首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced and carboxymethylated-κ-casein (RCM-κ-CN) is a milk-derived amyloidogenic protein that readily undergoes nucleation-dependent aggregation and amyloid fibril formation via a similar pathway to disease-specific amyloidogenic peptides like amyloid beta (Aβ), which is associated with Alzheimer’s disease. In this study, a series of flavonoids, many known to be inhibitors of Aβ fibril formation, were screened for their ability to inhibit RCM-κ-CN fibrilisation, and the results were compared with literature data on Aβ inhibition. Flavonoids that had a high degree of hydroxylation and molecular planarity gave good inhibition of RCM-κ-CN fibril formation. IC50 values were between 10- and 200-fold higher with RCM-κ-CN than literature results for Aβ fibril inhibition, however, with few exceptions, they showed a similar trend in potency. The convenience and reproducibility of the RCM-κ-CN assay make it an economic alternative first screen for Aβ inhibitory activity, especially for use with large compound libraries.  相似文献   

2.
Amyloid fibril formation is associated with diseases such as Alzheimer’s, Parkinson’s, and prion diseases. Inhibition of amyloid fibril formation by molecular chaperone proteins, such as the small heat-shock protein αB-crystallin, may play a protective role in preventing the toxicity associated with this form of protein misfolding. Reduced and carboxymethylated κ-casein (RCMκ-CN), a protein derived from milk, readily and reproducibly forms fibrils at physiological temperature and pH. We investigated the toxicity of fibril formation by RCMκ-CN using neuronal model PC12 cells and determined whether the inhibition of fibril formation altered its cell toxicity. To resolve ambiguities in the literature, we also investigated whether fibril formation by amyloid-β1–40 (Aβ1–40), the peptide associated with Alzheimer’s disease, was inhibited by αB-crystallin and if this affected the toxicity of Aβ. To this end, either RCMκ-CN or Aβ1–40 was incubated at neutral pH to induce fibril formation before treating PC12 cells and assessing cell viability. Incubated (fibrillar) RCMκ-CN was more toxic to PC12 cells than native RCMκ-CN with the highest level of toxicity being associated with mature fibrils and protofibrils. Furthermore, the toxicity of RCMκ-CN was attenuated when its fibril formation was inhibited, either through the chaperone action of αB-crystallin or when it interacted with its natural binding partners in milk, αS- and β-casein. Likewise, incubating Aβ1–40 with αB-crystallin inhibited both Aβ1–40 fibril formation and the associated cell toxicity. Importantly, by inhibiting fibril formation, αB-crystallin prevents the cell toxicity associated with protein misfolding.  相似文献   

3.
《朊病毒》2013,7(2):89-93
Deposits of amyloid fibrils characterize a diverse group of human diseases that includes Alzheimer’s disease, Creutzfeldt-Jakob disease and type II diabetes. Amyloid fibrils formed from different polypeptides contain a common cross-β spine. Nevertheless, amyloid fibrils formed from the same polypeptide can occur in a range of structurally different morphologies. The heterogeneity of amyloid fibrils reflects different types of polymorphism: (i) variations in the protofilament number, (ii) variations in the protofilament arrangement and (iii) different polypeptide conformations. Amyloid fibril polymorphism implies that fibril formation can lead, for the same polypeptide sequence, to many different patterns of inter- or intra-residue interactions. This property differs significantly from native, monomeric protein folding reactions that produce, for one protein sequence, only one ordered conformation and only one set of inter-residue interactions.  相似文献   

4.
Amyloid fibrillation is associated with several human maladies, such as Alzheimer’s, Parkinson’s, Huntington’s diseases, prions, amyotrophic lateral sclerosis, and type 2 diabetes diseases. Gaining insights into the mechanism of amyloid fibril formation and exploring novel approaches to fibrillation inhibition are crucial for preventing amyloid diseases. Here, we hypothesized that ligands capable of stabilizing the native state of query proteins might prevent protein unfolding, which, in turn, may reduce the propensity of proteins to form amyloid fibrils. We demonstrated the efficient inhibition of amyloid formation of the human serum albumin (HSA) (up to 85%) and human insulin (up to 80%) by a nonsteroidal anti-inflammatory drug, ibuprofen (IBFN). IBFN significantly increases the conformational stability of both HSA and insulin, as confirmed by differential scanning calorimetry (DSC). Moreover, increasing concentration of IBFN boosts its amyloid inhibitory propensity in a linear fashion by influencing the nucleation phase as assayed by thioflavin T fluorescence, transmission electron microscopy, and dynamic light scattering. Furthermore, circular dichroism analysis supported the DSC results, showing that IBFN binds to the native state of proteins and almost completely prevents their tendency to lose secondary and tertiary structures. Cell toxicity assay confirms that species formed in the presence of IBFN are less toxic to neuronal cells (SH-SY5Y). These results demonstrate the feasibility of using a small molecule to stabilize the native state of proteins, thereby preventing the amyloidogenic conformational changes, which appear to be the common link in several human amyloid diseases.  相似文献   

5.
Alzheimer’s disease (AD) is characterized by progressive cognitive impairment and the formation of senile plaques. Silymarin, an extract of milk thistle, has long been used as a medicinal herb for liver diseases. Here we report marked suppression of amyloid β-protein (Aβ) fibril formation and neurotoxicity in PC12 cells after silymarin treatment in vitro. In vivo studies had indicated a significant reduction in brain Aβ deposition and improvement in behavioral abnormalities in amyloid precursor protein (APP) transgenic mice that had been preventively treated with a powdered diet containing 0.1% silymarin for 6 months. The silymarin-treated APP mice also showed less anxiety than the vehicle-treated APP mice. These behavioral changes were associated with a decline in Aβ oligomer production induced by silymarin intake. These results suggest that silymarin is a promising agent for the prevention of AD.  相似文献   

6.
The assembly of amyloid β-protein to amyloid fibrils is a critical event in Alzheimer's disease. Evidence exists that endocytic pathway abnormalities, including the enlargement of early endosomes, precede the extraneuronal amyloid fibril deposition in the brain. We determined whether endocytic dysfunction potently promotes the assembly of amyloid β-protein on the surface of cultured cells. Blocking the early endocytic pathway by clathrin suppression, inactivation of small GTPases, removal of membrane cholesterol, and Rab5 knockdown did not result in amyloid fibril formation on the cell surface from exogenously added soluble amyloid β-protein. In contrast, blocking the late endocytic pathway by Rab7 suppression markedly induced the amyloid fibril formation in addition to the enlargement of early endosomes. Notably, a monoclonal antibody specific to GM1-ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid, completely blocks the amyloid fibril formation. Our results suggest that late but not early endocytic dysfunction contributes to the amyloid fibril formation by facilitating the generation of amyloid seed in the Alzheimer's brain.  相似文献   

7.
S-carboxymethylated (SCM) κ-casein forms in vitro fibrils that display several characteristics of amyloid fibrils, although the protein is unrelated to amyloid diseases. In order to get insight into the processes that prevent the formation of amyloid fibrils made of κ-caseins in milk, we have characterized in detail the reaction and the roles of its possible effectors: glycosylation and other caseins. Given that native κ-casein occurs as a heterogeneous mixture of carbohydrate-free and carbohydrate-containing chains, kinetics of fibril formation were performed on purified glycosylated and unglycosylated SCM κ-caseins using the fluorescent dye thioflavin T in conjunction with transmission electron microscopy and Fourier transform infrared spectroscopy for morphological and structural analyses. Both unglycosylated and glycosylated SCM κ-caseins have the ability to fibrillate. Kinetic data indicate that the fibril formation rate increases with SCM κ-casein concentration but reaches a plateau at high concentrations, for both the unglycosylated and glycosylated forms. Therefore, a conformational rearrangement is the rate-limiting step in fibril growth of SCM κ-casein. Transmission electron microscopy images indicate the presence of 10- to 12-nm spherical particles prior to the appearance of amyloid structure. Fourier transform infrared spectroscopy spectra reveal a conformational change within these micellar aggregates during the fibrillation. Fibrils are helical ribbons with a pitch of about 120-130 nm and a width of 10-12 nm. Taken together, these findings suggest a model of aggregation during which the SCM κ-casein monomer is in rapid equilibrium with a micellar aggregate that subsequently undergoes a conformational rearrangement into a more organized species. These micelles assemble and this leads to the growing of amyloid fibrils. Addition of αs1-and β-caseins decreases the growth rate of fibrils. Their main effect was on the elongation rate, which became close to that of the limiting conformation change, leading to the appearance of a lag phase at the beginning of the kinetics.  相似文献   

8.
The polyphenol (−)-epigallocatechin-3-gallate (EGCG) has recently attracted much research interest in the field of protein-misfolding diseases because of its potent anti-amyloid activity against amyloid-β, α-synuclein and huntingtin, the amyloid-fibril-forming proteins involved in Alzheimer's, Parkinson's and Huntington's diseases, respectively. EGCG redirects the aggregation of these polypeptides to a disordered off-folding pathway that results in the formation of non-toxic amorphous aggregates. Whether this anti-fibril activity is specific to these disease-related target proteins or is more generic remains to be established. In addition, the mechanism by which EGCG exerts its effects, as with all anti-amyloidogenic polyphenols, remains unclear. To address these aspects, we have investigated the ability of EGCG to inhibit amyloidogenesis of the generic model fibril-forming protein RCMκ-CN (reduced and carboxymethylated κ-casein) and thereby protect pheochromocytoma-12 cells from RCMκ-CN amyloid-induced toxicity. We found that EGCG potently inhibits in vitro fibril formation by RCMκ-CN [the IC50 for 50 μM RCMκ-CN is 13 ± 1 μM]. Biophysical studies reveal that EGCG prevents RCMκ-CN fibril formation by stabilising RCMκ-CN in its native-like state rather than by redirecting its aggregation to the disordered, amorphous aggregation pathway. Thus, while it appears that EGCG is a generic inhibitor of amyloid-fibril formation, the mechanism by which it achieves this inhibition is specific to the target fibril-forming polypeptide. It is proposed that EGCG is directed to the amyloidogenic sheet-turn-sheet motif of monomeric RCMκ-CN with high affinity by strong non-specific hydrophobic associations. Additional non-covalent π-π stacking interactions between the polyphenolic and aromatic residues common to the amyloidogenic sequence are also implicated.  相似文献   

9.
It is well established that amyloid proteins play a primary role in neurodegenerative diseases. Alzheimer’s, Parkinson’s, type II diabetes, and Creutzfeldt-Jakob’s diseases are part of a wider family encompassing more than 50 human pathologies related to aggregation of proteins. Although this field of research is thoroughly investigated, several aspects of fibrillization remain misunderstood, which in turn slows down, or even impedes, advances in treating and curing amyloidoses. To solve this problem, several research groups have chosen to focus on short fragments of amyloid proteins, sequences that have been found to be of great importance for the amyloid formation process. Studying short peptides allows bypassing the complexity of working with full-length proteins and may provide important information relative to critical segments of amyloid proteins. To this end, efficient biophysical tools are required. In this review, we focus on two essential types of spectroscopic techniques, i.e., vibrational spectroscopy and its derivatives (conventional Raman scattering, deep-UV resonance Raman (DUVRR), Raman optical activity (ROA), surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), infrared (IR) absorption spectroscopy, vibrational circular dichroism (VCD)) and solid-state nuclear magnetic resonance (ssNMR). These techniques revealed powerful to provide a better atomic and molecular comprehension of the amyloidogenic process and fibril structure. This review aims at underlining the information that these techniques can provide and at highlighting their strengths and weaknesses when studying amyloid fragments. Meaningful examples from the literature are provided for each technique, and their complementarity is stressed for the kinetic and structural characterization of amyloid fibril formation.  相似文献   

10.
Amyloid consists of cross-β-sheet fibrils and is associated with about 25 human diseases, including several neurodegenerative diseases, systemic and localized amyloidoses and type II diabetes mellitus. Amyloid-forming proteins differ in structures and sequences, and it is to a large extent unknown what makes them convert from their native conformations into amyloid. In this review, current understanding of amino acid sequence determinants and the effects of molecular chaperones on amyloid formation are discussed. Studies of the nonpolar, transmembrane surfactant protein C (SP-C) have revealed amino acid sequence features that determine its amyloid fibril formation, features that are also found in the amyloid β-peptide in Alzheimer’s disease and the prion protein. Moreover, a proprotein chaperone domain (CTCBrichos) that prevents amyloid-like aggregation during proSP-C biosynthesis can prevent fibril formation also of other amyloidogenic proteins.  相似文献   

11.
Protein misfolding causes serious biological malfunction, resulting in diseases including Alzheimer’s disease, Parkinson’s disease and cataract. Molecules which inhibit protein misfolding are a promising avenue to explore as therapeutics for the treatment of these diseases. In the present study, thioflavin T fluorescence and transmission electron microscopy experiments demonstrated that hemin prevents amyloid fibril formation of kappa-casein, amyloid beta peptide and α-synuclein by blocking β-sheet structure assembly which is essential in fibril aggregation. Further, inhibition of fibril formation by hemin significantly reduces the cytotoxicity caused by fibrillar amyloid beta peptide in vitro. Interestingly, hemin degrades partially formed amyloid fibrils and prevents further aggregation to mature fibrils. Light scattering assay results revealed that hemin also prevents protein amorphous aggregation of alcohol dehydrogenase, catalase and γs-crystallin. In summary, hemin is a potent agent which generically stabilises proteins against aggregation, and has potential as a key molecule for the development of therapeutics for protein misfolding diseases.  相似文献   

12.
An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington''s disease, in vitro. Huntington''s disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer''s and Parkinson''s disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation.  相似文献   

13.
Aggregations of proteins are in many cases associated with neurodegenerative diseases such as Alzheimer’s (AD). Small compounds capable of inhibiting protein aggregation are expected to be useful for not only in the treatment of disease but also in probing the structures of aggregated proteins. In previous studies using phage display, we found that arginine-rich short peptides consisting of four or seven amino acids bound to soluble 42-residue amyloid β (Aβ42) and inhibited globulomer (37/48 kDa oligomer) formation. In the present study, we searched for arginine-containing small molecules using the SciFinder searching service and tested their inhibitory activities against Aβ42 aggregation, by sodium dodecyl sulfate (SDS)-PAGE and thioflavine T binding assay. Commercially available Arg-Arg-7-amino-4-trifluoromethylcoumarin was found to exhibit remarkable inhibitory activities to the formation of the globulomer and the fibril of Aβ42. This chimera-type tri-peptide is expected to serve as the seed molecule of a potent inhibitor of the Aβ aggregation process.  相似文献   

14.
1-40 and Aβ1-42 have been shown to be the main components of the amyloid plaques found in the extracellular environment of neurons in Alzheimer’s disease. β-Casein, a milk protein, has been shown to display a remarkable chaperone ability in preventing the aggregation of proteins. In this study, the ability of β-casein to suppress the amyloid fibril formation of Aβ1-42 has been examined through in vitro studies and molecular docking simulation. The results demonstrate the inhibitory effect of β-casein on fibril formation in Aβ1-42, in a concentration dependent manner, suggesting that the chaperone binds to the Aβ1-42 and prevents amyloid fibril formation. Molecular docking results show that the inhibitory effect of the β-casein may be due to binding of the chaperone with the aggregation-prone region of the Aβ1-42 mainly via hydrophobic interactions. β-Casein probably binds to the CHC and C-terminal domain of the Aβ1-42, and stabilizes proteins by inhibiting the conversion of monomeric Aβ1-42 into fibrils. Thus our data suggests that the hydrophobic interactions between β-casein and Aβ1-42 play an important role in the burial of the hydrophobic part of the Aβ1-42. This means that β-casein maybe considered for use in preventing amyloid fibril formation in degenerative diseases such as Alzheimer.  相似文献   

15.
Ecroyd H  Carver JA 《IUBMB life》2008,60(12):769-774
This mini-review focuses on the processes and consequences of protein folding and misfolding. The latter process often leads to protein aggregation and precipitation with the aggregates adopting either highly ordered (amyloid fibril) or disordered (amorphous) forms. In particular, the amyloid fibril is discussed because this form has gained considerable notoriety due to its close links to a variety of debilitating diseases including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases, and type-II diabetes. In each of these diseases a different protein forms fibrils, yet the fibrils formed have a very similar structure. The mechanism by which fibrils form, fibril structure, and the cytotoxicity associated with fibril formation are discussed. The generic nature of amyloid fibril structure suggests that a common target may be accessible to treat amyloid fibril-associated diseases. As such, the ability of some molecules, for example, the small heat-shock family of molecular chaperone proteins, to inhibit fibril formation is of interest due to their therapeutic potential.  相似文献   

16.
Deposits of amyloid fibrils characterize a diverse group of human diseases that includes Alzheimer disease, Creutzfeldt-Jakob disease and type II diabetes. Amyloid fibrils formed from different polypeptides contain a common cross-β spine. Nevertheless, amyloid fibrils formed from the same polypeptide can occur in a range of structurally different morphologies. The heterogeneity of amyloid fibrils reflects different types of polymorphism: (1) variations in the protofilament number, (2) variations in the protofilament arrangement and (3) different polypeptide conformations. Amyloid fibril polymorphism implies that fibril formation can lead, for the same polypeptide sequence, to many different patterns of inter- or intra-residue interactions. This property differs significantly from native, monomeric protein folding reactions that produce, for one protein sequence, only one ordered conformation and only one set of inter-residue interactions.Key words: Alzheimer disease, aggregation, neurodegeneration, prion, protein folding  相似文献   

17.
蛋白质和多肽发生错误折叠形成不可溶的淀粉样纤维的过程,与阿尔茨海默病、帕金森病等多种神经退行性疾病密切相关。这些疾病可导致认知能力下降以及运动缺陷等症状。虽然已有多种相关治疗方案处于临床试验中,但目前仍无明确有效的方法可治愈或长期减缓疾病的进展。探寻和研究抑制淀粉样聚集、识别并促进毒性聚集物清除的抑制剂分子是药物研发的重要策略之一。在不同类型的抑制剂中,多肽类抑制剂因具有高特异性、低毒性、多样性,以及修饰后的抗水解稳定性和血脑屏障通透性,有望成为候选药物分子。本文总结了针对阿尔茨海默病相关的Aβ和Tau蛋白以及帕金森病相关的α-synuclein蛋白淀粉样纤维化的多肽抑制剂研究进展。基于淀粉样纤维化核心序列及纤维核心结构进行合理设计,或通过随机筛选,均可获得多肽抑制剂。这些天然和非天然的多肽分子大多具有抑制淀粉样纤维化、解聚成熟纤维和降低细胞毒性的作用,其中一些多肽在退行性疾病动物模型实验中,显示出降低脑损伤和缓解认知及运动障碍的效果。这些研究揭示了多肽作为蛋白质错误折叠和聚集相关疾病药物的特点,为研发一类新的有效药物奠定了基础。  相似文献   

18.
A subset of Alzheimer disease cases is caused by autosomal dominant mutations in genes encoding the amyloid beta-protein precursor or presenilins. Whereas some amyloid beta-protein precursor mutations alter its metabolism through effects on Abeta production, the pathogenic effects of those that alter amino acid residues within the Abeta sequence are not fully understood. Here we examined the biophysical effects of two recently described intra-Abeta mutations linked to early-onset familial Alzheimer disease, the D7N Tottori-Japanese and H6R English mutations. Although these mutations do not affect Abeta production, synthetic Abeta(1-42) peptides carrying D7N or H6R substitutions show enhanced fibril formation. In vitro analysis using Abeta(1-40)-based mutant peptides reveal that D7N or H6R mutations do not accelerate the nucleation phase but selectively promote the elongation phase of amyloid fibril formation. Notably, the levels of protofibrils generated from D7N or H6R Abeta were markedly inhibited despite enhanced fibril formation. These N-terminal Abeta mutations may accelerate amyloid fibril formation by a unique mechanism causing structural changes of Abeta peptides, specifically promoting the elongation process of amyloid fibrils without increasing metastable intermediates.  相似文献   

19.
《Biophysical journal》2023,122(2):269-278
A significant feature of Alzheimer’s disease is the formation of amyloid deposits in the brain consisting mainly of misfolded derivatives of proteolytic cleavage products of the amyloid precursor protein amyloid-β (Aβ) peptide. While high-resolution structures already exist for both the monomer and the amyloid fibril of the Aβ peptide, the mechanism of amyloid formation itself still defies precise characterization. In this study, low and high molecular weight oligomers (LMWOs and HMWOs) were identified by sedimentation velocity analysis, and for the first time, the temporal evolution of oligomer size distributions was correlated with the kinetics of amyloid formation as determined by thioflavin T-binding studies. LMWOs of subnucleus size contain fewer than seven monomer units and exist alongside a heterogeneous group of HMWOs with 20–160 monomer units that represent potential centers of nucleus formation due to high local monomer concentrations. These HMWOs already have slightly increased β-strand content and appear structurally similar regardless of size, as shown by examination with a range of fluorescent dyes. Once fibril nuclei are formed, the monomer concentration begins to decrease, followed by a decrease in oligomer concentration, starting with LMWOs, which are the least stable species. The observed behavior classifies the two LMWOs as off pathway. In contrast, we consider HMWOs to be on-pathway, prefibrillar intermediates, representing structures in which nucleated conformational conversion is facilitated by high local concentrations. Aβ40 and Aβ42 M35ox take much longer to form nuclei and enter the growth phase than Aβ42 under identical reaction conditions, presumably because both the size and the concentration of HMWOs formed are much smaller.  相似文献   

20.
Amyloid fibril formation is associated with an array of degenerative diseases. While no real cure is currently available, evidence suggests that suppression of amyloid fibrillogenesis is an effective strategy toward combating these diseases. Brilliant blue R (BBR), a disulfonated triphenylmethane compound, has been shown to interact with fibril-forming proteins but exert different effects on amyloid fibrillogenesis. These inconsistent findings prompted us to further evaluate BBR’s effect on the inhibition/suppresion of protein fibrillogenesis. Using 129-residue hen lysozyme, which shares high sequence homology to human lysozyme associated with hereditary non-neuropathic systemic amyloidosis, as a model, this study is aimed at thoroughly examining the influence of BBR on the in vitro protein fibrillogenesis. We first showed that BBR dose-dependently attenuated lysozyme fibril formation probably by affecting the fibril growth rate, with the value of IC50 determined to be ~4.39 μM. Next, we employed tryptophan fluorescence quenching method to determine the binding constant and number of binding site(s) associated with BBR-lysozyme binding. In addition, we further conducted molecular docking studies to gain a better understanding of the possible binding site(s) and interaction(s) between lysozyme and BBR. We believe some of the information and/or knowledge concerning the structure–function relationship associated with BBR’s suppressing activity obtained here can be applied for the future work in the subject matter related with the therapeutic strategies for amyloid diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号