首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Giardia lamblia arginine deiminase (GlAD), the topic of this paper, belongs to the hydrolase branch of the guanidine-modifying enzyme superfamily, whose members employ Cys-mediated nucleophilic catalysis to promote deimination of l-arginine and its naturally occurring derivatives. G. lamblia is the causative agent in the human disease giardiasis. The results of RNAi/antisense RNA gene-silencing studies reported herein indicate that GlAD is essential for G. lamblia trophozoite survival and thus, a potential target for the development of therapeutic agents for the treatment of giardiasis. The homodimeric recombinant protein was prepared in Escherichia coli for in-depth biochemical characterization. The 2-domain GlAD monomer consists of a N-terminal domain that shares an active site structure (depicted by an in silico model) and kinetic properties (determined by steady-state and transient state kinetic analysis) with its bacterial AD counterparts, and a C-terminal domain of unknown fold and function. GlAD was found to be active over a wide pH range and to accept l-arginine, l-arginine ethyl ester, Nα-benzoyl-l-arginine, and Nω-amino-l-arginine as substrates but not agmatine, l-homoarginine, Nα-benzoyl-l-arginine ethyl ester or a variety of arginine-containing peptides. The intermediacy of a Cys424–alkylthiouronium ion covalent enzyme adduct was demonstrated and the rate constants for formation (k1 = 80 s−1) and hydrolysis (k2 = 35 s−1) of the intermediate were determined. The comparatively lower value of the steady-state rate constant (kcat = 2.6 s−1), suggests that a step following citrulline formation is rate-limiting. Inhibition of GlAD using Cys directed agents was briefly explored. S-Nitroso-l-homocysteine was shown to be an active site directed, irreversible inhibitor whereas Nω-cyano-l-arginine did not inhibit GlAD but instead proved to be an active site directed, irreversible inhibitor of the Bacillus cereus AD.  相似文献   

2.
An aerobic bacterium was isolated from activated sludge in a medium containing l-glutamate-N,N-diacetate (l-GLDA) as sole carbon and energy source. The isolate was identified as a Rhizobium radiobacter species. Besides l-GLDA, the strain utilized nitrilotriacetate (NTA) and proposed intermediates in l-GLDA metabolism such as glyoxylate and l-glutamate. l-GLDA-grown cells oxidized l-GLDA, l-glutamate but not iminodiacetate (IDA), and trans-ketoglutaconate, indicating removal of a carboxymethyl group as an initial degradation reaction. The removal of the first carboxymethyl group of l-GLDA is catalyzed by an NADH-dependent mono-oxygenase. The oxidative deamination of l-glutamate by a dehydrogenase resulting in the formation of oxoglutarate was also detected in cell-free extracts of R. radiobacter sp. A pathway for the metabolism of l-GLDA R. radiobacter sp. is proposed: First, l-GLDA leads to l-glutamate-N-monoacetate (l-GLMA) which in turn leads to l-glutamate. Then, l-glutamate leads to oxoglutarate, an intermediate of the TCA cycle.  相似文献   

3.
A new l-amino acid oxidase (LAAO) was isolated from the Central Asian cobra Naja naja oxiana venom by size exclusion, ion exchange and hydrophobic chromatography. The N-terminal sequence and the internal peptide sequences share high similarity with other snake venom l-amino acid oxidases, especially with those isolated from elapid venoms. The enzyme is stable at low temperatures (− 20 °C, − 70 °C) and loses its activity by heating at 70 °C. Specific substrates for the isolated protein are l-phenylalanine, l-tryptophan, l-methionine and l-leucine. The enzyme has antibacterial activity inhibiting the growth of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. N. naja oxiana LAAO dose-dependently inhibited ADP- or collagen-induced platelet aggregation with IC50 of 0.094 μM and 0.036 μM, respectively. The antibacterial and anti-aggregating activity was abolished by catalase.  相似文献   

4.
Acryloyl guar gum (AGG) and its hydrogel materials were synthesized for use as carriers and slow release devices of two pro-drugs, l-tyrosine and 3,4-dihydroxy phenylalanine (l-DOPA). To evaluate their structure-properties relationship, these were characterized by scanning electron micrography (SEM), FTIR spectroscopy and swelling studies. The hydrogel materials responded to the change of pH of the swelling medium, and exhibited reversible transitions in 0.9% saline solution. These were loaded with two pro-drugs, and their cumulative release behavior was studied at pH 2.2 and pH 7.4. The hydrogel materials exhibited structure-property relationship in the release of these pro-drugs. The % cumulative release of l-tyrosine was the maximum from the AGG-g-poly(methacrylic acid), while the maximum release of l-DOPA was observed from AGG-g-poly(AAc) in both the media. On the other hand, the AGG-g-poly(2-hydroxyethyl methacrylate) and AGG-g-poly(2-hydroxypropyl methacrylate) retained 42.33% and 49.05% of the drug even after 12 h.  相似文献   

5.
An amperometric biosensor was developed for the interference-free determination of l-glutamate with a bienzyme-based Clark electrode. This sensor is based on the specific dehydrogenation by l-glutamate dehydrogenase (GLDH, EC 1.4.1.3) in combination with salicylate hydroxylase (SHL, EC 1.14.13.1). The enzymes were entrapped by a poly(carbamoyl) sulfonate (PCS) hydrogel on a Teflon membrane. The principle of the determination scheme is as follows: the specific detecting enzyme, GLDH, catalyses the specific dehydrogenation of l-glutamate consuming NAD+. The product, NADH, initiates the irreversible decarboxylation and the hydroxylation of salicylate by SHL in the presence of oxygen. This results in a detectable signal due to the SHL-enzymatic consumptions of dissolved oxygen in the measurement of l-glutamate. The sensor has a fast steady-state measuring time of 20 s with a quick response (1 s) and a short recovery (1 min). It shows a linear detection range between 10 μM and 1.5 mM l-glutamate with a detection limit of 3.0 μM. A Teflon membrane, which is used to fabricate the sensor, makes the determination to avoid interferences from other amino acids and electroactive substances.  相似文献   

6.
The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a critical bacterial enzyme for the construction of the bacterial cell wall. A screen biased toward compounds containing zinc-binding groups (ZBG’s) including thiols, carboxylic acids, boronic acids, phosphonates and hydroxamates has delivered a number of micromolar inhibitors of DapE from Haemophilus influenzae, including the low micromolar inhibitor l-captopril (IC50 = 3.3 μM, Ki = 1.8 μM). In vitro antimicrobial activity was demonstrated for l-captopril against Escherichia coli.  相似文献   

7.
The aim of the present study was to evaluate the protective effect of l-glutamine (l-Gln) against cryopreservation injuries on boar sperm. In Experiment 1, l-Gln from 20 to 80 mM was evaluated as a supplement for a standard freezing extender (egg yolk – EY – 20%, and glycerol 3%). No significant improvement (P > 0.05) was obtained for any post-thaw sperm parameter assessed (objective sperm motility – CASA system – and flow cytometric analysis of plasma and acrosomal membrane integrity −SYBR14/PI/PE-PNA− and plasma membrane stability −M540/YoPro1−). In Experiment 2, l-Gln was evaluated as a partial glycerol substitute in the freezing extender. Significant (P < 0.05) enhancement of post-thaw sperm motion parameters was achieved in sperm frozen in the presence of 2% glycerol and 80 mM l-Gln compared to control (3% glycerol). In Experiment 3, l-Gln was evaluated as an EY substitute in the freezing extender, and no functional sperm were recovered after thawing sperm frozen in the presence of l-Gln and the absence of EY. In conclusion, l-Gln has the ability to cryoprotect boar sperm when it is used as a partial glycerol substitute in the freezing extender.  相似文献   

8.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled l-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]l-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 °C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 °C. The values of Km were 90–489 μM in l-serine uptake. However, in the uptake of GABA the values of Km were 80–150 μM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

9.
We investigated the effects of combining 1 g of l-citrulline and 1 g of l-arginine as oral supplementation on plasma l-arginine levels in healthy males. Oral l-citrulline plus l-arginine supplementation more efficiently increased plasma l-arginine levels than 2 g of l-citrulline or l-arginine, suggesting that oral l-citrulline and l-arginine increase plasma l-arginine levels more effectively in humans when combined.  相似文献   

10.
d-Hydantoinase and d-carbamoylase genes from Agrobacterium radiobacter TH572 were cloned by polymerase chain reaction (PCR). The plasmid pUCCH3 with a polycistronic structure that is controlled by the native hydantoinase promoter was constructed to co-express the two genes and transformed into Escherichia coli strain JM105. To obtain the highest level of expression of the d-carbamoylase and avoid intermediate accumulation, the d-carbamoylase gene was cloned closer to the promoter and the RBS region in the upstream of it was optimized. This resulted in high active expression of soluble d-hydantoinase and d-carbamoylase that is obtained without any inducer. Thus, by the constitutive recombinant JM105/pUCCH3, d-p-hydroxyphenylglycine (d-HPG) was obtained directly with 95.2% production yield and 96.3% conversion yield.  相似文献   

11.
A synthetic gene encoding a Streptomyces l-proline-3-hydroxylase was constructed and used to produce the hydroxylase protein in recombinant Escherichia coli. A fermentation process for growth of this recombinant E. coli for enzyme production was scaled-up to 250 L. A biotransformation process was developed using cell suspensions of the recombinant E. coli and subsequently scaled-up to 10 L for conversion of l-proline to cis-3-hydroxy-l-proline. A reaction yield of 85 M% and d.e. of 99.9% was obtained for cis-3-hydroxy-l-proline.  相似文献   

12.
d-Hydantoinase was covalently immobilized onto polystyrene anion exchange resin via glutaraldehyde. Immobilization conditions were optimized: the carrier as D-92 type polystyrene anion exchange resin, temperature as 25 °C, immobilization time as 12 h, and initial concentration of protein as 6 mg/ml. Under the optimized reaction conditions the activity of the free and immobilized d-hydantoinase was determined. The free and immobilized d-hydantoinase samples were characterized with their kinetic parameters, thermal, and storage stability. The Km and Vmax values were 14.985 mM and 0.6 mM/min for the free, and 27.030 mM and 1.187 mM/min for the immobilized, respectively. Operational stability of the immobilized d-hydantoinase was also detected in a circulating packed-bed reactor. The half-time of the immobilized d-hydantoinase was 11 days. Nearly 90% of activity of the immobilized d-hydantoinase was reserved for 100 days stored at 4 °C. The free and immobilized d-hydantoinases were also characterized under microwave irradiation. Results shown that the reactions catalyzed by both free and immobilized d-hydantoinase were accelerated under microwave irradiation. The half-time of the immobilized d-hydantoinase reduced to 16 min under microwave irradiation.  相似文献   

13.
The gene encoding α-methylserine aldolase was isolated from Bosea sp. AJ110407. Sequence analysis revealed that the predicted amino acid sequence encoded by the 1320-bp open reading frame was 65.0% similar to the corresponding sequence of the enzyme isolated from Ralstonia sp. AJ110405. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified. Gel filtration revealed the molecular mass of the purified enzyme to be approximately 78 kDa, suggesting that the enzyme is a homodimer. The enzyme exhibited a specific peak at 429 nm in the spectrum and contained 1 mol pyridoxal 5′-phosphate per mole of the subunit. The Vmax value was 1.40 μmol min−1 mg−1, and the Km value was 1.5 mM for the reaction wherein formaldehyde was released from α-methyl-l-serine. This enzyme could also catalyze the reverse reaction, i.e., the synthesis of α-methyl-l-serine from l-alanine and formaldehyde. This activity was inhibited in the excess of formaldehyde; however, α-methyl-l-serine was efficiently produced from l-alanine in the presence of formaldehyde. This method was also applicable for producing α-ethyl-l-serine from l-2-aminobutyric acid.  相似文献   

14.
d-Amino acid oxidase is a FAD-dependent enzyme that catalyses the conversion of the d-enantiomer of amino acids into the corresponding α-keto acid. Substrate specificity of the enzyme from the yeast Rhodotorula gracilis was investigated towards aromatic amino acids, and particularly synthetic α-amino acids.A significant improvement of the activity (Vmax,app) and of the specificity constant (the Vmax,app/Km,app ratio) on a number of the substrates tested was obtained using a single-point mutant enzyme designed by a rational approach. With R. gracilis d-amino acid oxidase the complete resolution of d,l-homo-phenylalanine was obtained with the aim to produce the corresponding pure l-isomer and to use the corresponding α-keto acid as a precursor of the amino acid in the l-form.  相似文献   

15.
In this study, the modulating effect of l-carnitine on tert-butyl-hydroperoxide-induced DNA damage was compared with that of mannitol, a well known scavenger of hydroxyl radicals, both in normal and Ataxia telangiectasia mutated (ATM)-deficient lymphoblastoid cell lines established from A. telangiectasia (A-T) patients. The alkaline version of the comet assay was employed to measure the frequency of single-strand breaks (SSBs) and alkali-labile sites induced by t-butyl-OOH immediately after treatment and at different recovery times in normal and A-T cell lines, with and without pre-treatment with l-carnitine. In addition, both the yield of induced chromosomal damage and the effect on cell proliferation were evaluated. Our results show that pre-treatment of cells with l-carnitine produced an enhancement of the rate and extent of DNA repair in A-T cell lines at early recovery time; furthermore, in samples pre-treated with l-carnitine a reduction of all types of chromosomal aberration was observed, both in A-T and in wild-type cell lines. The reducing effect of l-carnitine pre-treatment on oxidative DNA damage was more prominent than that of pre-treatment with mannitol. In conclusion, we demonstrated a protective effect of l-carnitine on oxidative stress-induced DNA damage in A-T cells, suggesting its possible role in future pharmacological applications in A-T therapy.  相似文献   

16.
Alginate–chitosan polyelectrolyte complexes (PECs) have been used for the first time as a suitable matrix for coimmobilisation of enzymes to reproduce a multistep enzymatic route for production of d-amino acids. Encapsulation of a crude cell extract from Agrobacterium radiobacter containing d-hydantoinase and d-carbamoylase activities into the PECs with negligible leakage from the formed capsules was accomplished. All results in this study indicate that the preparation of the biocatalyst (preparation method and chitosan characteristics) play a key role in the biocatalyst's properties. The most suitable biocatalysts were prepared using a chitosan with a medium molecular weight (600 kDa) and a degree of deacetylation of 0.9. For all of the preparation conditions under study, an encapsulation yield of around 60% was achieved and the enzymatic activity yields ranged from 30 to 80% for d-hydantoinase activity and from 40 to 128% for d-carbamoylase activity relative to the activities of the soluble extract. All of the biocatalysts were able to hydrolyze l,d-hydroxyphenylhydantoin into p-hydroxyphenylglycine with yields ranging from 30 to 80%.  相似文献   

17.
To control the molecular mass of a natural polycationic, antimicrobial, Streptomyces-biosynthesized polymer, epsilon-poly-l-lysine, addition of polyanionic cyclodextrin derivatives to the culture medium was evaluated. Chemically modified cyclodextrins such as a sulfated cyclodextrin caused a notable shortening of the polymer length of epsilon-poly-l-lysine from 3.5 to 4.5 kDa to less than 2.5 kDa by the enforcing action of glycerol, which has a weak potential to inhibit polymer elongation by terminal esterification. Meanwhile, polyanionic cyclodextrin inhibited the shortening action with n-octanol, which has a strong ability to inhibit polymer elongation through an undetermined function. The design of chemical structures of polyanionic cyclodextrin, optimization of their addition concentrations, and selection of hydroxyl compounds coexisting with them are critical for this simple and easy method for polymer length control and terminal modification of epsilon-poly-l-lysine.  相似文献   

18.
Two new steroidal saponins, padelaosides A (1) and B (2), along with two other known steroidal saponins (3 and 4) were isolated from the rhizomes of Paris delavayi. Their structures were elucidated by 1D and 2D NMR techniques, HRFTMS, physical data and chemical methods. The two different absolute configurations of fucose, assigned as l and d that were found on compounds 1 and 2, respectively, were simultaneously reported in a natural medicine for the first time.  相似文献   

19.
By use of PCR, the genes encoding d-carbamoylase from A. radiobacter TH572 were cloned in plasmid pET30a and transformed into Escherichia coli BL21 (DE3) to overexpress d-carbamoylase. However, almost all of the protein remained trapped in inclusion bodies. To improve the expression of the properly folded active enzyme, a constitutive plasmid of pGEMT-DCB was constructed using the native hydantoinase promoter (PHase) whose optimal length was confirmed to 209 bp. Furthermore, the RBS region in the downstream of PHase was optimized to increase the expression level, so the plasmid pGEMT-R-DCB was constructed and transformed into E. coli strain Top10F′. The enzyme activity of Top10F′/pGEMT-R-DCB grown at 37 °C was found to be 0.603 U/mg (dry cell weight, DCW) and increase 58-fold over cells of BL21 (DE3) harboring the plasmid pET-DCB grown at 28 °C.  相似文献   

20.
GNA1946, a conserved outer membrane lipoprotein from Neisseria meningitidis, has been identified as a candidate antigen for an urgently needed broad-spectrum meningococcal vaccine. It has been predicted to be a periplasmic receptor in the d-methionine uptake ABC transporter system. The crystal structure of GNA1946 was solved by the single-wavelength anomalous dispersion (SAD) method to a resolution of 2.25 Å, and it reveals a Venus flytrap-like structure. GNA1946 consists of two globular lobes connected by a hinge region. Surprisingly, the structure showed an l-methionine bound within the cleft between the lobes. A comparison of GNA1946 with two other outer membrane lipoproteins, the l-methionine-binding Tp32 from Treponema pallidum and the dipeptide GlyMet-binding protein Pg110 from Staphylococcus aureus, revealed that although these three proteins share low sequence similarities, there is a high degree of structural conservation and similar substrate-binding frameworks. Our results reveal that GNA1946 is an l-methionine binding lipoprotein in the outer membrane, and should function as an initial receptor for ABC transporters with high affinity and specificity. The GNA1946 structure reported here should provide a valuable starting point for the development of a broad-spectrum meningococcal vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号