首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Ca(2+) transfer from endoplasmic reticulum (ER) to mitochondria at contact sites between the organelles can induce mitochondrial dysfunction and programmed cell death after stress. The ER-localized chaperone glucose-regulated protein 78kDa (GRP78/BiP) protects neurons against excitotoxicity and apoptosis. Here we show that overexpressing GRP78 protects astrocytes against ischemic injury, reduces net flux of Ca(2+) from ER to mitochondria, increases Ca(2+) uptake capacity in isolated mitochondria, reduces free radical production, and preserves respiratory activity and mitochondrial membrane potential after stress. We conclude that GRP78 influences ER-mitochondrial Ca(2+) crosstalk to maintain mitochondrial function and protect astrocytes from ischemic injury.  相似文献   

2.
The uncoupling proteins UCP2 and UCP3 have been postulated to catalyze Ca(2+) entry across the inner membrane of mitochondria, but this proposal is disputed, and other, unrelated proteins have since been identified as the mitochondrial Ca(2+) uniporter. To clarify the role of UCPs in mitochondrial Ca(2+) handling, we down-regulated the expression of the only uncoupling protein of HeLa cells, UCP3, and measured Ca(2+) and ATP levels in the cytosol and in organelles with genetically encoded probes. UCP3 silencing did not alter mitochondrial Ca(2+) uptake in permeabilized cells. In intact cells, however, UCP3 depletion increased mitochondrial ATP production and strongly reduced the cytosolic and mitochondrial Ca(2+) elevations evoked by histamine. The reduced Ca(2+) elevations were due to inhibition of store-operated Ca(2+) entry and reduced depletion of endoplasmic reticulum (ER) Ca(2+) stores. UCP3 depletion accelerated the ER Ca(2+) refilling kinetics, indicating that the activity of sarco/endoplasmic reticulum Ca(2+) (SERCA) pumps was increased. Accordingly, SERCA inhibitors reversed the effects of UCP3 depletion on cytosolic, ER, and mitochondrial Ca(2+) responses. Our results indicate that UCP3 is not a mitochondrial Ca(2+) uniporter and that it instead negatively modulates the activity of SERCA by limiting mitochondrial ATP production. The effects of UCP3 on mitochondrial Ca(2+) thus reflect metabolic alterations that impact on cellular Ca(2+) homeostasis. The sensitivity of SERCA to mitochondrial ATP production suggests that mitochondria control the local ATP availability at ER Ca(2+) uptake and release sites.  相似文献   

3.
4.
The plasma membrane Ca(2+)-ATPase (PMCA) is an ATP-driven pump that is critical for the maintenance of low resting [Ca(2+)](i) in all eukaryotic cells. Metabolic stress, either due to inhibition of mitochondrial or glycolytic metabolism, has the capacity to cause ATP depletion and thus inhibit PMCA activity. This has potentially fatal consequences, particularly for non-excitable cells in which the PMCA is the major Ca(2+) efflux pathway. This is because inhibition of the PMCA inevitably leads to cytosolic Ca(2+) overload and the consequent cell death. However, the relationship between metabolic stress, ATP depletion and inhibition of the PMCA is not as simple as one would have originally predicted. There is increasing evidence that metabolic stress can lead to the inhibition of PMCA activity independent of ATP or prior to substantial ATP depletion. In particular, there is evidence that the PMCA has its own glycolytic ATP supply that can fuel the PMCA in the face of impaired mitochondrial function. Moreover, membrane phospholipids, mitochondrial membrane potential, caspase/calpain cleavage and oxidative stress have all been implicated in metabolic stress-induced inhibition of the PMCA. The major focus of this review is to challenge the conventional view of ATP-dependent regulation of the PMCA and bring together some of the alternative or additional mechanisms by which metabolic stress impairs PMCA activity resulting in cytosolic Ca(2+) overload and cytotoxicity.  相似文献   

5.
Brostrom MA  Brostrom CO 《Cell calcium》2003,34(4-5):345-363
The endoplasmic reticulum (ER) possesses the structural and functional features expected of an organelle that supports the integration and coordination of major cellular processes. Ca(2+) sequestered within the ER sustains lumenal protein processing while providing a reservoir of the cation to support stimulus-response coupling in the cytosol. Release of ER Ca(2+) sufficient to impair protein processing promotes ER stress and signals the "unfolded protein response" (UPR). The association of the UPR with an acute suppression of mRNA translational initiation and a longer term up-regulation of ER chaperones and partial translational recovery is discussed. Regulatory sites in mRNA translation and the mechanisms responsible for the early and later phases of the UPR are reviewed. The regulatory significance of GRP78/BiP, a multifunctional, broad-specificity ER chaperone, in the coordination of ER protein processing with mRNA translation during acute and chronic ER stress is addressed. The relationship of ER stress to protein misfolding in the cytoplasm is examined. Translational alterations in embryonic cardiomyocytes during treatments with various Ca(2+)-mobilizing, growth-promoting stimuli are described. The importance of ER Ca(2+) stores, ER chaperones, and cytosolic-free Ca(2+) in translational control and growth promotion by these stimuli is assessed. Some perspectives are provided regarding Ca(2+) as an integrating factor in the generation or diversion of metabolic energy. Circumstances impacting upon cellular adaptability during exposure to growth stimuli or during stressful conditions that require rapid adjustments in ATP for continued viability are considered.  相似文献   

6.
The chaperone glucose-regulated protein, 78/immunoglobulin binding protein (GRP78/Bip), protects cells from cytotoxicity induced by DNA damage or endoplasmic reticulum (ER) stress. In this study, we showed that GRP78 is a major inducible protein in human non-small cell lung cancer H460 cells treated with ER stress inducers, including A23187 and thapsigargin. AEBSF, an inhibitor of serine protease, diminished GRP78 induction, enhanced mitochondrial permeability, and augmented apoptosis in H460 cells during ER stress. Simultaneously, AEBSF promoted Raf-1 degradation and suppressed phosphorylation of Raf-1 at Ser338 and/or Tyr340 during ER stress. Coimmunoprecipitation assays and subcellular fractionations showed that GRP78 associated and colocalized with Raf-1 on the outer membrane of mitochondria, respectively. While treatment of cells with ER stress inducers inactivated BAD by phosphorylation at Ser75, a Raf-1 phosphorylation site; AEBSF attenuated phosphorylation of BAD, leading to cytochrome c release from mitochondria. Additionally, overexpression of GRP78 and/or Raf-1 protected cells from ER stress-induced apoptosis. Taken together, our results indicate that GRP78 may stabilize Raf-1 to maintain mitochondrial permeability and thus protect cells from ER stress-induced apoptosis.  相似文献   

7.
Local Ca(2+) transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca(2+) release to activate mitochondrial Ca(2+) uptake and to evoke a matrix [Ca(2+)] ([Ca(2+)](m)) rise. [Ca(2+)](m) exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca(2+) release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca(2+) sensitivity of both the Ca(2+) release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca(2+) accumulation in various apoptotic paradigms, methods are available for buffering of [Ca(2+)], for dissipation of the driving force of the mitochondrial Ca(2+) uptake and for inhibition of the mitochondrial Ca(2+) transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca(2+) handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca(2+) uptake on cytosolic [Ca(2+)] and [Ca(2+)](m) in intact cultured cells.  相似文献   

8.
The endoplasmic reticulum (ER) is the principal organelle for the biosynthesis of proteins, steroids and many lipids, and is highly sensitive to alterations in its environment. Perturbation of Ca(2+) homeostasis, elevated secretory protein synthesis, deprivation of glucose or other sugars, altered glycosylation and/or the accumulation of misfolded proteins may all result in ER stress, and prolonged ER stress triggers cell death. Studies from multiple laboratories have identified the roles of several ER stress-induced cell-death modulators and effectors through the use of biochemical, pharmacological and genetic tools. In the present work, we describe the role of p23, a small chaperone protein, in preventing ER stress-induced cell death. p23 is a highly conserved chaperone protein that modulates HSP90 activity and is also a component of the steroid receptors. p23 is cleaved during ER stress-induced cell death; this cleavage, which occurs close to the carboxy-terminus, requires caspase-3 and/or caspase-7, but not caspase-8. Blockage of the caspase cleavage site of p23 was associated with decreased cell death induced by ER stress. Immunodepletion of p23 or inhibition of p23 expression by siRNA resulted in enhancement of ER stress-induced cell death. While p23 co-immunoprecipitated with the BH3-only protein PUMA (p53-upregulated modulator of apoptosis) in untreated cells, prolonged ER stress disrupted this interaction. The results define a protective role for p23, and provide further support for a model in which ER stress is coupled to the mitochondrial intrinsic apoptotic pathway through the activities of BH3 family proteins.  相似文献   

9.
In response to endoplasmic reticulum (ER) stress, cells launch homeostatic and protective responses, but can also activate cell death cascades. A 54 kDa integral ER membrane protein called Herp was identified as a stress-responsive protein in non-neuronal cells. We report that Herp is present in neurons in the developing and adult brain, and that it is regulated in neurons by ER stress; sublethal levels of ER stress increase Herp levels, whereas higher doses decrease Herp levels and induce apoptosis. The decrease in Herp protein levels following a lethal ER stress occurs prior to mitochondrial dysfunction and cell death, and is mediated by caspases which generate a 30-kDa proteolytic Herp fragment. Mutagenesis of the caspase cleavage site in Herp enhances its neuroprotective function during ER stress. While suppression of Herp induction by RNA interference sensitizes neural cells to apoptosis induced by ER stress, overexpression of Herp promotes survival by a mechanism involving stabilization of ER Ca(2+) levels, preservation of mitochondrial function and suppression of caspase 3 activation. ER stress-induced activation of JNK/c-Jun and caspase 12 are reduced by Herp, whereas induction of major ER chaperones is unaffected. Herp prevents ER Ca(2+) overload under conditions of ER stress and agonist-induced ER Ca(2+) release is attenuated by Herp suggesting a role for Herp in regulating neuronal Ca(2+) signaling. By stabilizing ER Ca(2+) homeostasis and mitochondrial functions, Herp serves a neuroprotective function under conditions of ER stress.  相似文献   

10.
The apoptotic effect of oxidized LDLs (oxLDLs) is mediated through a complex sequence of signaling events involving a deregulation of the cytosolic Ca(2+) homeostasis. OxLDLs also trigger ER stress that may lead to cellular dysfunction and apoptosis, through the activation of the IRE1α/c-Jun N-terminal kinase pathway. Moreover, ER stress and oxidized lipids have been shown to trigger autophagy. The antiatherogenic high-density lipoproteins (HDLs) display protective effects against oxLDLs toxicity. To more deeply investigate the mechanisms mediating the protective effects of HDLs, we examined whether ER stress and autophagy were implicated in oxLDLs-induced apoptosis and whether HDLs prevented these stress processes. We report that, in human endothelial cells, HDLs prevent the oxLDL-induced activation of the ER stress sensors IRE1α, eIF2α and ATF6 and subsequent activation of the proapoptotic mediators JNK and CHOP. OxLDLs also trigger the activation of autophagy, as assessed by LC3 processing and Beclin-1 expression. The autophagic process is independent of the proapoptotic arms of ER stress, but Beclin-1 contributes to PS exposure and subsequent phagocytosis of oxLDLs exposed cells. Induction of autophagy and PS exposure by oxLDLs is prevented by HDLs. Finally, the cytosolic Ca(2+) deregulation triggered by oxLDLs is a common signaling pathway that mediates ER stress-induced cell death and autophagy, all these events being blocked by HDLs.  相似文献   

11.
Photodynamic therapy (PDT) and photodetection with protoporphyrin IX (PpIX) precursors have widely been used in the diseases with abnormally proliferative cells, but the mechanism of the modality is not fully understood yet. In this study 70-95% of apoptotic cells after PDT with PpIX precursor, hexaminolevulinate (HAL) in two human lymphoma cell lines, Namalwa and Bjab, were confirmed by fluorescence microscopy, electron microscopy and flow cytometry. HAL-derived PpIX was mainly distributed in the mitochondria and endoplasmic reticulum (ER), both of which were initial targets after light exposure causing two major pathways simultaneously involved in the apoptotic induction. One was the mitochondrial pathway including the release of cytochrome c, cleavage of caspases-9/-3, poly(ADP-ribose) polymerase and DNA fragmentation factor. The other was the ER stress-mediated pathway triggering a transient increase in the cytosolic Ca(2+) level after photodamage to the ER calcium pump protein SERCA2. The released Ca(2+) further initiated the caspase-8 cleavage. The use of both extracellular Ca(2+) chelator EGTA and intracellular Ca(2+) chelator BAPTA-AM confirmed that such cytosolic Ca(2+) originated from the ER rather than extracellular Ca(2+)-containing medium. About 30% of the apoptosis was blocked with BAPTA-AM alone; while a complete inhibition of such apoptosis was achieved with a combination of the caspase-9 inhibitor Z-LEHD-FMK and caspase-8 inhibitor Z-IETD-FMK, thus quantifying each role of the mitochondrial and ER pathways.  相似文献   

12.
Hayashi T  Su TP 《Cell》2007,131(3):596-610
Communication between the endoplasmic reticulum (ER) and mitochondrion is important for bioenergetics and cellular survival. The ER supplies Ca(2+) directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). We found here that the ER protein sigma-1 receptor (Sig-1R), which is implicated in neuroprotection, carcinogenesis, and neuroplasticity, is a Ca(2+)-sensitive and ligand-operated receptor chaperone at MAM. Normally, Sig-1Rs form a complex at MAM with another chaperone, BiP. Upon ER Ca(2+) depletion or via ligand stimulation, Sig-1Rs dissociate from BiP, leading to a prolonged Ca(2+) signaling into mitochondria via IP3Rs. Sig-1Rs can translocate under chronic ER stress. Increasing Sig-1Rs in cells counteracts ER stress response, whereas decreasing them enhances apoptosis. These results reveal that the orchestrated ER chaperone machinery at MAM, by sensing ER Ca(2+) concentrations, regulates ER-mitochondrial interorganellar Ca(2+) signaling and cell survival.  相似文献   

13.
To study the role of calreticulin in Ca(2+) homeostasis and apoptosis, we generated cells inducible for full-length or truncated calreticulin and measured Ca(2+) signals within the cytosol, the endoplasmic reticulum (ER), and mitochondria with "cameleon" indicators. Induction of calreticulin increased the free Ca(2+) concentration within the ER lumen, [Ca(2+)](ER), from 306 +/- 31 to 595 +/- 53 microm, and doubled the rate of ER refilling. [Ca(2+)](ER) remained elevated in the presence of thapsigargin, an inhibitor of SERCA-type Ca(2+) ATPases. Under these conditions, store-operated Ca(2+) influx appeared inhibited but could be reactivated by decreasing [Ca(2+)](ER) with the low affinity Ca(2+) chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. In contrast, [Ca(2+)](ER) decreased much faster during stimulation with carbachol. The larger ER release was associated with a larger cytosolic Ca(2+) response and, surprisingly, with a shorter mitochondrial Ca(2+) response. The reduced mitochondrial signal was not associated with visible morphological alterations of mitochondria or with disruption of the contacts between mitochondria and the ER but correlated with a reduced mitochondrial membrane potential. Altered ER and mitochondrial Ca(2+) responses were also observed in cells expressing an N-truncated calreticulin but not in cells overexpressing calnexin, a P-domain containing chaperone, indicating that the effects were mediated by the unique C-domain of calreticulin. In conclusion, calreticulin overexpression increases Ca(2+) fluxes across the ER but decreases mitochondrial Ca(2+) and membrane potential. The increased Ca(2+) turnover between the two organelles might damage mitochondria, accounting for the increased susceptibility of cells expressing high levels of calreticulin to apoptotic stimuli.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu/Zn superoxide dismutase-1 (SOD1) cause familial ALS but the molecular mechanisms whereby these mutations induce motor neuron death remain controversial. Here, we show that stable overexpression of mutant human SOD1 (G37R) - but not wild-type SOD1 (wt-SOD1) - in mouse neuroblastoma cells (N2a) results in morphological abnormalities of mitochondria accompanied by several dysfunctions. Activity of the oxidative phosphorylation complex I was significantly reduced in G37R cells and correlated with lower mitochondrial membrane potential and reduced levels of cytosolic ATP. Using targeted chimeric aequorin we further analyzed the consequences of mitochondrial dysfunction on cellular Ca(2+) handling. Mitochondrial Ca(2+) uptake, elicited by IP(3)-induced Ca(2+) release from endoplasmic reticulum (ER) was significantly reduced in G37R cells, while uptake induced by a brief Ca(2+) pulse was not affected in permeabilized cells. The decreased mitochondrial Ca(2+) uptake resulted in increased cytosolic Ca(2+) transients, whereas ER Ca(2+) load and resting cytosolic Ca(2+) levels were not affected. Together, these findings suggest that the mechanism linking mutant G37R SOD1 and ALS involves mitochondrial respiratory chain deficiency resulting in ATP loss and impairment of mitochondrial and cytosolic Ca(2+) homeostasis.  相似文献   

15.
Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death   总被引:17,自引:0,他引:17  
The goal of the current study was to determine the roles of ATP content, endoplasmic reticulum (ER) Ca(2+) stores, cytosolic free Ca(2+) (Ca(2+)(f)) and calpain activity in the signaling of rabbit renal proximal tubular (RPT) cell death (oncosis). Increasing concentrations (0.3-10 microM) of the mitochondrial inhibitor antimycin A produced rapid ATP depletion that correlated to a rapid and sustained increase in Ca(2+)(f), but not phospholipase C activation. The ER Ca(2+)-ATPase inhibitors thapsigargin (5 microM) or cyclopiazonic acid (100 microM) alone produced similar but transient increases in Ca(2+)(f). Pretreatment with thapsigargin prevented antimycin A-induced increases in Ca(2+)(f) and antimycin A pretreatment prevented thapsigargin-induced increases in Ca(2+)(f). Calpain activity increased in conjunction with ER Ca(2+) release. Pretreatment, but not post-treatment, with thapsigargin or cyclopiazonic acid prevented antimycin A-induced cell death. These data demonstrate that extensive ATP depletion signals oncosis through ER Ca(2+) release, a sustained increase in Ca(2+)(f) and calpain activation. Depletion of ER Ca(2+) stores prior to toxicant exposure prevents increases in Ca(2+)(f) and oncosis.  相似文献   

16.
Ca(2+)-mediated mitochondrial permeability transition (mPT) is the final common pathway of stress-induced cell death in many major pathologies, but its regulation in intact cells is poorly understood. Here we report that the mitochondrial carrier SCaMC-1/SLC25A24 mediates ATP-Mg(2-)/Pi(2-) and/or HADP(2-)/Pi(2-) uptake into the mitochondria after an increase in cytosolic [Ca(2+)]. ATP and ADP contribute to Ca(2+) buffering in the mitochondrial matrix, resulting in desensitization of the mPT. Comprehensive gene expression analysis showed that SCaMC-1 overexpression is a general feature of transformed and cancer cells. Knockdown of the transporter led to vast reduction of mitochondrial Ca(2+) buffering capacity and sensitized cells to mPT-mediated necrotic death triggered by oxidative stress and Ca(2+) overload. These findings revealed that SCaMC-1 exerts a negative feedback control between cellular Ca(2+) overload and mPT-dependent cell death, suggesting that the carrier might represent a novel target for cancer therapy.  相似文献   

17.
18.
Synergistic movements of Ca(2+) and Bax in cells undergoing apoptosis.   总被引:6,自引:0,他引:6  
Apoptosis is a physiological counterbalance to mitosis and plays important roles in tissue development and homeostasis. Cytosolic Ca(2+) has been implicated as a proapoptotic second messenger involved in both triggering apoptosis and regulating cell death-specific enzymes. A critical early event in apoptosis is associated with the redistribution of Bax from cytosol to mitochondria and endoplasmic reticulum (ER) membranes; however, the molecular mechanism of Bax translocation and its relationship to Ca(2+) is largely unknown. Here we provide functional evidence for a synergistic interaction between the movements of intracellular Ca(2+) and cytosolic Bax in the induction of apoptosis. Overexpression of Bax in cultured cells causes a loss of ER Ca(2+) content. Depletion of ER Ca(2+) through activation of the ryanodine receptor enhances the participation of Bax into the mitochondrial membrane. Neither Bax translocation nor Bax-induced apoptosis is affected by buffering of cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, suggesting that depletion of ER Ca(2+) rather than elevation of cytosolic Ca(2+) is the signal for cell apoptosis. This dynamic interplay of Ca(2+) and Bax movements may serve as an amplifying factor in the initial signaling steps of apoptosis.  相似文献   

19.
Uncontrolled release of Ca(2+) from the sarcoplasmic reticulum (SR) contributes to the reperfusion-induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability transition pores (MPTP), resulting in ATP depletion and reactive oxygen species (ROS) formation, may be involved. For this purpose, isolated cardiac myocytes from adult rats were subjected to simulated ischemia and reperfusion. MPTP opening was detected by calcein release and by monitoring the ΔΨ(m). Fura-2 was used to monitor cytosolic [Ca(2+)](i) or mitochondrial calcium [Ca(2+)](m), after quenching the cytosolic compartment with MnCl(2). Mitochondrial ROS [ROS](m) production was detected with MitoSOX Red and mag-fura-2 was used to monitor Mg(2+) concentration, which reflects changes in cellular ATP. Necrosis was determined by propidium iodide staining. Reperfusion led to a calcein release from mitochondria, ΔΨ(m) collapse and disturbance of ATP recovery. Simultaneously, Ca(2+) oscillations occurred, [Ca(2+)](m) and [ROS](m) increased, cells developed hypercontracture and underwent necrosis. Inhibition of the SR-driven Ca(2+) cycling with thapsigargine or ryanodine prevented mitochondrial dysfunction, ROS formation and MPTP opening. Suppression of the mitochondrial Ca(2+) uptake (Ru360) or MPTP (cyclosporine A) significantly attenuated Ca(2+) cycling, hypercontracture and necrosis. ROS scavengers (2-mercaptopropionyl glycine or N-acetylcysteine) had no effect on these parameters, but reduced [ROS](m). In conclusion, MPTP opening occurs early during reperfusion and is due to the Ca(2+) oscillations originating primarily from the SR and supported by MPTP. The interplay between Ca(2+) cycling and MPTP promotes the reperfusion-induced cardiomyocyte hypercontracture and necrosis. Mitochondrial ROS formation is a result rather than a cause of MPTP opening.  相似文献   

20.
Proliferation of vascular smooth muscle cells is a characteristic of pathological vascular remodeling and represents a significant therapeutic challenge in several cardiovascular diseases. Docosahexaenoic acid (DHA), a member of the n-3 polyunsaturated fatty acids, was shown to inhibit proliferation of numerous cell types, implicating several different mechanisms. In this study we examined the molecular events underlying the inhibitory effects of DHA on proliferation of primary human smooth muscle cells isolated from small pulmonary artery (hPASMCs). DHA concentration-dependently inhibited hPASMC proliferation, induced G1 cell cycle arrest, and decreased cyclin D1 protein expression. DHA activated the unfolded protein response (UPR), evidenced by increased mRNA expression of HSPA5, increased phosphorylation of eukaryotic initiation factor 2α, and splicing of X-box binding protein 1. DHA altered cellular lipid composition and led to increased reactive oxygen species (ROS) production. DHA-induced ROS were dependent on both intracellular Ca(2+) release and entry of extracellular Ca(2+). Overall cellular ROS and mitochondrial ROS were decreased by RU360, a specific inhibitor of mitochondrial Ca(2+) uptake. DHA-induced mitochondrial dysfunction was evidenced by decreased mitochondrial membrane potential and decreased cellular ATP content. DHA triggered apoptosis as found by increased numbers of cleaved caspase-3- and TUNEL-positive cells. The free radical scavenger Tempol counteracted DHA-induced ROS, cell cycle arrest, induction of UPR, and apoptosis. We conclude that Ca(2+)-dependent oxidative stress is the central and initial event responsible for induction of UPR, cell cycle arrest, and apoptosis in DHA-treated hPASMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号