首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Back in time: a new systematic proposal for the Bilateria   总被引:4,自引:0,他引:4  
Conventional wisdom suggests that bilateral organisms arose from ancestors that were radially, rather than bilaterally, symmetrical and, therefore, had a single body axis and no mesoderm. The two main hypotheses on how this transformation took place consider either a simple organism akin to the planula larva of extant cnidarians or the acoel Platyhelminthes (planuloid-acoeloid theory), or a rather complex organism bearing several or most features of advanced coelomate bilaterians (archicoelomate theory). We report phylogenetic analyses of bilaterian metazoans using quantitative (ribosomal, nuclear and expressed sequence tag sequences) and qualitative (HOX cluster genes and microRNA sets) markers. The phylogenetic trees obtained corroborate the position of acoel and nemertodermatid flatworms as the earliest branching extant members of the Bilateria. Moreover, some acoelomate and pseudocoelomate clades appear as early branching lophotrochozoans and deuterostomes. These results strengthen the view that stem bilaterians were small, acoelomate/pseudocoelomate, benthic organisms derived from planuloid-like organisms. Because morphological and recent gene expression data suggest that cnidarians are actually bilateral, the origin of the last common bilaterian ancestor has to be put back in time earlier than the cnidarian-bilaterian split in the form of a planuloid animal. A new systematic scheme for the Bilateria that includes the Cnidaria is suggested and its main implications discussed.  相似文献   

2.
The Radiata and the evolutionary origins of the bilaterian body plan   总被引:2,自引:0,他引:2  
The apparent conservation of cellular and molecular developmental mechanisms observed in a handful of bilaterian metazoans has spawned a "race" to reconstruct the bilaterian ancestor. Knowledge of this ancestor would permit us to reconstruct the evolutionary changes that have occurred along specific bilaterian lineages. However, comparisons among extant bilaterians provide an unnecessarily limited view of the ancestral bilaterian. Since the original bilaterians are believed by many to be derived from a radially symmetrical ancestor, additional evidence might be obtained by examining present-day radially symmetrical animals. We briefly review pertinent features of the body plans of the extant radial eumetazoan phyla, the Cnidaria, and Ctenophora, in the context of revealing potential evolutionary links to the bilaterians.  相似文献   

3.
The standard explanation for the origin of bilateral symmetry is that it conferred an advantage over radial symmetry for directed locomotion. However, recent developmental and phylogenetic studies suggest that bilateral symmetry may have evolved in a sessile benthic animal, predating the origin of directed locomotion. An evolutionarily feasible alternative explanation is that bilateral symmetry evolved to improve the efficiency of internal circulation by affecting the compartmentalization of the gut and the location of major ciliary tracts. This functional design principle is illustrated best by the phylum Cnidaria where symmetry varies from radial to tetraradial, biradial and bilateral. In the Cnidaria, bilateral symmetry is manifest most strongly in the internal anatomy and the disposition of ciliary tracts. Furthermore, the bilaterally symmetrical Cnidaria are typically sessile and, in those bilaterally symmetrical cnidarians that undergo directed locomotion, the secondary body axis does not bear a consistent orientation to the direction of locomotion as it typically does in Bilateria. Within the Cnidaria, the hypothesized advantage of bilateral symmetry for internal circulation can be tested by experimental analysis and computer modeling of fluid mechanics. The developmental evolution of symmetry within the Cnidaria can be further explored through comparative gene expression studies among species whose symmetry varies.  相似文献   

4.
SUMMARY Insight into the origin and early evolution of the animal phyla requires an understanding of how animal groups are related to one another. Thus, we set out to explore animal phylogeny by analyzing with maximum parsimony 138 morphological characters from 40 metazoan groups, and 304 18S rDNA sequences, both separately and together. Both types of data agree that arthropods are not closely related to annelids: the former group with nematodes and other molting animals (Ecdysozoa), and the latter group with molluscs and other taxa with spiral cleavage. Furthermore, neither brachiopods nor chaetognaths group with deuterostomes; brachiopods are allied with the molluscs and annelids (Lophotrochozoa), whereas chaetognaths are allied with the ecdysozoans. The major discordance between the two types of data concerns the rooting of the bilaterians, and the bilaterian sister-taxon. Morphology suggests that the root is between deuterostomes and protostomes, with ctenophores the bilaterian sister-group, whereas 18S rDNA suggests that the root is within the Lophotrochozoa with acoel flatworms and gnathostomulids as basal bilaterians, and with cnidarians the bilaterian sister-group. We suggest that this basal position of acoels and gnathostomulids is artifactal because for 1000 replicate phylogenetic analyses with one random sequence as outgroup, the majority root with an acoel flatworm or gnathostomulid as the basal ingroup lineage. When these problematic taxa are eliminated from the matrix, the combined analysis suggests that the root lies between the deuterostomes and protostomes, and Ctenophora is the bilaterian sister-group. We suggest that because chaetognaths and lophophorates, taxa traditionally allied with deuterostomes, occupy basal positions within their respective protostomian clades, deuterostomy most likely represents a suite of characters plesiomorphic for bilaterians.  相似文献   

5.
6.
According to their symmetry, flowers are classified as radially symmetrical or bilaterally symmetrical. Bilateral symmetry, which is thought to have evolved from radial symmetry, results from establishment of asymmetry relative to a dorsoventral axis of flowers. Here we consider developmental genetic mechanisms underlying the generation of this asymmetry and how they relate to controls of petal shape and growth in Antirrhinum. Two genes, CYC and DICH, are expressed in dorsal domains of the Antirrhinum flower and determine its overall dorsoventral asymmetry and the asymmetries and shapes of individual floral organs, by influencing regional growth. Another gene, DIV, influences regional asymmetries and shapes in ventral regions of the flower through a quantitative effect on growth. However, DIV is not involved in determining the overall dorsoventral asymmetry of the flower and its effects on regional asymmetries depend on interactions with CYC/DICH. These interactions illustrate how gene activity, symmetry, shape and growth may be related.  相似文献   

7.
Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior–posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster ( Brooke et al. 1998 ). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria ( Schubert et al. 1993 ; Zhang and Nei 1996 ). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes ( anthox2 and anthox6 ) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (=Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior–posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria.  相似文献   

8.
Purcell  Jennifer E. 《Hydrobiologia》1991,216(1):335-342
Predation among pelagic cnidarians and ctenophores is reviewed. The diets of semaeostome scyphomedusae and hydromedusae commonly include other gelatinous zooplanktivores. However, few species of siphonophores and ctenophores are known to consume other gelatinous species. Most of these species can be said to exhibit intraguild predation, since they consume species that potentially compete with them for food. In addition, some hydromedusan and ctenophore species may consume other gelatinous zooplanktivores exclusively. Characteristics of cnidarians and ctenophores as predators and as prey of other gelatinous species are discussed.  相似文献   

9.
Laminins are a family of multidomain glycoproteins that are important contributors to the structure of metazoan extracellular matrices. To investigate the origin and evolution of the laminin family, we characterized the full complement of laminin-related genes in the genome of the sponge, Amphimedon queenslandica. As a representative of the Demospongiae, a group consistently placed within the earliest diverging branch of animals by molecular phylogenies, Amphimedon is uniquely placed to provide insight into early steps in the evolution of metazoan gene families. Five Amphimedon laminin-related genes possess the conserved molecular features, and most of the domains found in bilaterian laminins, but all display domain architectures distinct from those of the canonical laminin chain types known from model bilaterians. This finding prompted us to perform a comparative genomic analysis of laminins and related genes from a choanoflagellate and diverse metazoans and to conduct phylogenetic analyses using the conserved Laminin N-terminal domain in order to explore the relationships between genes with distinct architectures. Laminin-like genes appear to have originated in the holozoan lineage (choanoflagellates + metazoans + several other unicellular opisthokont taxa), with several laminin domains originating later and appearing only in metazoan (animal) or eumetazoan (placozoans + ctenophores + cnidarians + bilaterians) laminins. Typical bilaterian α, β, and γ laminin chain forms arose in the eumetazoan stem and another chain type that is conserved in Amphimedon, the cnidarian, Nematostella vectensis, and the echinoderm, Strongylocentrotus purpuratus, appears to have been lost independently from the placozoan, Trichoplax adhaerens, and from multiple bilaterians. Phylogenetic analysis did not clearly reconstruct relationships between the distinct laminin chain types (with the exception of the α chains) but did reveal how several members of the netrin family were generated independently from within the laminin family by duplication and domain shuffling and by domain loss. Together, our results suggest that gene duplication and loss and domain shuffling and loss all played a role in the evolution of the laminin family and contributed to the generation of lineage-specific diversity in the laminin gene complements of extant metazoans.  相似文献   

10.
Most animals that display a bilateral symmetry (bilaterians) share homologous regulatory genes involved in head development. Recently, homologues of several of these genes have been cloned from animals that are radially organized, such as coral, sea anemones, jellyfish or hydra (cnidarians). Surprisingly, some of these are expressed apically and/or during apical patterning in hydrozoans, suggesting that head patterning is much older than previously thought.  相似文献   

11.
There is renewed interest in how the different body plans of extant phyla are related. This question has traditionally been addressed by comparisons between vertebrates and Drosophila. Fortunately, there is now increasing emphasis on animals representing other phyla. Pentamerally symmetric echinoderms are a bilaterian metazoan phylum whose members exhibit secondarily derived radial symmetry. Precisely how their radially symmetric body plan originated from a bilaterally symmetric ancestor is unknown, however, two recent papers address this subject. Peterson et al. propose a hypothesis on evolution of the anteroposterior axis in echinoderms, and Arenas-Mena et al. examine expression of five posterior Hox genes during development of the adult sea urchin.  相似文献   

12.
13.
Avian neoptile feathers are defined as the first feather generation, which covers the chick after hatching, and usually described as simple structures consisting of numerous downy barbs which are radially symmetrically arranged and come together in a short calamus. In contrast, in some birds (e.g., Anas platyrhynchos, Dromaius novaehollandiae) the neoptile feathers have a prominent rhachis, and therefore display clear bilateral symmetry. Because the symmetrical variety found in neoptile feathers is poorly understood, their morphology was studied in a more comprehensive and phylogenetic approach. Neoptile body feathers from over 22 bird species were investigated using light microscopy, SEM, and MicroCT. Characters such as an anterior–posterior axis, a central rhachis, medullary cells, and structure of the calamus wall were defined and mapped onto recent phylogenetic hypotheses for extant birds. It can be shown that bilaterally symmetric neoptile feathers (with a solid calamus wall) were already present in the stem lineage of crown‐group birds (Neornithes). In contrast, simple radially symmetric neoptile feathers (with a fragile calamus wall) are an apomorphic character complex for the clade Neoaves. The simple morphology of this feather type may be the result of a reduced period of development during embryogenesis. To date, embryogenesis of neoptile feathers from only a few bird species was used as a model to reconstruct feather evolution. Because this study shows that the morphology of neoptile feathers is more diverse and even shows a clear phylogenetic signal, it is necessary to expand the spectrum of “model organisms” to species with bilaterally symmetric neoptile feathers and compare differences in the frequency of feather development from a phylogenetic point of view. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
15.
Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining Bilateria and as such, is a morphologically simple stepping stone in bilaterian evolution. In the other, the group is a lineage within the Deuterostomia, and therefore, has derived a simple morphology from a more complex ancestor. Acoels and the closely related Nemertodermatida and Xenoturbellida, which together form the Acoelomorpha, possess a very limited number of cell types. To further investigate the diversity and origin of mesodermal cell types we describe the expression pattern of 12 orthologs of bilaterian mesodermal markers including Six1/2, Twist, FoxC, GATA4/5/6, in the acoel Isodiametra pulchra. All the genes are expressed in stem cells (neoblasts), gonads, and at least subsets of the acoel musculature. Most are expressed in endomesodermal compartments of I. pulchra developing embryos similar to what has been described in cnidarians. Our molecular evidence indicates a very limited number of mesodermal cell types and suggests an endomesodermal origin of the gonads and the stem cell system. We discuss our results in light of the two prevailing phylogenetic positions of Acoelomorpha.  相似文献   

16.
The origins of the Hox gene clusters and their coordinated activities during development have long been of considerable interest to biologists. In a recent paper in Current Biology, the Hox-like genes of two cnidarians are interpreted as evidence that the 'Hox system', sensu stricto, originated after the split from the lineage leading to bilaterian animals and that it was not requisite for complex axial patterning.  相似文献   

17.
Stöckl AL  Petie R  Nilsson DE 《PloS one》2011,6(11):e27201
Central Pattern Generators (CPGs) produce rhythmic behaviour across all animal phyla. Cnidarians, which have a radially symmetric nervous system and pacemaker centres in multiples of four, provide an interesting comparison to bilaterian animals for studying the coordination between CPGs. The box jellyfish Tripedalia cystophora is remarkable among cnidarians due to its most elaborate visual system. Together with their ability to actively swim and steer, they use their visual system for multiple types of behaviour. The four swim CPGs are directly regulated by visual input. In this study, we addressed the question of how the four pacemaker centres of this radial symmetric cnidarian interact. We based our investigation on high speed camera observations of the timing of swim pulses of tethered animals (Tripedalia cystophora) with one or four rhopalia, under different simple light regimes. Additionally, we developed a numerical model of pacemaker interactions based on the inter pulse interval distribution of animals with one rhopalium. We showed that the model with fully resetting coupling and hyperpolarization of the pacemaker potential below baseline fitted the experimental data best. Moreover, the model of four swim pacemakers alone underscored the proportion of long inter pulse intervals (IPIs) considerably. Both in terms of the long IPIs as well as the overall swim pulse distribution, the simulation of two CPGs provided a better fit than that of four. We therefore suggest additional sources of pacemaker control than just visual input. We provide guidelines for future research on the physiological linkage of the cubozoan CPGs and show the insight from bilaterian CPG research, which show that pacemakers have to be studied in their bodily and nervous environment to capture all their functional features, are also manifest in cnidarians.  相似文献   

18.
Despite much recent activity in the field of pollination biology, the extent to which animal pollinators drive the formation of new angiosperm species remains unresolved. One problem has been identifying floral adaptations that promote reproductive isolation. The evolution of a bilaterally symmetrical corolla restricts the direction of approach and movement of pollinators on and between flowers. Restricting pollinators to approaching a flower from a single direction facilitates specific placement of pollen on the pollinator. When coupled with pollinator constancy, precise pollen placement can increase the probability that pollen grains reach a compatible stigma. This has the potential to generate reproductive isolation between species, because mutations that cause changes in the placement of pollen on the pollinator may decrease gene flow between incipient species. I predict that animal-pollinated lineages that possess bilaterally symmetrical flowers should have higher speciation rates than lineages possessing radially symmetrical flowers. Using sister-group comparisons I demonstrate that bilaterally symmetric lineages tend to be more species rich than their radially symmetrical sister lineages. This study supports an important role for pollinator-mediated speciation and demonstrates that floral morphology plays a key role in angiosperm speciation.  相似文献   

19.
The primary paleobotanical literature pertaining to Zosterophyllophytina (a now extinct group of Devonian vascular plants) was reexamined for evidence concerning the activity of the apex of fertile shoots as it might be revealed by the presence or absence of terminally located sporangia (terminate or nonterminate axes, respectively). The symmetry of sporangial arrangement (radial or bilateral), the presence or absence of enations, circinate axial tips, and the shape of the vascular strand were also recorded. We found terminate axes usually are (but not invariably) associated with radial symmetry and nonterminate axes are typically bilateral in symmetry. Other morphological features are consistent with this observation, e.g., enations, circinate tips, and (when preserved) elliptic vascular strands are found in association with bilateral symmetry and nonterminate axes. We hypothesize that there are two distinct patterns of fertile axial growth within the Zosterophyllophytina. Nonetheless, all taxa currently assigned to the zosterophyllophytes share a reniform or globose sporangial shape and a distal line of dehiscence. Accordingly, we view Zosterophyllophytina as a monophyletic group of plants, whose members show two distinct patterns of growth in their fertile axes. We speculate that lycopods arose from an early zosterophyllophytelike group characterized by nonterminate, radially symmetrical fertile axes. We speculate that zosterophyllophytes with terminate fertile axes and those with nonterminate, bilaterally symmetrical fertile axes were phylogenetic deadends.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号