首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A novel series of anilinoquinazoline compounds with C-6 urea-linked side chains was designed and synthesized as reversible inhibitors of epidermal growth factor receptor (EGFR) based on the structure–activity relationships (SARs) of anilinoquinazoline inhibitors. All compounds demonstrated good inhibition of EGFR wild type (EGFR wt) (IC50 = 0.024–1.715 μM) and inhibited proliferation of A431cell line (IC50 = 0.116–22.008 μM). The binding mode of compounds 8a, 8d, 8k and 8o was consistent with the biological results. Moreover, compounds 8k and 8l almost completely blocked the phosphorylation of EGFR in A431 cell line at 0.01 μM. Interestingly, all of the compounds also demonstrated moderate inhibition of EGFR/T790M/L858R (IC50 = 0.049–5.578 μM). In addition, compounds 8f and 8h blocked the autophosphorylation of EGFR in NCI-H1975 cells at high concentration (10 μM), and compound 8f was confirmed to be an irreversible inhibitor through the dilution method. Importantly, the compounds with C-6 urea-linked side chains which did not contain Michael acceptors demonstrated moderate to strong irreversible EGFR inhibition.  相似文献   

2.
A novel series of 6-alkenylamides of 4-anilinothieno[2,3-d]pyrimidine derivatives was designed, synthesized and evaluated as irreversible inhibitors of the epidermal growth factor receptor (EGFR). Most of the compounds exhibited good potency against EGFR wild type (EGFR wt) and EGFR T790M/L858R. Among these, the half-maximal inhibitory concentration (IC50) values of 17 compounds against EGFR wt were less than 0.020 μM, and those of 12 compounds were less than 0.010 μM. The IC50 values of 10 compounds against EGFR T790M/L858R were less than 0.005 μM. Compounds 8l, 9n, 9o, 9q and 9v almost completely blocked the phosphorylation of EGFR in the A431 cell line at 1 μM. Compounds 8l, 9n, 9o, 9q and 9v blocked the autophosphorylation of EGFR in NCI-H1975 cells at high concentration (1 μM), and compound 8l was confirmed to be an irreversible inhibitor through the dilution method.  相似文献   

3.
A new series of 4-anilinoquinazolines with C-6 ureido and thioureido side chains and various substituents at the C-4 anilino moiety was designed, synthesized and evaluated as wild type (WT) and mutant EGFR inhibitors. Most of the compounds inhibited EGFR kinase wild type (EGFR WT) with IC50 values in the low nanomolar range (<0.495–9.05 nM) and displayed more potent cytotoxic effect in BaF/3 expressing EGFR WT than reference compound gefitinib. The anti-proliferative effect of all synthesized compounds against gefitinib insensitive double mutant cell lines Ba/F3 expressing Del19/T790M and Ba/F3 expressing L858R/T790M were assayed. Compounds 4d, 6f, 7e showed significant inhibition (IC50 = 1.76–2.38 μM) in these mutant lines and significant Her2 enzyme inhibition (IC50 = 19.2–40.6 nM) compared to lapatinib (60.1 nM). The Binding mode of compounds 6d, 6f, 7a, 7b and 8b were demonstrated. Furthermore, growth inhibition against gefitinib insensitive cell lines PC9-GR4 (Del19/T790M) were tested, compounds 6f and 7e showed about eight and three folds respectively greater potency than gefitinib. Our structure–activity relationships (SAR) studies suggested that presence of ethyl piperidino urea/thiourea at 6-position and bulky group of (3-chloro-4-(3-fluorobenzyloxy)phenyl)amino at 4-position of quinazoline may serve as promising scaffold for developing inhibitors against wild type and mutant EGFR.  相似文献   

4.
5.
New Schiff’s base derivatives 5a5h have been synthesized by reaction between 1-(4-bromophenyl)-2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanone 3 and various benzohydrazide 4a4h in presence of nickel (II) nitrate as a catalyst in ethanol at room temperature in good yield (54–88%). All compounds were tested for antibacterial as well as anticancer and inhibition of EGFR. Of the compounds studied, compounds 5d, 5f and 5g in the case of antiproliferation and inhibition of EGFR as well as compounds 5b, 5c, 5e and 5h in the case of antibacterial activity were found to be most effective compounds in the series. Compound 5f shows effective inhibition (IC50 = 0.21 ± 0.02 μM) by binding in to the active pocket of EGFR receptor with minimum binding energy (ΔGb = ?49.4869 kcal/mol).  相似文献   

6.
A series of novel azole-diphenylpyrimidine derivatives (AzDPPYs) were synthesized and biologically evaluated as potent EGFRT790M inhibitors. Among these analogues, the most active inhibitor 6e not only displayed high activity against EGFRT790M/L858R kinase (IC50 = 3.3 nM), but also was able to repress the replication of H1975 cells harboring EGFRT790M mutation at a concentration of 0.118 μmol/L. In contrast to the lead compound rociletinib, 6e slightly reduces the key EGFRT790M-minduced drug resistance. Significantly, inhibitor 6e demonstrates high selectivity (SI = 299.3) for T790M-containing EGFR mutants over wild type EGFR, hinting that it will cause less side effects.  相似文献   

7.
Two series of thiazolidinone derivatives designing for potential EGFR and HER-2 kinase inhibitors have been discovered. Some of them exhibited significant EGFR and HER-2 inhibitory activity. Compound 2-(2-(5-bromo-2-hydroxybenzylidene)hydrazinyl)thiazol-4(5H)-one (12) displayed the most potent inhibitory activity (IC50 = 0.09 μM for EGFR and IC50 = 0.42 μM for HER-2), comparable to the positive control erlotinib. Docking simulation was performed to position compound 12 into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicating that some of the thiazolidinone derivatives own high antiproliferative activity against MCF-7. Compound 12 with potent inhibitory activity in tumor growth inhibition would be a potential anticancer agent.  相似文献   

8.
Two new series of new compounds containing a 6-amino-substituted group or 6-acrylamide-substituted group linked to a 4-anilinoquinazoline nucleus have been discovered as potential EGFR inhibitors. These compounds proved efficient effects on antiproliferative activity and EGFR–TK inhibitory activity. Especially, N6-((5-bromothiophen-2-yl)methyl)-N4-(3-chlorophenyl)quinazoline-4,6-diamine (5e), showed the most potent inhibitory activity (IC50 = 3.11 μM for Hep G2, IC50 = 0.82 μM for A549). The EGFR molecular docking model suggested that the new compound is nicely bound to the region of EGFR, and cell morphology by Hoechst stain experiment suggested that these compounds efficiently induced apoptosis of A549 cells.  相似文献   

9.
New Schiff’s base derivatives 5aj have been synthesized by reaction between 2-phenoxyquinoline-3-carbaldehydes 3aj and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetohydrazide 4 in presence of nickel(II) nitrate as a catalyst in ethanol under reflux in good yield (78–92%). All compounds were tested for anticancer and inhibition of EGFR. Of the compounds studied, majority of the compounds showed effective antiproliferation and inhibition of EGFR and HER-2 activities. Compound 5h showed most effective inhibition (IC50 = 0.12 ± 0.05 μM) by binding in to the active pocket of EGFR receptor with minimum binding energy (ΔGb = −58.3691 kcal/mol). The binding was stabilized by two hydrogen bonds, two π–cation and one π–sigma interactions. Compound 5d showed most effective inhibition (IC50 = 0.37 ± 0.04 μM).  相似文献   

10.
Six 1,3-diphenylpropanes exhibiting inhibitory activities against both the monophenolase and diphenolase actions of tyrosinase were isolated from the methanol (95%) extract of Broussonetia kazinoki. These compounds, 16, were identified as kazinol C (1), D (2), F (3), broussonin C (4), kazinol S (5) and kazinol T (6). The latter two species (5 and 6) emerged to be new 1,3-diphenylpropanes which we fully spectroscopically characterized. The IC50 values of compounds (1, 35) for monophenolase inhibition were determined to range between 0.43 and 17.9 μM. Compounds 1 and 35 also inhibited diphenolase significantly with IC50 values of 22.8, 1.7, 0.57, and 26.9 μM, respectively. All four active tyrosinase inhibitors (1, 35) were competitive inhibitors. Interestigly they all mainfested simple reversible slow-binding inhibition against diphenolase. The most potent inhibitor, compound 4 diplayed the following kinetic parameters k3 = 0.0993 μM?1 min?1, k4 = 0.0048 min-1, and Kiapp = 0.0485 μM.  相似文献   

11.
A group of cyclic imides (110) was designed for evaluation as a selective COX-2 inhibitors and investigated in vivo for their anti-inflammatory activity. Compounds 6a, 6b, 8a, 8b, 9a, 9b, 10a and 10b were proved to be potent COX-2 inhibitors with IC50 range of 0.1–4.0 μM. In vitro COX-1/COX-2 inhibition structure–activity studies identified compound 8a as a highly potent (IC50 = 0.1 μM), and an extremely selective [COX-2 (SI) > 1000] comparable to celecoxib [COX-2 (SI) > 384], COX-2 inhibitor that showed superior anti-inflammatory activity (ED50 = 72.4 mg/kg) relative to diclofenac (ED50 = 114 mg/kg). Molecular modeling was carried out through docking the designed compounds into the COX-2 binding site to predict if these compounds have analogous binding mode to the COX-2 inhibitors. The study showed that the homosulfonamide fragment of 8a inserted deep inside the 2°-pocket of the COX-2 active site, where the SO2NH2 group underwent H-bonding interaction with Gln192(2.95 Å), Phe518(2.82 Å) and Arg513(2.63 and 2.73 Å). Docking study of the synthesized compound 8a into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

12.
Recently approved multi-target inhibitors of receptor tyrosine kinases (RTKs) have significantly improved the clinical treatment of cancers. A series of N,N′-diarylureas incorporated with aromatic heterocycle have been designed, synthesized and evaluated as novel multi-target RTK inhibitors. The preliminary biological evaluation indicated that several compounds exhibited comparable potency with Sorafenib. Among them, compound 6f was identified as the most potent multikinase inhibitor of EGFR, KDR and FGFR1 with IC50 values of 14.83 nM, 21.57 nM, and 28.23 nM, respectively. These compounds expanded the structural diversity of diarylureas as RTK inhibitors. The results demonstrated that compound 6f could be served as novel lead compound for further development of multi-target RTK inhibitors.  相似文献   

13.
Two series of pyrazole derivatives designing for potential EGFR kinase inhibitors have been discovered. Some of them exhibited significant EGFR inhibitory activity. Compound 3-(3,4-dimethylphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (C5) displayed the most potent EGFR inhibitory activity with IC50 of 0.07 μM, which was comparable to the positive control erlotinib. Docking simulation was performed to position compound C5 into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicating that some of the pyrazole derivatives own high antiproliferative activity against MCF-7. Compound C5 showed significant antiproliferative activity against MCF-7 with IC50 of 0.08 μM. Therefore, compound C5 with potent inhibitory activity in tumor growth inhibition would be a potential anticancer agent.  相似文献   

14.
A series of novel cinnamic acid metronidazole ester derivatives have been designed and synthesized, and their biological activities were also evaluated as potential EGFR and HER-2 kinase inhibitors. Compound 3h showed the most potent biological activity (IC50 = 0.62 μM for EGFR and IC50 = 2.15 μM for HER-2). Docking simulation was performed to position compound 3h into the EGFR active site to determine the probable binding model. Antiproliferative assay results demonstrated that some of these compounds possessed good antiproliferative activity against MCF-7. Compound 3h with potent inhibitory activity in tumor growth inhibition may be a potential anticancer agent.  相似文献   

15.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

16.
A series of 5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazole derivatives was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and for their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. As a representative compound, 16i was a potent and selective ALK5 inhibitor, exhibiting a good enzyme inhibitory activity (IC50 = 5.5 nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC50 = 36 nM). Furthermore, the topical application of 3% 16i lotion significantly inhibited Smad2 phosphorylation in Mouse skin (90% inhibition compared with vehicle-treated animals).  相似文献   

17.
A type of novel α,β-unsaturated cyclohexanone analogous, which designed based on the curcumin core structure, have been discovered as potential EGFR inhibitors. These compounds exhibit potent antiproliferative activity in two human tumor cell lines (Hep G2 and B16-F10). Among them, compounds I3 and I12 displayed the most potent EGFR inhibitory activity (IC50 = 0.43 μM and 1.54 μM, respectively). Molecular docking of I12 into EGFR TK active site was also performed. This inhibitor nicely fitting the active site might well explain its excellent inhibitory activity.  相似文献   

18.
Aiming to improve upon previously disclosed Factor Xa inhibitors, a series of 4,4-disubstituted pyrrolidine-1,2-dicarboxamides were explored with the intent of increasing the projected human half-life versus 5 (projected human t1/2 = 6 h). A stereospecific route to compounds containing a 4-aryl-4-hydroxypyrrolidine scaffold was developed, resulting in several compounds that demonstrated an increase in the half-life as well as an increase in the in vitro potency compared to 5. Reported herein is the discovery of 26, containing a (2R,4S)-4-hydroxy-4-(2,4-difluorophenyl)-pyrrolidine scaffold, which is a selective, orally bioavailable, efficacious Factor Xa inhibitor that appears suitable for a once-daily dosing (projected human t1/2 = 23 h).  相似文献   

19.
36 new compounds with the typical skeleton of 4-anilino-5-vinyl/ethynyl pyrimidine, 4-anilino-3-cyano-5-vinyl/ethynyl/phenyl pyridine, and m-amino-N-phenylbenzamide, are designed, synthesized and selectively tested on EGFR, ErbB-2 kinases, and A-549, HL60 cells growth inhibition. Results from the bioactivity and chemical structures yield preliminary structure–activity relationships (SARs). The most potent 5-ethynylpyrimidine derivative 20a has an IC50 value of 45 nM to EGFR kinase. Several compounds of other series also show IC50 values <1 μM for EGFR and <5 μM for A-549 and HL60 cells growth inhibition.  相似文献   

20.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号