首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
3.
BackgroundThe mosquito Aedes aegypti is a major vector for the arthropod-borne viruses (arboviruses) chikungunya, dengue, yellow fever and Zika viruses. Vector immune responses pose a major barrier to arboviral transmission, and transgenic insects with altered immunity have been proposed as tools for reducing the global public health impact of arboviral diseases. However, a better understanding of virus-immune interactions is needed to progress the development of such transgenic insects. Although the NF-κB-regulated Toll and ‘immunodeficiency’ (Imd) pathways are increasingly thought to be antiviral, relevant pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) remain poorly characterised in A. aegypti.Methodology/Principle findingsWe developed novel RT-qPCR and luciferase reporter assays to measure induction of the Toll and Imd pathways in the commonly used A. aegypti-derived Aag2 cell line. We thus determined that the Toll pathway is not inducible by exogenous stimulation with bacterial, viral or fungal stimuli in Aag2 cells under our experimental conditions. We used our Imd pathway-specific assays to demonstrate that the viral dsRNA mimic poly(I:C) is sensed by the Imd pathway, likely through intracellular and extracellular PRRs. The Imd pathway was also induced during infection with the model insect-specific virus cricket paralysis virus (CrPV).Conclusions/SignificanceOur demonstration that a general PAMP shared by many arboviruses is sensed by the Imd pathway paves the way for future studies to determine how viral RNA is sensed by mosquito PRRs at a molecular level. Our data also suggest that studies measuring inducible immune pathway activation through antimicrobial peptide (AMP) expression in Aag2 cells should be interpreted cautiously given that the Toll pathway is not responsive under all experimental conditions. With no antiviral therapies and few effective vaccines available to treat arboviral diseases, our findings provide new insights relevant to the development of transgenic mosquitoes as a means of reducing arbovirus transmission.  相似文献   

4.
5.
Insects synthesize a battery of antimicrobial peptides (AMPs) and expression of AMP genes is regulated by the Toll and Imd (immune deficiency) pathways in Drosophila melanogaster. Drosophila Toll pathway is activated after Spätzle (Spz) is cleaved by Spätzle processing enzyme (SPE) to release the active C-terminal C106 domain (DmSpz-C106), which then binds to the Toll receptor to initiate the signaling pathway and regulate expression of AMP genes such as drosomycin. Toll and Spz genes have been identified in other insects, but interaction between Toll and Spz and direct evidence for a Toll-Spz pathway in other insect species have not been demonstrated. Our aim is to investigate a Toll-Spz pathway in Manduca sexta, and compare M. sexta and D. melanogaster Toll-Spz pathways. Co-immunoprecipitation (Co-IP) assays showed that MsTollecto (the ecto-domain of M. sexta Toll) could interact with MsSpz-C108 (the active C-terminal C108 domain of M. sexta Spz) but not with full-length MsSpz, and DmTollecto could interact with DmSpz-C106 but not DmSpz, suggesting that Toll receptor only binds to the active C-terminal domain of Spz. Co-expression of MsToll-MsSpz-C108, but not MsToll-MsSpz, could up-regulate expression of drosomycin gene in Drosophila S2 cells, indicating that MsToll-MsSpz-C108 complex can activate the Toll signaling pathway. In vivo assays showed that activation of AMP genes, including cecropin, attacin, moricin and lebocin, in M. sexta larvae by purified recombinant MsSpz-C108 could be blocked by pre-injection of antibody to MsToll, further confirming a Toll-Spz pathway in M. sexta, a lepidopteran insect.  相似文献   

6.
7.
8.

Background

Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection.

Results

We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll pathway mutants compared to wildtype hosts highlights the key role of the Toll pathway in D. melanogaster sexual dimorphism in resistance to infection.

Conclusion

Altogether, our data demonstrate that Toll pathway activity differs between male and female D. melanogaster in response to bacterial infection, thus identifying innate immune signaling as a determinant of sexual immune dimorphism.
  相似文献   

9.
The Drosophila humoral innate immune response fights infection by producing antimicrobial peptides (AMPs) through the microbe-specific activation of the Toll or the Imd signaling pathway. Upon systemic infection, the production of AMPs is both positively and negatively regulated to reach a balanced immune response required for survival. Here, we report the function of the dRYBP (drosophila Ring and YY1 Binding Protein) protein, which contains a ubiquitin-binding domain, in the Imd pathway. We have found that dRYBP contributes to the negative regulation of AMP production: upon systemic infection with Gram-negative bacteria, Diptericin expression is up-regulated in the absence of dRYBP and down-regulated in the presence of high levels of dRYBP. Epistatic analyses using gain and loss of function alleles of imd, Relish, or skpA and dRYBP suggest that dRYBP functions upstream or together with SKPA, a member of the SCF-E3-ubiquitin ligase complex, to repress the Imd signaling cascade. We propose that the role of dRYBP in the regulation of the Imd signaling pathway is to function as a ubiquitin adaptor protein together with SKPA to promote SCF-dependent proteasomal degradation of Relish. Beyond the identification of dRYBP as a novel component of Imd pathway regulation, our results also suggest that the evolutionarily conserved RYBP protein may be involved in the human innate immune response.  相似文献   

10.
In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects.  相似文献   

11.
《Journal of Asia》2022,25(4):102003
Peptidoglycan recognition proteins (PGRPs) discriminate and bind peptidoglycans by acting as pattern recognition receptors (PRRs) in insects, and function pivotal roles in innate immune response. In the present study, we cloned a full-length PGRP gene designed as OfPGRP8 from the Asian corn borer, Ostrinia furnacalis (Guenée). Its mRNA exhibited the highest abundance in fat body, and its expression level upregulated dramatically after bacterial challenges. Purified recombinant OfPGRP8 exhibited intensive binding capacity to peptidoglycans from Staphylococcus aureus and Micrococcus luteus. Additionally, recombinant OfPGRP8 could inhibit the growth of S. aureus, M. luteus. However, recombinant OfPGRP8 could not cause agglutination of S. aureus, M. luteus or Escherichia coli. Furthermore, we also demonstrated that OfPGRP8 may be involved in modulating the signaling pathway of antimicrobial peptides (AMPs) synthesis. In sum, our results provided evidence that OfPGRP8 discriminates peptidoglycans from microbes and acts as a PRR to initiate downstream immune signaling pathways.  相似文献   

12.
13.
14.
15.
Innate immune recognition of microbes is a complex process that can be influenced by both the host and the microbe. Drosophila uses two distinct immune signaling pathways, the Toll and immune deficiency (Imd) pathways, to respond to different classes of microbes. The Toll pathway is predominantly activated by Gram-positive bacteria and fungi, while the Imd pathway is primarily activated by Gram-negative bacteria. Recent work has suggested that this differential activation is achieved through peptidoglycan recognition protein (PGRP)-mediated recognition of specific forms of peptidoglycan (PG). In this study, we have further analyzed the specific PG molecular requirements for Imd activation through the pattern recognition receptor PGRP-LC in both cultured cell line and in flies. We found that two signatures of Gram-negative PG, the presence of diaminopimelic acid in the peptide bridge and a 1,6-anhydro form of N-acetylmuramic acid in the glycan chain, allow discrimination between Gram-negative and Gram-positive bacteria. Our results also point to a role for PG oligomerization in Imd activation, and we demonstrate that elements of both the sugar backbone and the peptide bridge of PG are required for optimum recognition. Altogether, these results indicate multiple requirements for efficient PG-mediated activation of the Imd pathway and demonstrate that PG is a complex immune elicitor.  相似文献   

16.
Upon microbial invasion the innate immune system of Drosophila melanogaster mounts a response that comes in two distinct but complimentary forms, humoral and cellular. A screen to find genes capable of conferring resistance to the Gram-positive Staphylococcus aureus upon ectopic expression in immune response tissues uncovered imd gene. This resistance was not dependent on cellular defenses but rather likely a result of upregulation of the humoral response through increased expression of antimicrobial peptides, including a Toll pathway reporter gene drosomycin. Taken together it appears that Imd pathway is capable of playing a role in resistance to the Gram-positive S. aureus, counter to notions of traditional roles of the Imd pathway thought largely to responsible for resistance to Gram-negative bacteria.  相似文献   

17.
18.
Wolbachia blocks dengue virus replication in Drosophila melanogaster as well as in Aedes aegypti. Using the Drosophila model and mutations in the Toll and Imd pathways, we showed that neither pathway is required for expression of the dengue virus-blocking phenotype in the Drosophila host. This provides additional evidence that the mechanistic basis of Wolbachia-mediated dengue virus blocking in insects is more complex than simple priming of the host insect innate immune system.  相似文献   

19.
Cricket Paralysis virus (CrPV) is a member of the Dicistroviridae family of RNA viruses, which infect a broad range of insect hosts, including the fruit fly Drosophila melanogaster. Drosophila has emerged as an effective system for studying innate immunity because of its powerful genetic techniques and the high degree of gene and pathway conservation. Intra-abdominal injection of CrPV into adult flies causes a lethal infection that provides a robust assay for the identification of mutants with altered sensitivity to viral infection. To gain insight into the interactions between viruses and the innate immune system, we injected wild type flies with CrPV and observed that antimicrobial peptides (AMPs) were not induced and hemocytes were depleted in the course of infection. To investigate the contribution of conserved immune signaling pathways to antiviral innate immune responses, CrPV was injected into isogenic mutants of the Immune Deficiency (Imd) pathway, which resembles the mammalian Tumor Necrosis Factor Receptor (TNFR) pathway. Loss-of-function mutations in several Imd pathway genes displayed increased sensitivity to CrPV infection and higher CrPV loads. Our data show that antiviral innate immune responses in flies infected with CrPV depend upon hemocytes and signaling through the Imd pathway.  相似文献   

20.
Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号