首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) B biotype is an invasive species (biotype) in China. In order to understand the role that native natural enemies might play in its control, techniques were developed for detecting B. tabaci DNA within the gut of predators. A species-specific DNA fragment, ca. 350 bp, was identified by random amplified polymorphic DNA analysis. This fragment was absent in other closely related or co-occurring prey species, cotton, and other select predator species. After cloning and sequencing the fragment, one pair of sequence-characterized amplified region (SCAR) primers was developed, which amplified a single band of 240 bp. Specificity tests performed with the primers showed the presence of the 240-bp band for B. tabaci in all developmental stages and both sexes, in adult Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) fed on B. tabaci nymphs in the laboratory, and in predators collected in cotton fields. Following consumption of a single red-eyed B. tabaci nymph, prey DNA was detectable in 100% of P. japonica at t = 0, decreasing to 20% after 12 h of digestion, and no B. tabaci DNA detected at t = 24 h. In total, we analyzed the gut contents of 185 field-collected predators, representing four different orders. All nine field-collected predator species (namely, P. japonica, Harmonia axyridis, Scymnus hoffmanni, Coccinella septempunctata, Orius sauteri, Chrysopa pallens, Chrysopa formosa, Erigonnidium graminicolum, and Neoscona doenitzi) contained DNA from B. tabaci and are assumed predators of this pest insect. Overall, the B. tabaci was eaten by more than 50% of field-collected predator individuals, including larvae of the coccinellids (P. japonica and H. axyridis) and lacewings (C. pallens and C. formosa) and adults of O. sauteri and the spiders (E. graminicolum and N. doenitzi). There was a trend of a higher percentage of larval than adult coccinellids and lacewings that preyed on B. tabaci in the field. This study provides a framework for the future use of molecular gut content analysis in arthropod conservation ecology and food web research, with considerable potential for quantifying threats to invasive or endemic pest species in China and elsewhere.  相似文献   

3.
Habitat manipulation in agroecosystems can influence predator–prey interactions. In this study, we collected foliar predators from field potato plots with different mulch treatments and assayed them for DNA of the target prey, Leptinotarsa decemlineata (Say), using species-specific primers. Concurrently, L. decemlineata larval abundance and plant damage were recorded from the same plots. Predator species abundance and diversity were not influenced by habitat manipulation, while prey density was highest in plots without mulch. Gut-content analysis revealed that the highest incidence of predators positive for L. decemlineata DNA was in plots without mulch, where target prey abundance was highest. Therefore, the lower prey abundance in mulched plots was not due to predation. The most abundant species in the predator assemblage was Coleomegilla maculata, which had the lowest proportion of L. decemlineata DNA in the gut. Podisus maculiventris, Perillus bioculatus, and Lebia grandis were less abundant but had a higher incidence of target prey DNA in the gut. DNA detectability half-lives were used to adjust for inter-specific variation in DNA digestive rates of the four predator species. Using this information to adjust actual number of positives for prey DNA, we compared proportions positive for L. decemlineata and found that P. maculiventris is the most effective predator species in the complex.  相似文献   

4.
The cotton whitefly, Bemisia tabaci (Gennadius) B‐biotype, is fed on by a wide variety of generalist predators, but there is little information on these predator–prey interactions, especially under field conditions. In this study, a real‐time polymerase chain reaction (PCR) assay was developed to quantify B. tabaci B‐biotype remains in predator gut. The B. tabaci B‐biotype genomic DNA copy number was referred to the actual amount of BT1 isolate, the B. tabaci B‐biotype specific DNA fragment. The numbers of BT1 isolate in one B. tabaci B‐biotype egg, individual adult and a single red‐eyed nymph were 2.56 × 103, 2.56 × 104, and 1.29 × 104 copies, respectively. When Propylaea japonica adults fed on one, two, four, eight or 16 red‐eyed nymphs, the detected numbers of BT1 isolate ranged from 2.77 × 104 to 4.05 × 105 copies, forming a strong linear relationship (R2 = 0.9899). Following the consumption of two red‐eyed nymphs, prey DNA was detectable in 100% of P. japonica at t = 0, decreasing to 80.0% and 60.0% after 1–4 h and 8 h of digestion, respectively, with 3.36 × 104–1.25 × 103 BT1 isolate copies. The predation by field‐collected predators, 26 larvae of P. japonica, and of Harmonia axyridis each, Chrysopa spp. larvae (Chrysopa pallens and C. formosa, 18 individuals in total), and a single adult of Scymnus hoffmanni, 19 adults of Orius sauteri and nine adult spiders (Erigonnidium graminicolum and Neoscona doenitzi), on B. tabaci B‐biotype were quantified. Of the 99 analysed predator individuals, 3.65 × 102–4.60 × 105 copies of BT1 isolate, equivalent to 0.8–18.8 red‐eyed nymphs were detected. These results suggest that TaqMan real‐time PCR technology may provide a rapid and sensitive method for quantifying B. tabaci B‐biotype remains in predator guts and will be invaluable in assessing the food web relationship between prey and arthropod predators.  相似文献   

5.
Spiders are common generalist predators, and understanding their potential in biological control is important for the development of integrated pest management programs. In this study, predation by three groups of spiders on the mirid bug Stenotus rubrovittatus (Hemiptera: Miridae) in rice paddies was investigated using DNA-based gut-content analysis. A laboratory feeding study revealed that the detection half-lives of bug DNA in the spider gut at 25 °C was 3.4 days for Lycosidae and 1.5 days for Tetragnathidae. Individual spider predation on the mirid bug was investigated by detecting DNA of prey in field-collected spiders. In total, 1199 spiders were assayed from three spider groups: Pirata subpiraticus (Lycosidae), Tetragnatha spp. (Tetra-gnathidae), and Pachygnatha clercki (Tetra-gnathidae), which each differ in their preferred microhabitat as well as their predatory habits. Detection rates of prey DNA in spiders increased significantly with the density of prey across all spider groups. P. subpiraticus and Tetragnatha spp. predation showed a better fit to a saturated response curve to increasing prey density, while P. clercki showed a simple linear relationship with prey density. Densities of alternative prey species did not affect the detection rates of mirids. These results suggest that predation on pests by generalist predators in an agroecosystem is affected not only by prey abundance but also by predator preference for specific prey. Predator preference is therefore an important factor to consider when estimating the role of natural enemies as biological control agents.  相似文献   

6.
A simplified but highly effective approach for the post‐mortem evaluation of predation on several targeted members of an arthropod assemblage that does not require the development of pest‐specific enzyme‐linked immunosorbent assay (ELISA) (e.g. pest‐specific monoclonal antibodies) or PCR assays (DNA primers) is described. Laboratory feeding studies were conducted to determine if predation events could be detected from predators that consumed prey marked with foreign protein. I determined that large and small rabbit immunoglobulin G (IgG)‐marked prey can be detected by a rabbit‐IgG‐specific ELISA in the guts of chewing and piercing–sucking type predators. I then conducted multifaceted inclusion and exclusion field cage studies to qualify the degree of interguild and intraguild predation occurring among a complex arthropod assemblage during four separate light phase treatments. The field cages contained an arthropod assemblage consisting of 11 or 12 species of predaceous arthropods and three pest species. The three pests introduced into the cages included third instar Trichoplusia ni marked with rabbit IgG, third instar Lygus hesperus marked with chicken IgG and Pectinophora gossypiella sentinel egg masses. The inclusion cages allowed foraging fire ants, Solenopis xyloni, to freely enter the cages while the exclusion cages contained barriers that prevented ant entry. The results obtained using the conventional inclusion/exclusion field cage methodology revealed that there was substantial interguild and intraguild predation occurring on the majority of the arthropods in the assemblage, particularly in those cages that included ants. I then precisely identified which predators in the assemblage were feeding on the three targeted pests by conducting three post‐mortem gut content analyses on each individual predator (1503 individuals) in the assemblage. Specifically, P. gossypiella egg predation events were detected using an established P. gossypiella‐egg‐specific ELISA, and third instar T. ni and L. hesperus predation events were detected using rabbit‐IgG‐specific and chicken‐IgG‐specific ELISAs, respectively. Generally, the gut ELISAs revealed that Collops vittatus, Spanagonicus albofasciatus and Geocoris punctipes readily preyed on P. gossypiella eggs; Nabis alternatus, Zelus renardii and spiders (primarily Misumenops celer) readily preyed on marked L. hesperus nymphs, and spiders, S. albofasciatus and N. alternatus readily preyed on T. ni larvae. Furthermore, the cage methods and the post‐mortem predator gut ELISAs revealed very few distinctive patterns of predation with regard to the light cycle the assemblage was exposed to.  相似文献   

7.
The molecular analysis of predation through specific DNA amplification has been utilized extensively over the last decade, and has been shown to be fast and effective. However, it is necessary to evaluate the prey detectability half-life if we are to correctly infer the relevance of particular predators to particular pests and to accurately model the effect of biocontrol. We present here the design and analysis of a set of primers to amplify olive fruit fly (Bactrocera oleae) DNA in predator gut contents, allowing fast evaluation of the digestion time. We modified the existing protocol by solubilizing the prey DNA directly from the gut, and we applied this modified protocol to demonstrate that Pterostichus melas, one of the most common carabids in olive groves in Italy, feeds on B. oleae pupae. After feeding carabids with a single pupa, traces of the pest were found to be detectable more than 20 h after ingestion. This method could also be applied to other predators to evaluate trophic interactions of the olive fruit fly. The relevance of generalist predation to the mortality of the pupal stage of B. oleae is of great economic interest since B. oleae causes serious damage during olive production, reducing the commercial value of olive oil and table olives.  相似文献   

8.
The utility of temperature gradient gel electrophoresis (TGGE) as a means of analysing the gut contents of predators was evaluated. Generalist predators consume multiple prey species and a species-specific primer approach may not always be a practical means of analysing predator responses to prey diversity in complex and biodiverse ecosystems. General invertebrate primers were used to amplify the gut contents of predators, generating banding patterns that identified component prey remains. There was no evidence of dominance of the polymerase chain reaction (PCR) by predator DNA. When applied to field samples of the carabid predator Pterostichus melanarius (Illiger) nine banding patterns were detected, including one for aphids. To further distinguish between species, group-specific primers were designed to separate species of earthworm and aphid. TGGE of the earthworm PCR products generated banding patterns that varied with haplotype in some species. Aphid and earthworm DNA could be detected in the guts of carabids for up to 24 h using TGGE. In P. melanarius, with low numbers of prey per insect gut (mean<3), interpretation of banding patterns proved to be tractable. Potential problems of interpretation of TGGE gels caused by multiple prey bands, cryptic bands, haplotype variation, taxonomic uncertainties (especially with regard to earthworms), secondary predation, scavenging and presence of parasites and parasitoids in the prey or the predators, are discussed. The results suggest that PCR, using combinations of general invertebrate and group-specific primers followed by TGGE, provides a potentially useful approach to the analysis of multiple uncharacterized prey in predators.  相似文献   

9.
The time during which prey remains are detectable in the gut of a predator is an important consideration in the interpretation of molecular gut-content data, because predators with longer detectability times may appear on the basis of unweighted data to be disproportionately important agents of prey population suppression. The rate of decay in detectability, typically expressed as the half-life, depends on many variables; one that has not been explicitly examined is the manner in which the predator processes prey items. The influence of differences in feeding mode and digestive physiology on the half-life of DNA for a single prey species, the Colorado potato beetle Leptinotarsa decemlineata (Say), is examined in two predators that differ dramatically in these attributes: the pink ladybeetle, Coleomegilla maculata (DeGeer), which feeds by chewing and then ingesting the macerated material into the gut for digestion; and the spined soldier bug, Podisus maculiventris (Say), which physically and enzymatically processes the prey extra-orally before ingestion and further digestion in the gut. In order to standardize the amount of DNA consumed per predator, a single L. decemlineata egg was used as the prey item; all predators were third instars. The PCR assay yields estimated prey DNA half-lives, for animals maintained under field temperatures, of 7.0 h in C. maculata and 50.9 h in P. maculiventris. The difference in the prey DNA half-lives from these two predators underscores the need to determine detectabilities from assemblages of predators differing in feeding mode and digestive physiology, in order to weight positives properly, and hence determine the predators' relative impacts on prey population suppression.  相似文献   

10.
Nematodes are the most abundant invertebrates in soils and are key prey in soil food webs. Uncovering their contribution to predator nutrition is essential for understanding the structure of soil food webs and the way energy channels through soil systems. Molecular gut content analysis of consumers of nematodes, such as soil microarthropods, using specific DNA markers is a novel approach for studying predator–prey interactions in soil. We designed new specific primer pairs (partial 18S rDNA) for individual soil‐living bacterial‐feeding nematode taxa (Acrobeloides buetschlii, Panagrellus redivivus, Plectus velox and Plectus minimus). Primer specificity was tested against more than 100 non‐target soil organisms. Further, we determined how long nematode DNA can be traced in the gut of predators. Potential predators were identified in laboratory experiments including nine soil mite (Oribatida, Gamasina and Uropodina) and ten springtail species (Collembola). Finally, the approach was tested under field conditions by analyzing five mite and three collembola species for feeding on the three target nematode species. The results proved the three primer sets to specifically amplify DNA of the respective nematode taxa. Detection time of nematode DNA in predators varied with time of prey exposure. Further, consumption of nematodes in the laboratory varied with microarthropod species. Our field study is the first definitive proof that free‐living nematodes are important prey for a wide range of soil microarthropods including those commonly regarded as detritivores. Overall, the results highlight the eminent role of nematodes as prey in soil food webs and for channelling bacterial carbon to higher trophic levels.  相似文献   

11.
Species- and group-specific PCR primers were developed to study predation on pest and nonpest invertebrate species by generalist carabid predators in agroecosystems. To ensure the amplification of degraded DNA in predator gut samples, amplicons were designed to be less than 300 bp. Specificity of primers was assessed by cross-amplification against a panel of target and nontarget invertebrate species. The new primers were combined with previously published primers for slugs and collembolla in multiplex reactions to simultaneously screen each predator for the presence of multiple prey. All prey species were detected in a screen of the gut contents of field-caught predators.  相似文献   

12.
Molecular analysis of predation, through polymerase chain reaction amplification of prey remains within the faeces or digestive systems of predators, is a rapidly growing field, impeded by a lack of readily accessible advice on best practice. Here, we review the techniques used to date and provide guidelines accessible to those new to this field or from a different molecular biology background. Optimization begins with field collection, sample preservation, predator dissection and DNA extraction techniques, all designed to ensure good quality, uncontaminated DNA from semidigested samples. The advantages of nuclear vs. mitochondrial DNA as primer targets are reviewed, along with choice of genes and advice on primer design to maximize specificity and detection periods following ingestion of the prey by the predators. Primer and assay optimization are discussed, including cross-amplification tests and calibratory feeding experiments. Once primers have been made, the screening of field samples must guard against (through appropriate controls) cross contamination. Multiplex polymerase chain reactions provide a means of screening for many different species simultaneously. We discuss visualization of amplicons on gels, with and without incorporation of fluorescent primers. In more specialized areas, we examine the utility of temperature and denaturing gradient gel electrophoresis to examine responses of predators to prey diversity, and review the potential of quantitative polymerase chain reaction systems to quantify predation. Alternative routes by which prey DNA might get into the guts of a predator (scavenging, secondary predation) are highlighted. We look ahead to new technologies, including microarrays and pyrosequencing, which might one day be applied to this field.  相似文献   

13.
A new method for post-mortem quantification of predation on prey items marked with protein antigens is described. First, short-term protein marking retention tests were conducted on the targeted prey, immature Lygus hesperus Knight (Heteroptera: Miridae). Chicken IgG, rabbit IgG, or soy milk proteins were readily detectable by a suite of protein specific enzyme-linked immunosorbent assays (ELISA) on the L. hesperus. Then, predator gut content assays were conducted on chewing and piercing–sucking type predators that consumed a 3rd instar L. hesperus marked with rabbit IgG. The rabbit IgG gut content ELISA detected the marked prey in the vast majority of both types of predators for up to 24 h after feeding. Finally, field cage studies were conducted to quantify predation rates of the natural cotton predator assemblage on protein marked L. hesperus nymphs. Each 4th instar L. hesperus marked with rabbit IgG, chicken IgG, and soy milk was released into one of 360 field cages containing a cotton plant and the natural population of predators. After 7 h, each caged plant was pulled from the field, the number of predaceous arthropods in each cage were tallied, and each individual predator was assayed for the presence of marked prey by a suite of protein-specific ELISAs. A procedural error with the soy mark application negated the anti-soy ELISA data, but the anti-rabbit IgG and anti-chicken IgG ELISAs pinpointed exactly which predators preyed on the IgG marked nymphs. The protein-specific gut ELISAs revealed that various members of Araneae, Heteroptera, and Coleoptera were the most common predators of the marked prey items. In all, 74 predation events were recorded in the guts of the 556 predators encountered in the field cages. Of these 26, 23, and 14 marked individuals were eaten by various members of Araneae, Heteroptera, and Coleoptera, respectively. This study verifies that prey immunomarking is a simple, versatile, and effective method for quantifying predation rates on L. hesperus.  相似文献   

14.
Gut content analysis using molecular techniques can help elucidate predator‐prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species‐specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores’ main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator‐prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5‐fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator‐prey interactions in tiny species such as mites, which include important agricultural pests and their predators.  相似文献   

15.
Gut content analysis is a useful tool when studying arthropod predator-prey interactions. We used polymerase chain reaction (PCR) technique to examine how detection of prey DNA in the gut content of predators was influenced by digestion time and temperature. Such knowledge is critical before applying PCR-based gut content analysis to field collected predators. Larvae of the two-spotted ladybeetle (Adalia bipunctata L.) were fed with the bird cherry-oat aphid (Rhopalosiphum padi L.) at either 21℃ or 14℃. After consuming one aphid, the predators were allowed to digest the prey for a range of time periods up to 24 hours. The influence of temperature on A. bipunctata feeding behavior was also recorded. From the fed larvae, total DNA was extracted and PCR reactions with R. padi specific primers were run. The number ofA. bipunctata that tested positive for R. padi DNA was negatively related to the length of digestion time. Temperature influenced larval feeding behavior but did not have a significant effect on R. padi DNA detection. After pooling the data from both temperature treatments we estimated the time point when R. padi DNA could be amplified from 50% of the fed A. bipunctata by PCR to be 4.87 hours. With such a rapid decrease in prey DNA detection success, positive PCR reactions will most likely be the result of predation events occurring shortly before capture. If a defined digestion temperature range has proven not to influence prey detection, PCR data obtained from predators collected within that particular range can be interpreted in the same way.  相似文献   

16.
The cereal leaf beetle (CLB), Oulema melanopus L. (Coleoptera: Chrysomelidae), is a major pest of cereal crops that has recently been reported in western Canada. We developed a set of primers to detect CLB DNA in the gut of six common predator taxa in wheat fields: lady beetles (20 positives of 143 individuals), nabid bugs (73 positives of 206 individuals), and wolf spiders (2 positives of 25 individuals). Nabis americoferus Carayon (Hemiptera: Nabidae) and Coccinella septempunctata L. (Coleoptera: Coccinellidae) were the most abundant predators in cereal fields, with 0.35 and 0.05 proportion of samples positive for CLB DNA, respectively. The prey DNA half-lives were used to adjust the estimates for N. americoferus to 0.22, due to its longer DNA detectability relative to C. septempunctata. Overall, Hippodamia parenthesis (Say) (Coleoptera: Coccinellidae) had the highest proportion of positives at 0.43. There was a positive association between CLB abundance and proportion of N. americoferus and C. septempunctata positives for CLB DNA. This study highlights the contribution of generalist predators to CLB mortality and their important role in integrated management for CLB. Furthermore, we provide a molecular tool that can be used to identify predators of CLB and predation frequency in agricultural fields .  相似文献   

17.
An earlier study showed that two phytoseiid species, Euseius scutalis (Athias‐Henriot) and Typhlodromips swirskii (Athias‐Henriot) (Acari: Phytoseiidae), are capable of suppressing populations of Bemisia tabaci (Gennadius) (Hemiptera: Aleurodidae) on isolated cucumber plants supplied with Typha latifolia L. pollen. However, the predators did not exterminate their prey, and this may be caused by the existence of invulnerable B. tabaci stages. Little is known of the differential vulnerability of the immature B. tabaci stages. Here, we quantified their vulnerability by assessing the rate of predation on each of the immature stages when offered alone at a density high enough to allow for a maximal predation rate. All immature stages of B. tabaci were vulnerable to predation by each of the two predator species. However, the per capita predation rates, the oviposition rates of phytoseiids, as well as the percentage of predators feeding and the percentage ovipositing decreased with increasing stages of B. tabaci. Compared to that of eggs and 1st instars, the vulnerability of 2nd and later B. tabaci instars is an order of magnitude lower. To investigate how the presence of alternative food changes the rates of predation, we added pollen to a diet of 1st instars, one of the most vulnerable instars. This resulted in a decrease in the predation rate of E. scutalis, but not of T. swirskii, while the oviposition rate of both phytoseiid species remained equally high. The decreased predation of the 1st instars probably resulted from E. scutalis switching to pollen feeding.  相似文献   

18.
Subterranean termites provide a major potential food source for forest-dwelling ants, yet the interactions between ants and termites are seldom investigated largely due to the cryptic nature of both the predator and the prey. We used protein marking (rabbit immunoglobin protein, IgG) and double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to examine the trophic interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar). We marked the prey by feeding the termites paper treated with a solution of rabbit immunoglobin protein (IgG). Subsequently, we offered live, IgG-fed termites to ant colonies and monitored the intracolony distribution of IgG-marked prey. Laboratory experiments on the distribution of protein-marked termite prey in colonies of A. rudis revealed that all castes and developmental stages receive termite prey within 24 h. In field experiments, live, protein-marked termites were offered to foraging ants. Following predation, the marker was recovered from the ants, demonstrating that A. rudis preys on R. flavipes under field conditions. Our results provide a unique picture of the trophic-level interactions between predatory ants and subterranean termites. Furthermore, we show that protein markers are highly suitable to track trophic interactions between predators and prey, especially when observing elusive animals with cryptic food-web ecology. Received 19 January 2007; revised 23 March 2007; accepted 26 March 2007.  相似文献   

19.
Extrapolation of predator functional responses from laboratory observations to the field is often necessary to predict predation rates and predator-prey dynamics at spatial and temporal scales that are difficult to observe directly. We use a spatially explicit individual-based model to explore mechanisms behind changes in functional responses when the scale of observation is increased. Model parameters were estimated from a predator-prey system consisting of the predator Delphastus catalinae (Coleoptera: Coccinellidae) and Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) on tomato plants. The model explicitly incorporates prey and predator distributions within single plants, the search behavior of predators within plants, and the functional response to prey at the smallest scale of interaction (within leaflets) observed in the laboratory. Validation revealed that the model is useful in scaling up from laboratory observations to predation in whole tomato plants of varying sizes. Comparing predicted predation at the leaflet scale, as observed in laboratory experiments, with predicted predation on whole plants revealed that the predator functional response switches from type II within leaflets to type III within whole plants. We found that the magnitude of predation rates and the type of functional response at the whole plant scale are modulated by (1) the degree of alignment between predator and prey distributions and (2) predator foraging behavior, particularly the effect of area-concentrated search within plants when prey population density is relatively low. The experimental and modeling techniques we present could be applied to other systems in which active predators prey upon sessile or slow-moving species.  相似文献   

20.
1. Studies of the impact of predator diversity on biological pest control have shown idiosyncratic results. This is often assumed to be as a result of differences among systems in the importance of predator–predator interactions such as facilitation and intraguild predation. The frequency of such interactions may be altered by prey availability and structural complexity. A direct assessment of interactions among predators is needed for a better understanding of the mechanisms affecting prey abundance by complex predator communities. 2. In a field cage experiment, the effect of increased predator diversity (single species vs. three‐species assemblage) and the presence of weeds (providing structural complexity) on the biological control of cereal aphids were tested and the mechanisms involved were investigated using molecular gut content analysis. 3. The impact of the three‐predator species assemblages of aphid populations was found to be similar to those of the single‐predator species treatments, and the presence or absence of weeds did not alter the patterns observed. This suggests that both predator facilitation and intraguild predation were absent or weak in this system, or that these interactions had counteracting effects on prey suppression. Molecular gut content analysis of predators provided little evidence for the latter hypothesis: predator facilitation was not detected and intraguild predation occurred at a low frequency. 4. The present study suggests additive effects of predators and, therefore, that predator diversity per se neither strengthens nor weakens the biological control of aphids in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号