首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A two-element protocol consisting of one donor-specific transfusion (DST) plus a brief course of anti-CD154 mAb greatly prolongs the survival of murine islet, skin, and cardiac allografts. To study the mechanism of allograft survival, we determined the fate of tracer populations of alloreactive transgenic CD8+ T cells in a normal microenvironment. We observed that DST plus anti-CD154 mAb prolonged allograft survival and deleted alloreactive transgenic CD8+ T cells. Neither component alone did so. Skin allograft survival was also prolonged in normal recipients treated with anti-CD154 mAb plus a depleting anti-CD8 mAb and in C57BL/6-CD8 knockout mice treated with anti-CD154 mAb monotherapy. We conclude that, in the presence of anti-CD154 mAb, DST leads to an allotolerant state, in part by deleting alloreactive CD8+ T cells. Consistent with this conclusion, blockade of CTLA4, which is known to abrogate the effects of DST and anti-CD154 mAb, prevented the deletion of alloreactive transgenic CD8+ T cells. These results document for the first time that peripheral deletion of alloantigen-specific CD8+ T cells is an important mechanism through which allograft survival can be prolonged by costimulatory blockade. We propose a unifying mechanism to explain allograft prolongation by DST and blockade of costimulation.  相似文献   

2.
Costimulation blockade protocols are effective in prolonging allograft survival in animal models and are entering clinical trials, but how environmental perturbants affect graft survival remains largely unstudied. We used a costimulation blockade protocol consisting of a donor-specific transfusion and anti-CD154 mAb to address this question. We observed that lymphocytic choriomeningitis virus infection at the time of donor-specific transfusion and anti-CD154 mAb shortens allograft survival. Lymphocytic choriomeningitis virus 1) activates innate immunity, 2) induces allo-cross-reactive T cells, and 3) generates virus-specific responses, all of which may adversely affect allograft survival. To investigate the role of innate immunity, mice given costimulation blockade and skin allografts were coinjected with TLR2 (Pam3Cys), TLR3 (polyinosinic:polycytidylic acid), TLR4 (LPS), or TLR9 (CpG) agonists. Costimulation blockade prolonged skin allograft survival that was shortened after coinjection by TLR agonists. To investigate underlying mechanisms, we used "synchimeric" mice which circulate trace populations of anti-H2b transgenic alloreactive CD8+ T cells. In synchimeric mice treated with costimulation blockade, coadministration of all four TLR agonists prevented deletion of alloreactive CD8+ T cells and shortened skin allograft survival. These alloreactive CD8+ T cells 1) expressed the proliferation marker Ki-67, 2) up-regulated CD44, and 3) failed to undergo apoptosis. B6.TNFR2-/- and B6.IL-12R-/- mice treated with costimulation blockade plus LPS also exhibited short skin allograft survival whereas similarly treated B6.CD8alpha-/- and TLR4-/- mice exhibited prolonged allograft survival. We conclude that TLR signaling abrogates the effects of costimulation blockade by preventing alloreactive CD8+ T cell apoptosis through a mechanism not dependent on TNFR2 or IL-12R signaling.  相似文献   

3.
Allograft rejection in sensitized recipients remains the major problem in clinical organ transplantation. We have developed a donor-type skin-sensitized mouse cardiac allograft model (BALB/c-->C57BL/6) in which both rejection (<5 days) and alloreactive CD8 activation are resistant to CD154 blockade. First, we attempted to elucidate why CD154 blockade fails to protect cardiac grafts in sensitized recipients. The gene array analysis has revealed that treatment with anti-CD154 mAb (MR1) had distinctive impact on host immunity in naive vs sensitized animals. Unlike in naive counterparts, host sensitization mitigated the impact of CD154 blockade on critical immune signaling pathways. Indeed, we identified 3234 genes in cardiac grafts that were down-regulated by MR1 in naive (at least 5-fold), but remained unaffected in sensitized hosts. Moreover, MR1 treatment failed to prevent accumulation of CD4 T cells in cardiac allografts of sensitized recipients. Then, to determine the role of CD4 help in CD154 blockade-resistant immune response, we used CD4-depleting and CD4-blocking Ab, in conjunction with MR1 treatment. Our data revealed that CD154 blockade-resistant CD8 activation in sensitized mice was dependent on CD4 T cells. In the absence of CD4 help, CD154 blockade prevented differentiation of alloreactive CD8 T cells into CTL effector/memory cells and abrogated acute rejection (cardiac graft survival for >30 days), paralleled by selective target gene depression at the graft site. These results provide the rationale to probe potential synergy of adjunctive therapy targeting CD4 and CD154 to overcome graft rejection in sensitized recipients.  相似文献   

4.
Treatment of mice with a single donor-specific transfusion (DST) plus a brief course of anti-CD154 mAb to block CD40-mediated signaling uniformly induces donor-specific transplantation tolerance. Survival of islet allografts in treated mice is permanent, but skin grafts eventually fail unless recipients are thymectomized. The nature of the cellular mechanisms involved and the basis for the difference in survival of islet vs skin allografts are not known. In this study, we used CD40 knockout mice to investigate the role of CD40-mediated signaling in each component of the tolerance induction protocol: the DST, the graft, and the host. When CD40-mediated signaling was eliminated in only the DST or the graft, islet allografts were rapidly rejected. However, when CD40 signaling was eliminated in the host, approximately 40% of the islet allografts survived. When CD40 signaling was eliminated in the DST, the graft, and the host, islet grafts survived long term (>84 days), whereas skin allografts were rapidly rejected ( approximately 13 days). We conclude that transplantation tolerance induction in mice treated with DST and anti-CD154 mAb requires blockade of CD40-mediated signaling in the DST, the graft, and the host. Blockade of CD40-mediated signaling is necessary and sufficient for inducing islet allograft tolerance and is necessary but not sufficient for long-term skin allograft survival. We speculate that a requirement for regulatory CD4(+) T cells in skin allograft recipients could account for this differential response to tolerance induction.  相似文献   

5.
CD154, one of the most extensively studied T cell costimulation molecules, represents a promising therapeutic target in organ transplantation. However, the immunological mechanisms of CD154 blockade that result in allograft protection, particularly in the context of alloreactive CD4/CD8 T cell activation, remain to be elucidated. We now report on the profound inhibition of alloreactive CD8(+) T cells by CD154 blockade via both CD4-dependent and CD4-independent activation pathways. Using CD154 KO recipients that are defective in alloreactive CD8(+) T cell activation and unable to reject cardiac allografts, we were able to restore CD8 activation and graft rejection by adoptively transferring CD4(+) or CD8(+) T cells from wild-type syngeneic donor mice. CD4-independent activation of alloreactive CD8(+) T cells was confirmed following treatment of wild-type recipients with CD4-depleting mAb, and by using CD4 KO mice. Comparable levels of alloreactive CD8(+) T cell activation was induced by allogenic skin engraftment in both animal groups. CD154 blockade inhibited CD4-independent alloreactive CD8(+) T cell activation. Furthermore, we analyzed whether disruption of CD154 signaling affects cardiac allograft survival in skin-sensitized CD4 KO and CD8 KO recipients. A better survival rate was observed consistently in CD4 KO, as compared with CD8 KO recipients. Our results document CD4-dependent and CD4-independent activation pathways for alloreactive CD8(+) T cells that are both sensitive to CD154 blockade. Indeed, CD154 blockade was effective in preventing CD8(+) T cell-mediated cardiac allograft rejection.  相似文献   

6.
Short-term immunotherapy targeting both LFA-1 and CD40/CD154 costimulation produces synergistic effects such that long-term allograft survival is achieved in the majority of recipients. This immunotherapeutic strategy has been reported to induce the development of CD4+ regulatory T cells. In the current study, the mechanisms by which this immunotherapeutic strategy prevents CD8+ T cell-dependent hepatocyte rejection in CD4 knockout mice were examined. Combined blockade of LFA-1 and CD40/CD154 costimulation did not influence the overall number or composition of inflammatory cells infiltrating the liver where transplanted hepatocytes engraft. Expression of T cell activation markers CD43, CD69, and adhesion molecule CD103 by liver-infiltrating cells was suppressed in treated mice with long-term hepatocellular allograft survival compared to liver-infiltrating cells of untreated rejector mice. Short-term immunotherapy with anti-LFA-1 and anti-CD154 mAb also abrogated the in vivo development of alloreactive CD8+ cytotoxic T cell effectors. Treated mice with long-term hepatocyte allograft survival did not reject hepatocellular allografts despite adoptive transfer of naive CD8+ T cells. Unexpectedly, treated mice with long-term hepatocellular allograft survival demonstrated prominent donor-reactive delayed-type hypersensitivity responses, which were increased in comparison to untreated hepatocyte rejectors. Collectively, these findings support the conclusion that short-term immunotherapy with anti-LFA-1 and anti-CD154 mAbs induces long-term survival of hepatocellular allografts by interfering with CD8+ T cell activation and development of CTL effector function. In addition, these recipients with long-term hepatocellular allograft acceptance show evidence of immunoregulation which is not due to immune deletion or ignorance and is associated with early development of a novel CD8+CD25high cell population in the liver.  相似文献   

7.
Rejected MHC-mismatched cardiac allografts in CCR5(-/-) recipients have low T cell infiltration, but intense deposition of C3d in the large vessels and capillaries of the graft, characteristics of Ab-mediated rejection. The roles of donor-specific Ab and CD4 and CD8 T cell responses in the rejection of complete MHC-mismatched heart grafts by CCR5(-/-) recipients were directly investigated. Wild-type C57BL/6 and B6.CCR5(-/-) (H-2(b)) recipients of A/J (H-2(a)) cardiac allografts had equivalent numbers of donor-reactive CD4 T cells producing IFN-gamma, whereas CD4 T cells producing IL-4 were increased in CCR5(-/-) recipients. Numbers of donor-reactive CD8 T cells producing IFN-gamma were reduced 60% in CCR5(-/-) recipients. Day 8 posttransplant serum titers of donor-specific Ab were 15- to 25-fold higher in CCR5(-/-) allograft recipients, and transfer of this serum provoked cardiac allograft rejection in RAG-1(-/-) recipients within 14 days, whereas transfer of either serum from wild-type recipients or immune serum from CCR5-deficient recipients diluted to titers observed in wild-type recipients did not mediate this rejection. Wild-type C57BL/6 and B6.CCR5(-/-) recipients rejected A/J cardiac grafts by day 11, whereas rejection was delayed (day 12-60, mean 21 days) in muMT(-/-)/CCR5(-/-) recipients. These results indicate that the donor-specific Ab produced in CCR5(-/-) heart allograft recipients is sufficient to directly mediate graft rejection, and the absence of recipient CCR5 expression has differential effects on the priming of alloreactive CD4 and CD8 T cells.  相似文献   

8.
Human T cells responding against transplanted allogeneic lung tissue have been implicated in late graft failure secondary to obliterative bronchiolitis. This obliterative airways disease (OAD) also develops in heterotopic murine tracheal allografts in association with graft infiltration by both CD8(+) and CD4(+) T cells. To date, there has been little evidence to suggest that directly alloreactive CD8(+) T cells either promote chronic rejection or lead to the development of OAD following airway allotransplantation. Using L(d)-specific TCR-Tg 2C CD8(+) T cells adoptively transferred into wild-type B6 (H-2(b)) mice and the transplantation of BALB/c (H-2(d)) tracheal allografts, we now show that the direct recognition of donor-specific class I MHC molecules by host CD8(+) T cells leads to their activation, clonal expansion within the graft, and differentiation to an effector phenotype with the capacity to induce airway fibrosis. In addition, these experiments demonstrate that ongoing direct alloantigen recognition within the transplanted airway tissue is necessary for the recruitment and retention of these directly alloreactive CD8(+) T cells. Thus, these experiments are the first to definitively show a role for directly alloreactive CD8(+) T cells in the chronic rejection that leads to OAD.  相似文献   

9.
Alloantibodies can play a key role in acute and chronic allograft rejection. However, relatively little is known of factors that control B cell responses following allograft tolerance induction. Using 3-83 Igi mice expressing an alloreactive BCR, we recently reported that allograft tolerance was associated with the sustained deletion of the alloreactive B cells at the mature, but not the immature, stage. We have now investigated the basis for the long-term control of alloreactive B cell responses in a non-BCR-transgenic model of C57BL/6 cardiac transplantation into BALB/c recipients treated with anti-CD154 and transfusion of donor-specific spleen cells. We demonstrate that the long-term production of alloreactive Abs by alloreactive B cells is actively regulated in tolerant BALB/c mice through the dominant suppression of T cell help. Deletion of CD25(+) cells resulted in a loss of tolerance and an acquisition of the ability to acutely reject allografts. In contrast, the restoration of alloantibody responses required both the deletion of CD25(+) cells and the reconstitution of alloreactive B cells. Collectively, these data suggest that alloreactive B cell responses in this model of tolerance are controlled by dominant suppression of T cell help as well as the deletion of alloreactive B cells in the periphery.  相似文献   

10.
Skin but not vascularized cardiac allografts from B6.H-2bm12 mice are acutely rejected by C57BL/6 recipients in response to the single class II MHC disparity. The underlying mechanisms preventing acute rejection of B6.H-2bm12 heart allografts by C57BL/6 recipients were investigated. B6.H-2bm12 heart allografts induced low levels of alloreactive effector T cell priming in C57BL/6 recipients, and this priming was accompanied by low-level cellular infiltration into the allograft that quickly resolved. Recipients with long-term-surviving heart allografts were unable to reject B6.H-2bm12 skin allografts, suggesting potential down-regulatory mechanisms induced by the cardiac allografts. Depletion of CD25+ cells from C57BL/6 recipients resulted in 15-fold increases in alloreactive T cell priming and in acute rejection of B6.H-2bm12 heart grafts. Similarly, reconstitution of B6.Rag(-/-) recipients with wild-type C57BL/6 splenocytes resulted in acute rejection of B6.H-2bm12 heart grafts only if CD25+ cells were depleted. These results indicate that acute rejection of single class II MHC-disparate B6.H-2bm12 heart allografts by C57BL/6 recipients is inhibited by the emergence of CD25+ regulatory cells that restrict the clonal expansion of alloreactive T cells.  相似文献   

11.
Although it has been shown that CD4(+)CD25(+) regulatory T cells (T(reg)) contribute to long-term graft acceptance, their impact on the effector compartment and the mechanism by which they exert suppression in vivo remain unresolved. Using a CD4(+) TCR transgenic model for graft tolerance, we have unveiled the independent contributions of anergy and active suppression to the fate of immune and tolerant alloreactive T cells in vivo. First, it is shown that anti-CD154-induced tolerance resulted in the abortive expansion of the alloreactive, effector T cell pool. Second, commensurate with reduced expansion, there was a loss of cytokine production, activation marker expression, and absence of memory T cell markers. All these parameters defined the tolerant alloreactive T cells and correlated with the inability to mediate graft rejection. Third, the tolerant alloreactive T cell phenotype that is induced by CD154 was reversed by the in vivo depletion of T(reg). Reversal of the tolerant phenotype was followed by rapid rejection of the allograft. Fourth, in addition to T(reg) depletion, costimulation of the tolerant alloreactive T cells or activation of the APC compartment also reverted alloreactive T cell tolerance and restored an activated phenotype. Finally, it is shown that the suppression is long-lived, and in the absence of anti-CD154 and donor-specific transfusion, these T(reg) can chronically suppress effector cell responses, allowing long-lived graft acceptance.  相似文献   

12.
We have shown that CD8(+) CTLs are the key mediators of accelerated rejection, and that CD8(+) T cells represent the prime targets of CD154 blockade in sensitized mouse recipients of cardiac allografts. However, the current protocols require CD154 blockade at the time of sensitization, whereas delayed treatment fails to affect graft rejection in sensitized recipients. To elucidate the mechanisms of costimulation blockade-resistant rejection and to improve the efficacy of CD154-targeted therapy, we found that alloreactive CD8(+) T cells were activated despite the CD154 blockade in sensitized hosts. Comparative CD8 T cell activation study in naive vs primed hosts has shown that although both naive and primed/memory CD8(+) T cells relied on the CD28 costimulation for their activation, only naive, not primed/memory, CD8(+) T cells depend on CD154 signaling to differentiate into CTL effector cells. Adjunctive therapy was designed accordingly to deplete primed/memory CD8(+) T cells before the CD154 blockade. Indeed, unlike anti-CD154 monotherapy, transient depletion of CD8(+) T cells around the time of cardiac engraftment significantly improved the efficacy of delayed CD154 blockade in sensitized hosts. Hence, this report provides evidence for 1) differential requirement of CD154 costimulation signals for naive vs primed/memory CD8(+) T cells, and 2) successful treatment of clinically relevant sensitized recipients to achieve stable long term graft acceptance.  相似文献   

13.
Although the role of CD4(+) T regulatory cells (Treg) in transplantation tolerance has been established, putative mechanisms of Treg induction and function in vivo remain unclear. TLR4 signaling has been implicated in the regulation of CD4(+)CD25(+) Treg functions recently. In this study, we first examined the role of recipient TLR4 in the acquisition of operational CD4(+) Treg following CD154 blockade in a murine cardiac transplant model. Then, we determined whether TLR4 activation in allograft tolerant recipients would reverse alloimmune suppression mediated by CD4(+) Treg. We document that donor-specific immune tolerance was readily induced in TLR4-deficient recipients by a single dose of anti-CD154 mAb, similar to wild-type counterparts. The function and phenotype of CD4(+) Treg in both wild-type and TLR4 knockout long-term hosts was demonstrated by a series of depletion experiments examining their ability to suppress the rejection of secondary donor-type test skin grafts and to inhibit alloreactive CD8(+) T cell activation in vivo. Furthermore, TLR4 activation in tolerant recipients following exogenous LPS infusion in conjunction with donor-type skin graft challenge, failed to break Treg-mediated immune suppression. In conclusion, our data reveals a distinctive property of CD4(+) Treg in tolerant allograft recipients, whose induction and function are independent of TLR4 signaling.  相似文献   

14.
Induction of allograft tolerance in the absence of Fas-mediated apoptosis.   总被引:5,自引:0,他引:5  
Using certain immunosuppressive regimens, IL-2 knockout (KO) mice, in contrast to wild-type (wt) controls, are resistant to the induction of allograft tolerance. The mechanism by which IL-2 regulates allograft tolerance is uncertain. As IL-2 KO mice have a profound defect in Fas-mediated apoptosis, we hypothesized that Fas-mediated apoptosis of alloreactive T cells may be critical in the acquisition of allograft tolerance. To definitively study the role of Fas in the induction of transplantation tolerance, we used Fas mutant B6.MRL-lpr mice as allograft recipients of islet and vascularized cardiac transplants. Alloantigen-stimulated proliferation and apoptosis of Fas-deficient cells were also studied in vivo. Fas mutant B6.MRL-lpr (H-2b) mice rapidly rejected fully MHC-mismatched DBA/2 (H-2d) islet allografts and vascularized cardiac allografts with a tempo that is comparable to wt control mice. Both wt and B6.MRL-lpr mice transplanted with fully MHC-mismatched islet allografts or cardiac allografts can be readily tolerized by either rapamycin or combined costimulation blockade (CTLA-4Ig plus anti-CD40L mAb). Despite the profound defect of Fas-mediated apoptosis, Fas-deficient T cells can still undergo apoptotic cell death in vivo in response to alloantigen stimulation. Our study suggests that: 1) Fas is not necessarily essential for allograft tolerance, and 2) Fas-mediated apoptosis is not central to the IL-2-dependent mechanism governing the acquisition of allograft tolerance.  相似文献   

15.
Acute rejection is mediated by T cell infiltration of allografts, but mechanisms mediating the delayed rejection of allografts in chemokine receptor-deficient recipients remain unclear. The rejection of vascularized, MHC-mismatched cardiac allografts by CCR5(-/-) recipients was investigated. Heart grafts from A/J (H-2(a)) donors were rejected by wild-type C57BL/6 (H-2(b)) recipients on day 8-10 posttransplant vs day 8-11 by CCR5(-/-) recipients. When compared with grafts from wild-type recipients, however, significant decreases in CD4(+) and CD8(+) T cells and macrophages were observed in rejecting allografts from CCR5-deficient recipients. These decreases were accompanied by significantly lower numbers of alloreactive T cells developing to IFN-gamma-, but not IL-4-producing cells in the CCR5(-/-) recipients, suggesting suboptimal priming of T cells in the knockout recipients. CCR5 was more prominently expressed on activated CD4(+) than CD8(+) T cells in the spleens of allograft wild-type recipients and on CD4(+) T cells infiltrating the cardiac allografts. Rejecting cardiac allografts from wild-type recipients had low level deposition of C3d that was restricted to the graft vessels. Rejecting allografts from CCR5(-/-) recipients had intense C3d deposition in the vessels as well as on capillaries throughout the graft parenchyma similar to that observed during rejection in donor-sensitized recipients. Titers of donor-reactive Abs in the serum of CCR5(-/-) recipients were almost 20-fold higher than those induced in wild-type recipients, and the high titers appeared as early as day 6 posttransplant. These results suggest dysregulation of alloreactive Ab responses and Ab-mediated cardiac allograft rejection in the absence of recipient CCR5.  相似文献   

16.
Treatment with a 2-week course of anti-CD154 antibody and a single transfusion of donor leukocytes (a donor-specific transfusion or DST) permits skin allografts to survive for >100 days in thymectomized mice. As clinical trials of this methodology in humans are contemplated, concern has been expressed that viral infection of graft recipients may disrupt tolerance to the allograft. We report that acute infection with lymphocytic choriomeningitis virus (LCMV) induced allograft rejection in mice treated with DST and anti-CD154 antibody if inoculated shortly after transplantation. Isografts resisted LCMV-induced rejection, and the interferon-inducing agent polyinosinic:polycytidylic acid did not induce allograft rejection, suggesting that the effect of LCMV is not simply a consequence of nonspecific inflammation. Administration of anti-CD8 antibody to engrafted mice delayed LCMV-induced allograft rejection. Pichinde virus also induced acute allograft rejection, but murine cytomegalovirus and vaccinia virus (VV) did not. Injection of LCMV approximately 50 days after tolerance induction and transplantation had minimal effect on subsequent allograft survival. Treatment with DST and anti-CD154 antibody did not interfere with clearance of LCMV, but a normally nonlethal high dose of VV during tolerance induction and transplantation killed graft recipients. We conclude that DST and anti-CD154 antibody induce a tolerant state that can be broken shortly after transplantation by certain viral infections. Clinical application of transplantation tolerance protocols may require patient isolation to facilitate the procedure and to protect recipients.  相似文献   

17.
CD8+ T cells have long been considered to be the prototypical cytotoxic lymphocyte subpopulation. However, whether alloreactive CD8+ T cells require traditional cytolytic pathways such as perforin and Fas ligand (FasL) to mediate graft rejection has been a controversial issue. In the present studies, we examined the role of varied effector pathways in CD8+ T cell-mediated rejection of pancreatic islet allografts. Our goal was to systematically determine the relative requirements, if any, of perforin and FasL as well as the proinflammatory cytokine IFN-gamma in triggering graft destruction. To study CD8+ T cell effector pathways independently of other lymphocyte populations, purified alloreactive CD8+ T cells were adoptively transferred into severe combined immune-deficient (SCID) recipients bearing established islet allografts. Results indicate that to reject established islet allografts, primed CD8+ T cells do not require the individual action of the conventional cytotoxic effectors perforin and Fas ligand. In contrast, the ability to produce IFN-gamma is critical for efficient CD8+ T cell-mediated rejection of established islet allografts. Furthermore, alloreactive CD8+ TCR transgenic T cells (2C) also show IFN-gamma dependence for mediating islet allograft rejection in vivo. We speculate from these results that the production of IFN-gamma by alloreactive CD8+ T cells is a rate-limiting step in the process of islet allograft rejection.  相似文献   

18.
Costimulatory blockade can be used to promote allogeneic marrow engraftment and tolerance induction, but on its own is not 100% reliable. We sought to determine whether one or the other of the CD4 or CD8 T cell subsets of the recipient was primarily responsible for resistance to allogeneic marrow engraftment in mice receiving costimulatory blockade, and to use this information to develop a more reliable, minimal conditioning regimen for induction of mixed chimerism and transplantation tolerance. We demonstrate that a single anti-CD40 ligand mAb treatment is sufficient to completely overcome CD4 cell-mediated resistance to allogeneic marrow engraftment and rapidly induce CD4 cell tolerance, but does not reliably overcome CD8 CTL-mediated alloresistance. The data suggest that costimulation, which activates alloreactive CTL, is insufficient to activate alloreactive CD4 cells when the CD40 pathway is blocked. The addition of host CD8 T cell depletion to anti-CD40 ligand treatment reliably allows the induction of mixed chimerism and donor-specific skin graft tolerance in 3 Gy-irradiated mice receiving fully MHC-mismatched bone marrow grafts. Thus, despite the existence of multiple costimulatory pathways and pathways of APC activation, our studies demonstrate an absolute dependence on CD40-mediated events for CD4 cell-mediated rejection of allogeneic marrow. Exposure to donor bone marrow allows rapid tolerization of alloreactive CD4 cells when the CD40 pathway is blocked, leading to permanent marrow engraftment and intrathymic tolerization of T cells that develop subsequently.  相似文献   

19.
Sensitization to donor Ags is an enormous problem in clinical transplantation. In an islet allograft model, presensitization of recipients through donor-specific transfusion (DST) 4 wk before transplantation results in accelerated rejection. We demonstrate that combined DST with anti-CD154 (CD40L) therapy not only prevents the deleterious presensitization produced by pretransplant DST in the islet allograft model, it also induces broad alloantigen-specific tolerance and permits subsequent engraftment of donor islet or cardiac grafts without further treatment. In addition, our data strongly indicate that CTLA4-negative T cell signals are required to achieve prolonged engraftment of skin allograft or tolerance to islet allograft in recipients treated with a combination of pretransplant DST and anti-CD154 mAb. We provide direct evidence that a CD28-independent CTLA4 signal delivers a strong negative signal to CD4+ T cells that can block alloimmune MLR responses. In this study immune deviation into a Th2 (IL-4) response was associated with, but did not insure, graft tolerance, as the inopportune timing of B7 blockade with CTLA4/Ig therapy prevented uniform tolerance but did not prevent Th2-type immune deviation. While CTLA4-negative signals are necessary for tolerance induction, Th1 to Th2 immune deviation cannot be sufficient for tolerance induction. Combined pretransplant DST with anti-CD154 mAb treatment may be attractive for clinical deployment, and strategies aimed to selectively block CD28 without interrupting CTLA4/B7 interaction might prove highly effective in the induction of tolerance.  相似文献   

20.
IL-15 is a T cell growth factor that shares many functional similarities with IL-2 and has recently been shown to be present in tissue and organ allografts, leading to speculation that IL-15 may contribute to graft rejection. Here, we report on the in vivo use of an IL-15 antagonist, a soluble fragment of the murine IL-15R alpha-chain, to investigate the contribution of IL-15 to the rejection of fully vascularized cardiac allografts in a mouse experimental model. Administration of soluble fragment of the murine IL-15R alpha-chain (sIL-15Ralpha) to CBA/Ca (H-2k) recipients for 10 days completely prevented rejection of minor histocompatibility complex-mismatched B10.BR (H-2k) heart grafts (median survival time (MST) of >100 days vs MST of 10 days for control recipients) and led to a state of donor-specific immunologic tolerance. Treatment of CBA/Ca recipients with sIL-15Ralpha alone had only a modest effect on the survival of fully MHC-mismatched BALB/c (H-2d) heart grafts. However, administration of sIL-15Ralpha together with a single dose of a nondepleting anti-CD4 mAb (YTS 177.9) delayed mononuclear cell infiltration of the grafts and markedly prolonged graft survival (MST of 60 days vs MST of 20 days for treatment with anti-CD4 alone). Prolonged graft survival was accompanied in vitro by reduced proliferation and IFN-gamma production by spleen cells, whereas CTL and alloantibody levels were similar to those in animals given anti-CD4 mAb alone. These findings demonstrate that IL-15 plays an important role in the rejection of a vascularized organ allograft and that antagonists to IL-15 may be of therapeutic value in preventing allograft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号