首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fungal toxin brefeldin A (BFA) dissociates coat proteins from Golgi membranes, causes the rapid disassembly of the Golgi complex and potently stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa. These proteins have been identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a novel guanine nucleotide binding protein (BARS-50), respectively. The role of ADP-ribosylation in mediating the effects of BFA on the structure and function of the Golgi complex was analyzed by several approaches including the use of selective pharmacological blockers of the reaction and the use of ADP-ribosylated cytosol and/or enriched preparations of the BFA-induced ADP-ribosylation substrates, GAPDH and BARS-50.A series of blockers of the BFA-dependent ADP-ribosylation reaction identified in our laboratory inhibited the effects of BFA on Golgi morphology and, with similar potency, the ADP-ribosylation of BARS-50 and GAPDH. In permeabilized RBL cells, the BFA-dependent disassembly of the Golgi complex required NAD+ and cytosol. Cytosol that had been previously ADP-ribosylated (namely, it contained ADP-ribosylated GAPDH and BARS-50), was instead sufficient to sustain the Golgi disassembly induced by BFA.Taken together, these results indicate that an ADP-ribosylation reaction is part of the mechanism of action of BFA and it might intervene in the control of the structure and function of the Golgi complex.  相似文献   

2.
We reported that an inhibitor of sphingolipid biosynthesis, D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), blocks brefeldin A (BFA)-induced retrograde membrane transport from the Golgi complex to the endoplasmic reticulum (ER) (Kok et al., 1998, J. Cell Biol. 142, 25-38). We now show that PDMP partially blocks the BFA-induced ADP-ribosylation of the cytosolic protein BARS-50. Moreover, PDMP does not interfere with the BFA-induced inhibition of the binding of ADP-ribosylation factor (ARF) and the coatomer component beta-coat protein to Golgi membranes. These results are consistent with a role of ADP-ribosylation in the action of BFA and with the involvement of BARS-50 in the regulation of membrane trafficking.  相似文献   

3.
The histone deacetylase activity of Sir2p is dependent on NAD+ and inhibited by nicotinamide (NAM). As a result, Sir2p-regulated processes in Saccharomyces cerevisiae such as silencing and replicative aging are susceptible to alterations in cellular NAD+ and NAM levels. We have determined that high concentrations of NAM in the growth medium elevate the intracellular NAD+ concentration through a mechanism that is partially dependent on NPT1, an important gene in the Preiss–Handler NAD+ salvage pathway. Overexpression of the nicotinamidase, Pnc1p, prevents inhibition of Sir2p by the excess NAM while maintaining the elevated NAD+ concentration. This growth condition alters the epigenetics of rDNA silencing, such that repression of a URA3 reporter gene located at the rDNA induces growth on media that either lacks uracil or contains 5-fluoroorotic acid (5-FOA), an unusual dual phenotype that is reminiscent of telomeric silencing (TPE) of URA3. Despite the similarities to TPE, the modified rDNA silencing phenotype does not require the SIR complex. Instead, it retains key characteristics of typical rDNA silencing, including RENT and Pol I dependence, as well as a requirement for the Preiss–Handler NAD+ salvage pathway. Exogenous nicotinamide can therefore have negative or positive impacts on rDNA silencing, depending on the PNC1 expression level.  相似文献   

4.
Brefeldin A (BFA) is a fungal metabolite that disassembles the Golgi apparatus into tubular networks and causes the dissociation of coatomer proteins from Golgi membranes. We have previously shown that an additional effect of BFA is to stimulate the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa (brefeldin A-ADP-riboslyated substrate (BARS)) and that this effect greatly facilitates the Golgi-disassembling activity of the toxin. In this study, BARS has been purified from rat brain cytosol and microsequenced, and the BARS cDNA has been cloned. BARS shares high homology with two known proteins, C-terminal-binding protein 1 (CtBP1) and CtBP2. It is therefore a third member of the CtBP family. The role of BARS in Golgi disassembly by BFA was verified in permeabilized cells. In the presence of dialyzed cytosol that had been previously depleted of BARS or treated with an anti-BARS antibody, BFA potently disassembled the Golgi. However, in cytosol complemented with purified BARS, or even in control cytosols containing physiological levels of BARS, the action of BFA on Golgi disassembly was strongly inhibited. These results suggest that BARS exerts a negative control on Golgi tubulation, with important consequences for the structure and function of the Golgi complex.  相似文献   

5.
Gelidium floridanum W.R. Taylor tetraspores are units of dispersal and are responsible for substrate attachment. This study aimed to examine evidence of direct interaction between germ tube formation and Golgi activity during tetraspore germination of G. floridanum. After release, the tetraspores were incubated with brefeldin A (BFA) in concentrations of 4 and 8 μM over a 6 h period. The controls and treatments were analyzed with light, fluorescence (FM4‐64 dye) and transmission electron microscopy. In the control samples, the Golgi bodies were responsible for germ tube formation. In contrast, BFA‐treated samples were observed to inhibit spore adhesion and germ tube formation. These tetraspores also showed an increase in volume (≥30 μm width). BFA treatment also resulted in the disassembly of Golgi cisternae and the formation of vesiculated areas of the cytoplasm, blocking the secretion of protein and amorphous matrix polysaccharides. When stained with FM4‐64, the control samples showed fluorescence in the apical region of the germ tube, but the treated samples showed an intense fluorescence throughout the cytoplasm. From these results, we can conclude that the germ tube is formed by the incorporation of vesicles derived from Golgi. Thus, vesicle secretion and Golgi organization are basic processes and essential in adhesion and tube formation. By blocking the secretion of protein and amorphous matrix polysaccharides, BFA treatment precluded tetraspore germination.  相似文献   

6.
An NAD+-dependent DNA ligase from the hyperthermophilic bacterium Aquifex aeolicus was cloned, expressed in Escherichia coli and purified to homogeneity. The enzyme is most active in slightly alkaline pH conditions with either Mg2+ or Mn2+ as the metal cofactor. Ca2+ and Ni2+ mainly support formation of DNA–adenylate intermediates. The catalytic cycle is characterized by a low kcat value of 2 min–1 with concomitant accumulation of the DNAadenylate intermediate when Mg2+ is used as the metal cofactor. The ligation rates of matched substrates vary by up to 4-fold, but exhibit a general trend of T/A G/C < C/G < A/T on both the 3′- and 5′-side of the nick. Consistent with previous studies on Thermus ligases, this Aquifex ligase exhibits greater discrimination against a mismatched base pair on the 3′-side of the nick junction. The requirement of 3′ complementarity for a ligation reaction is reaffirmed by results from 1 nt insertions on either the 3′- or 5′-side of the nick. Furthermore, most of the unligatable 3′ mismatched base pairs prohibit formation of the DNAadenylate intermediate, indicating that the substrate adenylation step is also a control point for ligation fidelity. Unlike previously studied ATP ligases, gapped substrates cannot be ligated and intermediate accumulation is minimal, suggesting that complete elimination of base pair complementarity on one side of the nick affects substrate adenylation on the 5′-side of the nick junction. Relationships among metal cofactors, ligation products and intermediate, and ligation fidelity are discussed.  相似文献   

7.
The cells of the red microalga Porphyridium sp. are encapsulated within a complex sulphated polysaccharide, comprising cell-wall-bound and soluble fractions. The current study investigated the involvement of the Golgi apparatus in the production of the sulphated polysaccharide by treating the cultures with brefeldin A (BFA), a membrane-traffic inhibitor of the Golgi apparatus. Addition of BFA (10–25 μM) upon inoculation (logarithmic-phase cells) decreased the contents of both bound and soluble polysaccharides. Exposure of stationary-phase cultures to BFA (20 μM) inhibited the formation of the cell-wall bound polysaccharide to a greater extent than that of the soluble polysaccharide. Under conditions of nitrate starvation, BFA treatment had a more marked effect on soluble than on bound polysaccharide formation, as was supported by 14C pulse-chase experiments. BFA addition up to the first 10 h of the cell cycle affected cell division and bound polysaccharide and starch contents. An ultrastructural study showed that exposure of the cells to 20 μM BFA for 16 h disrupted the integrity of the Golgi apparatus. The integrated results of this study demonstrate clearly that BFA affects the architecture of the Golgi apparatus and hence polysaccharide production in algal cells.  相似文献   

8.
Mono-ADP-ribosylation is the enzymatic transfer of ADP-ribose from NAD+ to acceptor proteins catalyzed by ADP-ribosyltransferases. Using m-aminophenylboronate affinity chromatography, 2D-gel electrophoresis, in-gel digestion and MALDI-TOF analysis we have identified eight in vitro ADP-ribosylated proteins in Streptomyces coelicolor, which can be classified into three categories: (i) secreted proteins; (ii) metabolic enzymes using NAD+/NADH or NADP+/NADPH as coenzymes; and (iii) other proteins. The secreted proteins could be classified into two functional categories: SCO2008 and SC05477 encode members of the family of periplasmic extracellular solute-binding proteins, and SCO6108 and SC01968 are secreted hydrolases. Dehydrogenases are encoded by SC04824 and SC04771. The other targets are GlnA (glutamine synthetase I., SC02198) and SpaA (starvation-sensing protein encoded by SC07629). SCO2008 protein and GlnA had been identified as ADP-ribosylated proteins in previous studies. With these results we provided experimental support for a previous suggestion that ADP-ribosylation may regulate membrane transport and localization of periplasmic proteins. Since ADP-ribosylation results in inactivation of the target protein, ADP-ribosylation of dehydrogenases might modulate crucial primary metabolic pathways in Streptomyces. Several of the proteins identified here could provide a strong connection between protein ADP-ribosylation and the regulation of morphological differentiation in S. coelicolor.  相似文献   

9.
A new strain isolated from soil utilizes cyclopropanecarboxylate as the sole source of carbon and energy and was identified as Rhodococcus rhodochrous (H. Nishihara, Y. Ochi, H. Nakano, M. Ando, and T. Toraya, J. Ferment. Bioeng. 80:400-402, 1995). A novel pathway for the utilization of cyclopropanecarboxylate, a highly strained compound, by this bacterium was investigated. Cyclopropanecarboxylate-dependent reduction of NAD+ in cell extracts of cyclopropanecarboxylate-grown cells was observed. When intermediates accumulated in vitro in the absence of NAD+ were trapped as hydroxamic acids by reaction with hydroxylamine, cyclopropanecarboxohydroxamic acid and 3-hydroxybutyrohydroxamic acid were formed. Cyclopropanecarboxyl-coenzyme A (CoA), 3-hydroxybutyryl-CoA, and crotonyl-CoA were oxidized with NAD+ in cell extracts, whereas methacrylyl-CoA and 3-hydroxyisobutyryl-CoA were not. When both CoA and ATP were added, organic acids corresponding to the former three CoA thioesters were also oxidized in vitro by NAD+, while methacrylate, 3-hydroxyisobutyrate, and 2-hydroxybutyrate were not. Therefore, it was concluded that cyclopropanecarboxylate undergoes oxidative degradation through cyclopropanecarboxyl-CoA and 3-hydroxybutyryl-CoA. The enzymes catalyzing formation and ring opening of cyclopropanecarboxyl-CoA were shown to be inducible, while other enzymes involved in the degradation were constitutive.  相似文献   

10.
Recent in vivo studies with the fungal metabolite, brefeldin A (BFA), have shown that in the absence of vesicle formation, membranes of the Golgi complex and the trans-Golgi network (TGN) are nevertheless able to extend long tubules which fuse with selected target organelles. We report here that the ability to form tubules (> 7 microns long) could be reproduced in vitro by treatment of isolated, intact Golgi membranes with BFA under certain conditions. Surprisingly, an even more impressive degree of tubulation could be achieved by incubating Golgi stacks with an ATP-reduced cytosolic fraction, without any BFA at all. Similarly, tubulation of Golgi membranes in vivo occurred after treatment of cells with intermediate levels of NaN3 and 2-deoxyglucose. The formation of tubules in vitro, either by BFA treatment or low-ATP cytosol, correlated precisely with a loss of the vesicle-associated coat protein beta-COP from Golgi membranes. After removal of BFA or addition of ATP, membrane tubules served as substrates for the rebinding of beta-COP and for the formation of vesicles in vitro. These results provide support for the idea that a reciprocal relationship exists between tubulation and vesiculation (Klausner, R. D., J. G. Donaldson, and J. Lippincott-Schwartz. 1992. J. Cell Biol. 116:1071- 1080). Moreover, they show that tubulation is an inherent property of Golgi membranes, since it occurs without the aid of microtubules or BFA treatment. Finally the results indicate the presence of cytosolic factors, independent of vesicle-associated coat proteins, that mediate the budding/tubulation of Golgi membranes.  相似文献   

11.
3T3C2 mouse fibroblasts rendered permeable to (α?32P)NAD+ show cholera toxin-dependent labeling of a 45,000 m.w. protein and of a doublet of polypeptides around 52,000 m.w. These same bands are ADP-ribosylated in broken cells. Membranes prepared from pigeon erythrocytes pretreated with choleragen show a decrease in subsequent cholera toxin-specific ADP-ribosylation of a 43,000 m.w. polypeptide. Both whole cell and broken cell adenylate cyclase activation and toxin-specific ADP-ribosylation are reversed specifically by low pH and high concentrations of toxin and nicotinamide in all systems. Thus ADP-ribosylation appears to be relevant to the molecular action of choleragen in whole cells as well as in broken cells.  相似文献   

12.
13.
Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H–like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[α1-2]Man[α1-2]Man[α1-3][Man α1-6]Man[β14]GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse–chase incubations with d-[2- 3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse–chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3–4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 μM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes.  相似文献   

14.
Human bestrophin-1 (hBest1), which is genetically linked to several kinds of retinopathy and macular degeneration in both humans and dogs, is the founding member of a family of Cl ion channels that are activated by intracellular Ca2+. At present, the structures and mechanisms responsible for Ca2+ sensing remain unknown. Here, we have used a combination of molecular modeling, density functional–binding energy calculations, mutagenesis, and patch clamp to identify the regions of hBest1 involved in Ca2+ sensing. We identified a cluster of a five contiguous acidic amino acids in the C terminus immediately after the last transmembrane domain, followed by an EF hand and another regulatory domain that are essential for Ca2+ sensing by hBest1. The cluster of five amino acids (293–308) is crucial for normal channel gating by Ca2+ because all but two of the 35 mutations we made in this region rendered the channel incapable of being activated by Ca2+. Using homology models built on the crystal structure of calmodulin (CaM), an EF hand (EF1) was identified in hBest1. EF1 was predicted to bind Ca2+ with a slightly higher affinity than the third EF hand of CaM and lower affinity than the second EF hand of troponin C. As predicted by the model, the D312G mutation in the putative Ca2+-binding loop (312–323) reduced the apparent Ca2+ affinity by 20-fold. In addition, the D312G and D323N mutations abolished Ca2+-dependent rundown of the current. Furthermore, analysis of truncation mutants of hBest1 identified a domain adjacent to EF1 that is rich in acidic amino acids (350–390) that is required for Ca2+ activation and plays a role in current rundown. These experiments identify a region of hBest1 (312–323) that is involved in the gating of hBest1 by Ca2+ and suggest a model in which Ca2+ binding to EF1 activates the channel in a process that requires the acidic domain (293–308) and another regulatory domain (350–390). Many of the ~100 disease-causing mutations in hBest1 are located in this region that we have implicated in Ca2+ sensing, suggesting that these mutations disrupt hBest1 channel gating by Ca2+.  相似文献   

15.
16.
The coniferyl aldehyde dehydrogenase (CALDH) of Pseudomonas sp. strain HR199 (DSM7063), which catalyzes the NAD+-dependent oxidation of coniferyl aldehyde to ferulic acid and which is induced during growth with eugenol as the carbon source, was purified and characterized. The native protein exhibited an apparent molecular mass of 86,000 ± 5,000 Da, and the subunit mass was 49.5 ± 2.5 kDa, indicating an α2 structure of the native enzyme. The optimal oxidation of coniferyl aldehyde to ferulic acid was obtained at a pH of 8.8 and a temperature of 26°C. The Km values for coniferyl aldehyde and NAD+ were about 7 to 12 μM and 334 μM, respectively. The enzyme also accepted other aromatic aldehydes as substrates, whereas aliphatic aldehydes were not accepted. The NH2-terminal amino acid sequence of CALDH was determined in order to clone the encoding gene (calB). The corresponding nucleotide sequence was localized on a 9.4-kbp EcoRI fragment (E94), which was subcloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The partial sequencing of this fragment revealed an open reading frame of 1,446 bp encoding a protein with a relative molecular weight of 51,822. The deduced amino acid sequence, which is reported for the first time for a structural gene of a CALDH, exhibited up to 38.5% amino acid identity (60% similarity) to NAD+-dependent aldehyde dehydrogenases from different sources.  相似文献   

17.
NADH enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) was evaluated for studying enzyme kinetics in vitro and in isolated mitochondria. Mass, optical, and nuclear magnetic resonance spectroscopy data were consistent with the UV NADH photolysis reaction being NADH → NAD· + H+ + e. The overall net reaction was O2 + 2NADH + 2H+ → 2NAD+ + 2H2O, or in the presence of other competing electron acceptors such as cytochrome c, NADH + 2Cytox → NAD+ + H+ + 2Cytred. Solution pH could differentiate between these free-radical scavenging pathways. These net reactions represent the photooxidation of NADH to NAD+. Kinetic models and acquisition schemes were developed, varying [NADH] and [NAD] by altering NADH photolysis levels, for extracting kinetic parameters. UV irradiation levels used did not damage mitochondrial function or enzymatic activity. In mitochondria, [NADH] is a high affinity product inhibitor that significantly reduced the NADH regeneration rate. Matrix NADH regeneration only slightly exceeded the net rate of NADH consumption, suggesting that the NADH regeneration process is far from equilibrium. Evaluation of NADH regeneration in active mitochondria, in comparison to rotenone-treated preparations, revealed other regulatory elements in addition to matrix [NADH] and [NAD] that have yet to be fully characterized. These studies demonstrate that the rapid UV photolysis of NADH to NAD is an effective tool in evaluating the steady-state kinetic properties of enzyme systems. Initial data support the notion that the NADH regeneration process is far from equilibrium in mitochondria and is potentially controlled by NADH levels as well as several other matrix factors.  相似文献   

18.
Cytoplasmic dynein, a minus end–directed, microtubule-based motor protein, is thought to drive the movement of membranous organelles and chromosomes. It is a massive complex that consists of multiple polypeptides. Among these polypeptides, the cytoplasmic dynein heavy chain (cDHC) constitutes the major part of this complex. To elucidate the function of cytoplasmic dynein, we have produced mice lacking cDHC by gene targeting. cDHC−/− embryos were indistinguishable from cDHC+/−or cDHC+/+ littermates at the blastocyst stage. However, no cDHC−/− embryos were found at 8.5 d postcoitum. When cDHC−/− blastocysts were cultured in vitro, they showed interesting phenotypes. First, the Golgi complex became highly vesiculated and distributed throughout the cytoplasm. Second, endosomes and lysosomes were not concentrated near the nucleus but were distributed evenly throughout the cytoplasm. Interestingly, the Golgi “fragments” and lysosomes were still found to be attached to microtubules.

These results show that cDHC is essential for the formation and positioning of the Golgi complex. Moreover, cDHC is required for cell proliferation and proper distribution of endosomes and lysosomes. However, molecules other than cDHC might mediate attachment of the Golgi complex and endosomes/lysosomes to microtubules.

  相似文献   

19.
20.
A highly purified preparation of uridine 5′-diphosphate (UDP)-glucose (Glc) dehydrogenase (DH; EC 1.1.1.22) has been characterized from soybean (Glycine max L.) nodules. The enzyme had native and subunit molecular masses of approximately 272 and 50 kD, respectively. UDP-Glc DH displayed typical hyperbolic substrate kinetics and had Km values for UDP-Glc and NAD+ of 0.05 and 0.12 mm, respectively. Thymidine 5′-diphosphate-Glc and UDP-galactose could replace UDP-Glc as the sugar nucleotide substrate to some extent, but the enzyme had no activity with NADP+. Soybean nodule UDP-Glc DH was labile in the absence of NAD+ and was inhibited by a heat-stable, low-molecular-mass solute in crude extracts of soybean nodules. UDP-Glc DH was also isolated from developing soybean seeds and shoots of 5-d-old wheat and canola seedlings and was shown to have similar affinities for UDP-Glc and NAD+ as those of the soybean nodule enzyme. UDP-Glc DH from all of these sources was most active in young, rapidly growing tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号