 5 h/day for 6 days. Muscles exposed to LE for 6 days exhibited increased AMPK and acetyl‐CoA carboxylase (ACC) phosphorylation, along with a greater association between AMPK and Ca2+/calmodulin‐dependent protein kinase kinase (CaMKK). No differences in muscle protein phosphatase 2C (PP2C) activity, LKB1 phosphorylation or AMPK and LKB1 association were observed. Muscle ACCβ, and adiponectin receptor 1 (AdipoR1) mRNA levels and PPARγ‐co‐activator 1α (PGC1α) protein levels were also increased in LE‐treated rats. In contrast, AMPK and ACC phosphorylation decreased and PP2C activity increased in rat livers exposed to LE. Hepatic mRNA levels of ACCα, PPARα, AdipoR1, AdipoR2, and sterol regulatory element–binding protein‐1c (SREBP1c) were also reduced after LE infusion. In adipose tissue, there was no significant alteration in AMPK or ACC phosphorylation. These results demonstrate that following lipid oversupply the AMPK pathway was enhanced in rat skeletal muscle while diminished in the liver and was unchanged in adipose tissue. CaMKK in skeletal muscle and PP2C in the liver, at least in part, appear to mediate these alterations. Alterations in AMPK pathway in the liver induced metabolic defects associated with lipid oversupply.  相似文献   

7.
CRK5 is a member of the Arabidopsis thaliana Ca2+-dependent protein kinase-related kinase family. Here, a yeast two-hybrid screen was performed with a truncated form of AtCRK5 as bait to identify interacting proteins and determine its physiological roles. One gene encoding the DWD protein WDRP was isolated. Furthermore, in vitro and in vivo co-immunoprecipitation results strongly supported that these two proteins interact with each other. Using a cell-free degradation assay, we also established that CRK5 was an unstable protein that was degraded through the proteasome pathway. The rate of CRK5 degradation was delayed in a WDRP knockout line. On the other hand, the degradation of CRK5 mediated by WDRP might not affect the phosphorylation of PIN2 by CRK5. Overall, we demonstrated that AtCRK5 interacted with a DWD protein, AtWDRP; the protein AtWDRP targets the kinase for ubiquitin-dependent degradation. Therefore, this report describes a new kinase regulation pathway for CRK family proteins in Arabidopsis.  相似文献   

8.
Zhang L  Yi Y  Guo Q  Sun Y  Ma S  Xiao S  Geng J  Zheng Z  Song S 《Cellular signalling》2012,24(4):859-865
Heat shock protein 90 (Hsp90) serves to stabilise and correctly fold multiple significant client proteins associated with cell proliferation and cell survival. However, little is known about the Hsp90 client proteins that regulate cell metabolism. Here, we describe a unique ability of Hsp90 to regulate the stability and activity of AMP-activated kinase (AMPK), a key sensor of cellular energy status. Hsp90 is found to interact with AMPK and to maintain its AMP-activated kinase activity, which in turn is required for the phosphorylation of its substrate, acetyl-CoA carboxylase (ACC), the key enzyme in fatty acid metabolism. Our binding analysis reveals that both the γ subunit and the α subunit of AMPK bind to Hsp90 with a high affinity. We demonstrate that Hsp90 inhibitors, including geldanamycin (GA) and mycoepoxydiene (MED), can induce the dissociation of AMPK from Hsp90, and cause a significant decrease in phosphorylation of AMPK and ACC. Furthermore, we demonstrate that shRNAs of Hsp90 can efficiently suppress the activation of AMPK. These findings not only establish a novel interaction between Hsp90 and AMPK but also suggest a new mechanism for regulating tumour cell fatty acid metabolism.  相似文献   

9.
Kinesin-like calmodulin-binding protein (KCBP) is a novel member of the kinesin superfamily that is involved in cell division and trichome morphogenesis. KCBP is unique among all known kinesins in having a myosin tail homology-4 region in the N-terminal tail and a calmodulin-binding region following the motor domain. Calcium, through calmodulin, has been shown to negatively regulate the interaction of KCBP with microtubules. Here we have used the yeast two-hybrid system to identify the proteins that interact with the tail region of KCBP. A protein kinase (KCBP-interacting protein kinase (KIPK)) was found to interact specifically with the tail region of KCBP. KIPK is related to a group of protein kinases specific to plants that has an additional sequence between subdomains VII and VIII of the conserved C-terminal catalytic domain and an extensive N-terminal region. The catalytic domain alone of KIPK interacted weakly with the N-terminal KCBP protein but strongly with full-length KCBP, whereas the noncatalytic region did not interact with either protein. The interaction of KCBP with KIPK was confirmed using coprecipitation assays. Using bacterially expressed full-length and truncated proteins, we have shown that the catalytic domain is capable of phosphorylating itself. The association of KIPK with KCBP suggests regulation of KCBP or KCBP-associated proteins by phosphorylation and/or that KCBP is involved in targeting KIPK to its proper cellular location.  相似文献   

10.
11.
AIM:To identify novel substrates for the mitogen-activated protein kinase-activated protein kinase 5(MK5).METHODS:Yeast two-hybrid screening with MK5 as bait was used to identify novel possible interaction partners.The binding of putative partner was further examined by glutathione S-transferase(GST) pull-down,co-immunoprecipitation and fluorescence resonance energy transfer(FRET) analysis.In vitro kinase and peptide array assays were used to map MK5 phosphoacceptor sites on the new partner.Confocal microscopy was performed to study the subcellular localization of MK5 and its partners.RESULTS:Septin 8 was identified as a novel interaction partner for MK5 by yeast two-hybrid screening.This interaction was confirmed by GST pull-down,coimmunoprecipitation and FRET analysis.Septin 5,which can form a complex with septin 8,did not interact with MK5.Serine residues 242 and 271 on septin 8 were identified as in vitro MK5 phosphorylation sites.MK5 and septin 8 co-localized in the perinuclear area and in cell protrusions.Moreover,both proteins co-localized with vesicle marker synaptophysin.  相似文献   

12.
Salicylate (SAL) has been recently implicated in the antidiabetic effect in humans. We assessed whether 5′-AMP-activated protein kinase (AMPK) in skeletal muscle is involved in the effect of SAL on glucose homeostasis. Rat fast-twitch epitrochlearis and slow-twitch soleus muscles were incubated in buffer containing SAL. Intracellular concentrations of SAL increased rapidly (<5 min) in both skeletal muscles, and the Thr172 phosphorylation of the α subunit of AMPK increased in a dose- and time-dependent manner. SAL increased both AMPKα1 and AMPKα2 activities. These increases in enzyme activity were accompanied by an increase in the activity of 3-O-methyl-d-glucose transport, and decreases in ATP, phosphocreatine, and glycogen contents. SAL did not change the phosphorylation of insulin receptor signaling including insulin receptor substrate 1, Akt, and p70 ribosomal protein S6 kinase. These results suggest that SAL may be transported into skeletal muscle and may stimulate AMPK and glucose transport via energy deprivation in multiple muscle types. Skeletal muscle AMPK might be part of the mechanism responsible for the metabolic improvement induced by SAL.  相似文献   

13.
14.
We have studied the mechanism of A-769662, a new activator of AMP-activated protein kinase (AMPK). Unlike other pharmacological activators, it directly activates native rat AMPK by mimicking both effects of AMP, i.e. allosteric activation and inhibition of dephosphorylation. We found that it has no effect on the isolated alpha subunit kinase domain, with or without the associated autoinhibitory domain, or on interaction of glycogen with the beta subunit glycogen-binding domain. Although it mimics actions of AMP, it has no effect on binding of AMP to the isolated Bateman domains of the gamma subunit. The addition of A-769662 to mouse embryonic fibroblasts or primary mouse hepatocytes stimulates phosphorylation of acetyl-CoA carboxylase (ACC), effects that are completely abolished in AMPK-alpha1(-/-)alpha2(-/-) cells but not in TAK1(-/-) mouse embryonic fibroblasts. Phosphorylation of AMPK and ACC in response to A-769662 is also abolished in isolated mouse skeletal muscle lacking LKB1, a major upstream kinase for AMPK in this tissue. However, in HeLa cells, which lack LKB1 but express the alternate upstream kinase calmodulin-dependent protein kinase kinase-beta, phosphorylation of AMPK and ACC in response to A-769662 still occurs. These results show that in intact cells, the effects of A-769662 are independent of the upstream kinase utilized. We propose that this direct and specific AMPK activator will be a valuable experimental tool to understand the physiological roles of AMPK.  相似文献   

15.
Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% Vo(2 max)). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser(711) (AMPK), TBC1D1 Ser(231) (AMPK), TBC1D1 Ser(660) (AMPK), TBC1D1 Ser(700) (AMPK), and TBC1D1 Thr(590) (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser(711), TBC1D1 Ser(231), and TBC1D1 Ser(660) but had no effect on TBC1D1 Ser(700). Exercise did not increase TBC1D1 Thr(590) phosphorylation or TBC1D1/AS160 PAS phosphorylation, consistent with the lack of Akt activation. These data demonstrate that a single bout of exercise regulates TBC1D1 and AS160 phosphorylation on multiple sites in human skeletal muscle.  相似文献   

16.
Muscle contraction results in phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an AMPK kinase (AMPKK). LKB1/STRAD/MO25 (LKB1) is the major AMPKK in skeletal muscle; however, the activity of LKB1 is not increased by muscle contraction. This finding suggests that phosphorylation of AMPK by LKB1 is regulated by allosteric mechanisms. Creatine phosphate is depleted during skeletal muscle contraction to replenish ATP. Thus the concentration of creatine phosphate is an indicator of cellular energy status. A previous report found that creatine phosphate inhibits AMPK activity. The purpose of this study was to determine whether creatine phosphate would inhibit 1) phosphorylation of AMPK by LKB1 and 2) AMPK activity after phosphorylation by LKB1. We found that creatine phosphate did not inhibit phosphorylation of either recombinant or purified rat liver AMPK by LKB1. We also found that creatine phosphate did not inhibit 1) active recombinant alpha1beta1gamma1 or alpha2beta2gamma2 AMPK, 2) AMPK immunoprecipitated from rat liver extracts by either the alpha1 or alpha2 subunit, or 3) AMPK chromatographically purified from rat liver. Inhibition of skeletal muscle AMPK by creatine phosphate was greatly reduced or eliminated with increased AMPK purity. In conclusion, these results suggest that creatine phosphate is not a direct regulator of LKB1 or AMPK activity. Creatine phosphate may indirectly modulate AMPK activity by replenishing ATP at the onset of muscle contraction.  相似文献   

17.
Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5′‐AMP‐activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p‐Akt1), and stimulated nuclear translocation of p‐Akt1, to exert their antihypertrophic effects. AMPKα2?/? mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild‐type mice but not AMPKα2?/? mice. The CYP2J2 metabolites, 11,12‐EET, activated AMPKα2 to induce nuclear translocation of p‐Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co‐immunoprecipitation analysis, we found that AMPKα2β2γ1 and p‐Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12‐EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure.  相似文献   

18.
19.
The AMP-activated protein kinase (AMPK) plays an important role in fuel metabolism in exercising skeletal muscle and possibly in the islet cell with respect to insulin secretion. Some of these effects are due to AMPK-mediated regulation of cellular malonyl-CoA content, ascribed to the ability of AMPK to phosphorylate and inactivate acetyl-CoA carboxylase (ACC), reducing malonyl-CoA formation. It has been suggested that AMPK may also regulate malonyl-CoA content by activation of malonyl-CoA decarboxylase (MCD). We have investigated the potential regulation of MCD by AMPK in exercising skeletal muscle, in an islet cell line, and in vitro. Three rat fast-twitch muscle types were studied using two different contraction methods or after exposure to the AMPK activator AICAR. Although all muscle treatments resulted in activation of AMPK and phosphorylation of ACC, no stimulus had any effect on MCD activity. In 832/13 INS-1 rat islet cells, two treatments that result in the activation of AMPK, namely low glucose and AICAR, also had no discernable effect on MCD activity. Last, AMPK did not phosphorylate in vitro either recombinant MCD or MCD immunoprecipitated from skeletal muscle or heart. We conclude that MCD is not a substrate for AMPK in fast-twitch muscle or the 832/13 INS-1 islet cell line and that the principal mechanism by which AMPK regulates malonyl-CoA content is through its regulation of ACC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号