首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strains of Pseudomonas syringae pv. porri are characterized by a number of pathovar-specific phenotypic and genomic characters and constitute a highly homogeneous group. Using monoclonal antibodies, they all were classified in a novel P. syringae serogroup O9. The O polysaccharides (OPS) isolated from the lipopolysaccharides (LPS) of P. syringae pv. porri NCPPB 3365 and NCPPB 3364T possess multiple oligosaccharide O repeats, some of which are linear and composed of l-rhamnose (l-Rha), whereas the major O repeats are branched with l-rhamnose in the main chain and GlcNAc in side chains (structures 1 and 2). Both branched O repeats, which differ in the position of substitution of one of the Rha residues and in the site of attachment of GlcNAc, were found in the two strains studied, O repeat 1 being major in strain NCPPB 3365 and 2 in strain NCPPB 3364T. [formula: see text]. The relationship between OPS chemotype and serotype on one hand and the genomic characters of P. syringae pv. porri and other pathovars delineated in genomospecies 4 on the other hand is discussed.  相似文献   

2.
The O polysaccharide (OPS) moiety of the lipopolysaccharide (LPS) of a phytopathogenic bacterium Pseudomonas syringae pv. ribicola NCPPB 1010 was studied by sugar and methylation analyses, Smith degradation, and 1H- and 13C-NMR spectroscopy, including 2D COSY, TOCSY, NOESY and H-detected 1H,13C HMQC experiments. The OPS structure was elucidated, and shown to be composed of branched pentasaccharide repeating units (O repeats) of two types, major (1) and minor (2), differing in the position of substitution of one of the rhamnose residues. Both O repeats form structurally homogeneous blocks within the same polysaccharide molecule. Although P. syringae pv. ribicola NCPPB 1010 demonstrates genetic relatedness and similarity in the OPS chemical structure to some other P. syringae pathovars, it did not cross-react with any OPS-specific mAbs produced against heterologous P. syringae strains. Therefore, we propose to classify P. syringae pv. ribicola NCPPB 1010 in a new serogroup, O8.  相似文献   

3.
The O-specific polysaccharide (OPS) isolated from the lipopolysaccharide of Proteus mirabilis O36 was found to have a pentasaccharide repeating unit of the following structure: -->2)-beta-D-Ribf-(1-->4)-beta-D-Galp-(1-->4)-alpha-D-GlcpNAc6Ac-(1-->4)-beta-D-Galp-(1-->3)-alpha-D-GlcpNAc-(1-->. The structure is unique among Proteus OPS, which is in agreement with the classification of this strain into a separate Proteus O-serogroup. Remarkably, the P. mirabilis O36-polysaccharide has the same structure as the OPS of Escherichia coli O153, except that the latter is devoid of O-acetyl groups. The cross-reaction of anti-O36 antibodies with the O-part of E. coli O153 lipopolysaccharide is observed. In the present study, two steps of serotyping Proteus strains are proposed: screening of dry mass with enzyme-linked immunosorbent assay and immunoblot with the crude lipopolysaccharides. This method allowed serotyping of 99 P. mirabilis strains infecting the human urinary tract. Three strains were classified into serogroup O36. The migration pattern of these lipopolysaccharides fraction with long O-specific PSs was similar to the standard laboratory P. mirabilis O36 (Prk 62/57) lipopolysaccharide. The relatively low number of clinical strains belonging to serogroup O36 did not correspond to the presence of anti-P. mirabilis O36 antibodies in the blood donors' sera. Twenty-five percent of tested sera contained a statistically significant elevated level of antibodies reacting with thermostable surface antigens of P. mirabilis O36. The presence and amount of antibodies correlated with Thr399Ile TLR4 polymorphism types (P=0.044).  相似文献   

4.
Serological reactions of Pseudomonas syringae and Pseudomonas viridiflava were studied by Ouchterlony double diffusion. A total of 55 polyclonal antisera, containing anti-lipopolysaccharide (anti-LPS) precipitating antibodies, were cross-tested against antigenic suspensions of 51 strains. Twenty-three O serogroups were defined, primarily on the reaction of the type strains. Two families of O serogroups showed antigenic crossreactivities (PHA, MOP1, MOP2, MOP3, HEL1, HEL2, and SYR1; PERSAVTOM1, PERSAVTOM2, DEL, POR, and SYR2). Ten O serogroups showed a clearcut specificity: APTPIS, TAB, VIR1, VIR2, VIR3, SYR3, SYR4, SYR5, HUS, and LAC. The last serogroup (RIB) contained strains with rough colony morphology and side chain-deficient LPSs, as evidenced by sodium dodecyl sulfate-polycrylamide gel electrophoresis. The LPS basis of the O serogroups was demonstrated by immunoblotting. Serological reference strains were designated for all of the O serogroups and correspondence was established between the O serogroups studied and seven previous serogroups (L. T. Pastushenko and I.D. Simonovich, Mikrobiol, Zh. 41:222-229 and 330-339, 1979). A total of 355 strains of P. syringae (sensu lato) belonging to 15 pathovars, not including pathovar syringae, were typed into the 23 described O serogroups. O serogroups were assigned after double-diffusion reactions, with each strain compared with serological references. The utility of O serogrouping to study P. syringae pathovar structure and diversity is discussed.  相似文献   

5.
AIMS: The present study describes a system based on PCR to distinguish tabtoxin-producing strains of Pseudomonas syringae from other Ps. syringae plant pathogens that produce chlorosis-inducing phytotoxins. METHODS AND RESULTS: Thirty-two strains of Ps. syringae and related species were examined. Two sets of PCR primers were developed to amplify genes (tblA and tabA) required for tabtoxin production. Only a PCR product of 829 bp or 1020 bp was produced in PCR reactions with the tblA or tabA primer sets, respectively, and cells from tabtoxin-producing pathovars of Pseudomonas syringae. All known non-tabtoxin producing bacterial species failed to produce an amplification product with either primer set. CONCLUSIONS: PCR of genes required for tabtoxin production is a simple, rapid and reliable method for identifying tabtoxin-producing strains of Ps. syringae. SIGNIFICANCE AND IMPACT OF THE STUDY: The protocol can effectively distinguish tabtoxin-producing strains of Ps. syringae from other Ps. syringae pathovars and Ps. syringae pv. tabaci strains from other tabtoxin-producing Ps. syringae pathovars.  相似文献   

6.
The utility of 36 presumptive determinative tests for 32 pathovars of Pseudomonas syringae was investigated. A total of 395 strains was examined. Most strains of 12 of these pathovars ( Ps. syringae pv. cannabina, Ps. syr. delphinii, Ps. syr. glycinea, Ps. syr. helianthi, Ps. syr. lachrymans, Ps. syr. mori, Ps. syr. morsprunorum, Ps. syr. phaseolicola, Ps. syr. 'porri', Ps. syr. papulans, Ps. syr. savastanoi and Ps. syr. tabaci ) formed clusters when test data were compared by centroid analysis. Pseudomonas syr. syringae, Ps. syr. aptata, Ps. syr. atrofaciens, Ps. syr. dysoxyli and Ps. syr. japonica formed a single cluster, indicating their possible synonymy. Strains of Ps. syr. antirrhini and Ps. syr. tomato were indistinguishable, as were those of Ps. syr. garcae and Ps. syr. oryzae. Strains of Ps. syr. berberidis, Ps. syr. coronafaciens, Ps. syr. eriobotryae, Ps. syr. maculicola, Ps. syr. passiflorae, Ps. syr. pisi and Ps. syr. striafaciens and Ps. syr. tagetis did not form distinguishable clusters.
The tests which reliably differentiated pathovars are recorded in a determinative scheme.  相似文献   

7.
Serological studies using SDS-PAGE and immunoblotting revealed that from five strains that are ascribed to Citrobacter serogroup O2, four strains, PCM 1494, PCM 1495, PCM 1496 and PCM 1507, are reactive with specific anti-Citrobacter O2 serum. In contrast, strain PCM 1573 did not react with anti-Citrobacter O2 serum and, hence, does not belong to serogroup O2. The LPS of Citrobacter youngae O2a,1b (strain PCM 1507) was degraded under mild acidic conditions and the O-specific polysaccharide (OPS) released was isolated by gel chromatography. Sugar and methylation analyses along with (1)H- and (13)C-NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY and (1)H,(13)C HSQC experiments, showed that the repeating unit of the OPS has the following structure: [structure: see text]. NMR spectroscopic studies demonstrated that Citrobacter werkmanii O20 and C. youngae O25 have the same OPS structure as C. youngae O2. Sugar and methylation analyses of the core oligosaccharide fractions demonstrated structural differences in the lipopolysaccharide core regions of these strains, which may substantiate their classification in different serogroups.  相似文献   

8.
Lipopolysaccharides (LPS) and O-specific polysaccharides (OPS) were obtained from the outer membrane of four Azospirillum strains previously assigned to serogroup I based on the serological affinity revealed by the antibodies (AB) to the LPS of A. brasilense Sp245. Investigation, including determination of monosaccharide composition, methylation analysis, and one- and two-dimensional NMR spectroscopy, was carried out to determine the OPS structure. The OPSs of A. brasilense Sp107 and S27 and of A. lipoferum RG20a were found to have an identical structure of repeating units represented by a linear penta-D-rhamnan, as was previously described for the OPSs of A. brasilense Sp245 and SR75. The OPS of A. brasilense SR15 was found to consist of tetrasaccharide repeating units of the following structure: → 2)-α-D-Rhap-(1 → 2)-β-D-Rhap-(1 → 3)-α-D-Rhap-(1 → 2)-α-D-Rhap-(1 →. An opine compound, Nδ-(1-carboxyethyl)-ornithine, closely associated with the LPS of A. brasilense SR15, was identified in azospirilla for the first time. The presence of a 6-deoxisugar (D-rhamnose) in the OPS structure was shown to be the chemical basis of the serological similarity and the reason for classification of these strains within the serogroup I.  相似文献   

9.
Actinobacillus suis is an important bacterial pathogen of healthly pigs. An O-antigen (lipopolysaccharide; LPS) serotyping system is being developed to study the prevalence and distribution of representative isolates from both healthy and diseased pigs. In a previous study, we reported that A. suis serogroup O:1 strains express LPS with a (1-->6)-beta-D-glucan O-antigen chain polysaccharide that is similar in structure to a key cell-wall component in yeasts, such as Saccharomyces cerevisiae and Candida albicans. This study describes the O-antigen polysaccharide chemical structure of an O:2 serogroup strain, A. suis H91-0380, which possesses a tetrasaccharide repeating block with the structure: -->3)-beta-D-Galp-(1-->4)-[alpha-D-Galp-(1-->6)]-beta-D-Glcp-(1-->6)-beta-D-GlcpNAc-(1-->. Studies have shown that A. suis serogroup O:2 strains are associated with severely diseased animals; therefore, work on the synthesis of a glycoconjugate vaccine employing O:2 O-antigen polysaccharide to vaccinate pigs against A. suis serogroup O:2 strains is currently underway.  相似文献   

10.
The production of monoclonal antibodies (MAbs) to ethylenediamine tetraacetic acid (sodium salt) soluble antigens of Pseudomonas syringae pv. phaseolicola and Xanthomonas campestris pv. phaseoli (fuscans strain) is described. MAbs A6-1 and A6-2 produced to Ps. syringae pv. phaseolicola are pathovar specific. Although MAb XP2 produced to X. campestris pv. phaseoli recognized surface antigens of all strains of this pathovar (including fuscans strains) it cross-reacted specifically with X. campestris pv. malvacearum; it did not react with any other known bacteria or unidentified epiphytes from navy bean seed or leaves. The isotype of both MAbs XP2 and A6-1 is IgG3 whereas that of MAb A6-2 is IgG2a. The reactive antigens are thermostable, but their chemical nature has not been determined.  相似文献   

11.
The relationships among strains of Pseudomonas syringae pv. tomato, Ps. syr. antirrhini, Ps. syr. maculicola, Ps. syr. apii and a strain isolated from squash were examined by restriction fragment length polymorphism (RFLP) patterns, nutritional characteristics, host of origin and host ranges. All strains tested except for Ps. syr. maculicola 4326 isolated from radish ( Raphanus sativus L.) constitute a closely related group. No polymorphism was seen among strains probed with the 5.7 and 2.3 kb Eco RI fragments which lie adjacent to the hrp cluster of Ps. syr. tomato and the 8.6 kb Eco RI insert of pBG2, a plasmid carrying the β-glucosidase gene(s). All strains tested had overlapping host ranges. In contrast to this, comparison of strains by RFLP patterns of sequences homologous to the 4.5 kb Hind III fragment of pRut2 and nutritional properties distinguished four groups. Group 1, consisting of strains of pathovars maculicola, tomato and apii , had similar RFLP patterns and used homoserine but not sorbitol as carbon sources. Group 2, consisting of strains of pathovars maculicola and tomato , differed from Group 1 in RFLP patterns and did not use either homoserine or sorbitol. Group 3 was similar to Group 2 in RFLP patterns but utilized homoserine and sorbitol. This group included strains of the pathovars tomato and antirrhini , and a strain isolated from squash. Group 4, a single strain of Ps. syr. maculicola isolated from radish, had unique RFLP patterns and resembled Group 3 nutritionally. The evolutionary relationships of these strains are discussed.  相似文献   

12.
Among the 21 O-polysaccharide (OPS) O-antigen-based serotypes described for Yersinia pseudotuberculosis, those of O:6 and O:7 are unusual in that both contain colitose (4-keto-3,6-dideoxy-d-mannose or 4-keto-3,6-dideoxy-l-xylo-hexose), which has not otherwise been reported for this species, and the O:6 OPS also contains yersiniose A (4-C[(R)-1-hydroxyethyl]-3,6-dideoxy-d-xylo-hexose), another unusual dideoxyhexose sugar. In Y. pseudotuberculosis, the genes for OPS synthesis generally cluster together between the hemH and gsk loci. Here, we present the sequences of the OPS gene clusters of Y. pseudotuberculosis O:6 and O:7, and the location of the genes required for synthesis of these OPSs, except that there is still ambiguity regarding allocation of some of the glycosyltransferase functions. The O:6 and O:7 gene clusters have much in common with each other, but differ substantially from the group of 13 gene clusters already sequenced, which share several features and sequence similarities. We also present a possible sequence of events for the derivation of the O:6 and O:7 gene clusters from the most closely related set of 13 sequenced previously.  相似文献   

13.
The antigenic reactions of 35 strains of four pathovars of Pseudomonas syringae (Ps. syr. aptata, Ps. syr. tabaci, Ps. syr. mors-prunorum and Ps. syr. phaseolicola ) were studied by double diffusion and indirect immunofluorescent staining, and anti-whole-cell and anti-LPS-extract sera. It had already been shown that the precipitating lines in Ouchterlony double-diffusion tests, due to bacterial LPS, were suitable for the distinction of O-serogroups. The investigation of serological cross-reactions between the 35 strains and 20 antisera revealed that three pathovars were serologically homogeneous: Ps. syr. aptata, Ps. syr. tabaci and Ps. syr. phaseolicola. They could fit into three O-serogroups formerly described: namely APTPIS, TAB and PHA. The O-serogroups APTPIS and TAB showed some common antigens. The 10 strains of Ps. syr. mors-prunorum studied were distributed into two O-serogroups (eight strains belonging to the O-serogroup MOP1, one strain to MOP2, and the last strain failed to react with any of the serogroups).  相似文献   

14.
Glycerophosphate-containing O-specific polysaccharides (OPSs) were obtained by mild acidic degradation of lipopolysaccharides isolated from Escherichia coli type strain O81 and E. coli strain HS3-104 from horse feces. The structures of both OPSs and of the oligosaccharide derived from the strain O81 OPS by treatment with 48% HF were studied by monosaccharide analysis and one- and two-dimensional 1H- and 13C-NMR spectroscopy. Both OPSs had similar structures and differed only in the presence of a side-chain glucose residue in the strain HS3-104 OPS. The genes and the organization of the O-antigen biosynthesis gene cluster in both strains are almost identical with the exception of the gtr gene cluster responsible for glucosylations in the strain HS3-104, which is located elsewhere in the genome.  相似文献   

15.
Chen L  Zhu Y  Kong F 《Carbohydrate research》2002,337(5):383-390
The tetrasaccharide repeating unit of Escherichia coli O9a, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, and the pentasaccharide repeating unit of E. coli O9 and Klebsiella O3, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, were synthesized as their methyl glycosides. Thus, selective 3-O-allylation of p-methoxyphenyl alpha-D-mannopyranoside via a dibutyltin intermediate gave p-methoxyphenyl 3-O-allyl-alpha-D-mannopyranoside (2) in good yield. Benzoylation (-->3), then removal of 1-O-methoxyphenyl (right arrow4), and subsequent trichloroacetimidation afforded the 3-O-allyl-2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (5). Condensation of 5 with methyl 4,6-O-benzylidene-alpha-D-mannopyranoside (6) selectively afforded the (1-->3)-linked disaccharide 7. Benzoylation of 7, debenzylidenation, benzoylation, and deallylation gave methyl 2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-mannopyranoside (11) as the disaccharide acceptor. Coupling of 11 with (1-->2)-linked mannose disaccharide donor 17 or trisaccharide donor 21, followed by deacylation, furnished the target tetrasaccharide and pentasaccharide, respectively.  相似文献   

16.
Novel O-serotypes were revealed among Pseudomonas syringae pv. garcae strains by using a set of mouse monoclonal antibodies specific to the lipopolysaccharide O-polysaccharide. Structural studies showed that the O-polysaccharide of P. syringae pv. garcae NCPPB 2708 is a hitherto unknown linear L-rhamnan lacking strict regularity and having two oligosaccharide repeating units I and II, which differ in the position of substitution in one of the rhamnose residues and have the following structures: I: --> 3)-alpha-L-Rha-(1 --> 2)-alpha-L-Rha-(1 --> 2)-alpha-L-Rha-(1 --> 3)-alpha-L-Rha-(1 -->; II: --> 3)-alpha-L-Rha-(1 --> 3)-alpha-L-Rha-(1 --> 2)-alpha-L-Rha-(1 --> 3)-alpha-L-Rha-(1 -->. The branched polysaccharides of P. syringae pv. garcae ICMP 8047 and NCPPB 588 have the same L-rhamnan backbone with repeating units I and II and a lateral chain of (alpha1 --> 4)- or (alpha1 --> 3)-linked residues of 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc). Several monoclonal antibody epitopes associated with the L-rhamnan backbone or the lateral alpha-D-Fuc3NAc residues were characterized.  相似文献   

17.
Burkholderia brasiliensis, a Gram-negative diazotrophic endophytic bacterium, was first isolated from roots, stems, and leaves of rice plant in Brazil. The polysaccharide moiety was released by ammonolysis from the B. brasiliensis lipopolysaccharide (LPS), allowing the unambiguous characterization of a 3,6-dideoxy-4-C-(1-hydroxyethyl)-D-xylo-hexose (yersiniose A), an uncommon feature for Burkholderia LPS. The complete structure of the yersiniose A-containing O-antigen was identified by sugar and methylation analyses and NMR spectroscopy. Our results show that the repeating oligosaccharide motif of LPS O-chain consists of a branched tetrasaccharide with the following structure:-->2-alpha-d-Rhap-(1-->3)-[alpha-YerAp-(1-->2)]-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->.  相似文献   

18.
Distinction between Pseudomonas syringae pathovar (pv.) pisi (Ps. syr. pisi) , responsible for bacterial blight of pea ( Pisum sativum ), and pv. syringae (Ps. syr. syringae) , still requires strain inoculation onto peas. Patterns of enzymes including esterase (EST) and superoxide dismutase (SOD) were examined for diagnostic purposes. Profiles of 59 Ps. syr . pisi strains and 53 Ps. syr . syringae strains were compared. Pseudomonas syringae pisi was characterized by one unique zymotype for SOD and two slightly different zymotypes for EST. Pseudomonas syringae syringae zymotypes were very heterogeneous with 10 different zymotypes for SOD and 32 for EST. Twenty-four percent of the Ps. syr . syringae strains shared SOD zymotype 1 of Ps. syr . pisi , thus preventing the use of this enzymatic system for identification. In contrast, the two EST zymotypes of Ps. syr. pisi strains were specific to the pathovar and could be used for its identification. The two Ps. syr. pisi EST patterns were correlated to race structure of the pathovar, zymotype 1 corresponding to races 2, 3, 4 and 6, and zymotype 2 to races 1, 5 and 7. Esterase isozyme profiling was proposed as a new identification procedure for bacterial pea blight agent.  相似文献   

19.
Serologically active O-specific polysaccharides were obtained on mild acid hydrolysis of lipopolysaccharides from Pseudomonas cerasi 467 and Pseudomonas syringae pv. syringae strains 218 and P-55. On the basis of 1H- and 13C-NMR analysis, it was concluded that the P. cerasi polysaccharide has the following structure: ----3)-alpha-D-Rhap-(1----3)-alpha-D-Rhap-(1----2)-alpha-D-+ ++Rhap-(1---- which is identical to that of O-specific polysaccharide from P. syringae pv. morsprunorum C28 (Smith A. R. W. et al. Eur. J. Biochem., 1985, V. 149, No 1, p. 73-78). The polysaccharides from P. syringae pv. syringae strains possess the same backbone but differ by the presence of D-fucose as monosaccharide branches. Methylation and 1H- and 13C-NMR analysis revealed the following structure of these polysaccharides: (Formula: see text). The degree of substitution of the backbone trisaccharide units by the fucofuranose residues is about 35% for the strain 218 and about 85% for the strain P-55.  相似文献   

20.
Strains of Proteus mirabilis belonging to serogroups O24 and O29 are frequent in clinical specimens. Anti-P. mirabilis O24 serum cross-reacted with the lipopolysaccharide (LPS) of P. mirabilis O29 and vice versa. The structures of the O-specific polysaccharides (OPSs, O-antigens) of both LPSs were established using sugar analysis and one- and two-dimensional 1H- and 13C-NMR spectroscopy and found to be different. SDS-PAGE and Western immunoblotting suggested that the serological cross-reactivity of the LPSs is due to a common epitope(s) on the core-lipid A moiety, rather than on the OPS. Therefore, the epitope specificity and the structures of the O-antigens studied are unique among Proteus serogroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号