首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A replica‐exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein–protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1–2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924–937. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Accommodating backbone flexibility continues to be the most difficult challenge in computational docking of protein-protein complexes. Towards that end, we simulate four distinct biophysical models of protein binding in RosettaDock, a multiscale Monte-Carlo-based algorithm that uses a quasi-kinetic search process to emulate the diffusional encounter of two proteins and to identify low-energy complexes. The four binding models are as follows: (1) key-lock (KL) model, using rigid-backbone docking; (2) conformer selection (CS) model, using a novel ensemble docking algorithm; (3) induced fit (IF) model, using energy-gradient-based backbone minimization; and (4) combined conformer selection/induced fit (CS/IF) model. Backbone flexibility was limited to the smaller partner of the complex, structural ensembles were generated using Rosetta refinement methods, and docking consisted of local perturbations around the complexed conformation using unbound component crystal structures for a set of 21 target complexes. The lowest-energy structure contained > 30% of the native residue-residue contacts for 9, 13, 13, and 14 targets for KL, CS, IF, and CS/IF docking, respectively. When applied to 15 targets using nuclear magnetic resonance ensembles of the smaller protein, the lowest-energy structure recovered at least 30% native residue contacts in 3, 8, 4, and 8 targets for KL, CS, IF, and CS/IF docking, respectively. CS/IF docking of the nuclear magnetic resonance ensemble performed equally well or better than KL docking with the unbound crystal structure in 10 of 15 cases. The marked success of CS and CS/IF docking shows that ensemble docking can be a versatile and effective method for accommodating conformational plasticity in docking and serves as a demonstration for the CS theory—that binding-competent conformers exist in the unbound ensemble and can be selected based on their favorable binding energies.  相似文献   

3.
Noy E  Tabakman T  Goldblum A 《Proteins》2007,68(3):702-711
We investigate the extent to which ensembles of flexible fragments (FF), generated by our loop conformational search method, include conformations that are near experimental and reflect conformational changes that these FFs undergo when binary protein-protein complexes are formed. Twenty-eight FFs, which are located in protein-protein interfaces and have different conformations in the bound structure (BS) and unbound structure (UbS) were extracted. The conformational space of these fragments in the BS and UbS was explored with our method which is based on the iterative stochastic elimination (ISE) algorithm. Conformational search of BSs generated bound ensembles and conformational search of UbSs produced unbound ensembles. ISE samples conformations near experimental (less than 1.05 A root mean square deviation, RMSD) for 51 out of the 56 examined fragments in the bound and unbound ensembles. In 14 out of the 28 unbound fragments, it also samples conformations within 1.05 A from the BS in the unbound ensemble. Sampling the bound conformation in the unbound ensemble demonstrates the potential biological relevance of the predicted ensemble. The 10 lowest energy conformations are the best choice for docking experiments, compared with any other 10 conformations of the ensembles. We conclude that generating conformational ensembles for FFs with ISE is relevant to FF conformations in the UbS and BS. Forming ensembles of the isolated proteins with our method prior to docking represents more comprehensively their inherent flexibility and is expected to improve docking experiments compared with results obtained by docking only UbSs.  相似文献   

4.
The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side‐chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformations were docked into both the complexed (bound) and unbound conformations of the cognate receptors, and their energies were evaluated using an atomistic potential function. The following questions were considered: (1) does the ensemble of precalculated ligand conformations contain a structure similar to the bound form of the ligand? (2) Can the large number of conformations that are calculated be efficiently docked into the receptors? (3) Can near‐native complexes be distinguished from non‐native complexes? Results from seven test systems suggest that the precalculated ensembles do include side‐chain conformations similar to those adopted in the experimental complexes. By assuming additivity among the side chains, the ensemble can be docked in less than 12 h on a desktop computer. These multiconformer dockings produce near‐native complexes and also non‐native complexes. When docked against the bound conformations of the receptors, the near‐native complexes of the unbound ligand were always distinguishable from the non‐native complexes. When docked against the unbound conformations of the receptors, the near‐native dockings could usually, but not always, be distinguished from the non‐native complexes. In every case, docking the unbound ligands with flexible side chains led to better energies and a better distinction between near‐native and non‐native fits. An extension of this algorithm allowed for docking multiple residue substitutions (mutants) in addition to multiple conformations. The rankings of the docked mutant proteins correlated with experimental binding affinities. These results suggest that sampling multiple residue conformations and residue substitutions of the unbound ligand contributes to, but does not fully provide, a solution to the protein docking problem. Conformational sampling allows a classical atomistic scoring function to be used; such a function may contribute to better selectivity between near‐native and non‐native complexes. Allowing for receptor flexibility may further extend these results.  相似文献   

5.
Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy‐based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data‐set, the EBL was created in a backbone‐independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone‐dependent libraries are more efficient in side chain optimization. Here we present the backbone‐dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone‐dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone‐independent version of the library. Proteins 2014; 82:3177–3187. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
We present an updated version of the protein–RNA docking benchmark, which we first published four years back. The non‐redundant protein–RNA docking benchmark version 2.0 consists of 126 test cases, a threefold increase in number compared to its previous version. The present version consists of 21 unbound–unbound cases, of which, in 12 cases, the unbound RNAs are taken from another complex. It also consists of 95 unbound–bound cases where only the protein is available in the unbound state. Besides, we introduce 10 new bound–unbound cases where only the RNA is found in the unbound state. Based on the degree of conformational change of the interface residues upon complex formation the benchmark is classified into 72 rigid‐body cases, 25 semiflexible cases and 19 full flexible cases. It also covers a wide range of conformational flexibility including small side chain movement to large domain swapping in protein structures as well as flipping and restacking in RNA bases. This benchmark should provide the docking community with more test cases for evaluating rigid‐body as well as flexible docking algorithms. Besides, it will also facilitate the development of new algorithms that require large number of training set. The protein–RNA docking benchmark version 2.0 can be freely downloaded from http://www.csb.iitkgp.ernet.in/applications/PRDBv2 . Proteins 2017; 85:256–267. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Flexible ligand docking using conformational ensembles.   总被引:1,自引:1,他引:0       下载免费PDF全文
Molecular docking algorithms suggest possible structures for molecular complexes. They are used to model biological function and to discover potential ligands. A present challenge for docking algorithms is the treatment of molecular flexibility. Here, the rigid body program, DOCK, is modified to allow it to rapidly fit multiple conformations of ligands. Conformations of a given molecule are pre-calculated in the same frame of reference, so that each conformer shares a common rigid fragment with all other conformations. The ligand conformers are then docked together, as an ensemble, into a receptor binding site. This takes advantage of the redundancy present in differing conformers of the same molecule. The algorithm was tested using three organic ligand protein systems and two protein-protein systems. Both the bound and unbound conformations of the receptors were used. The ligand ensemble method found conformations that resembled those determined in X-ray crystal structures (RMS values typically less than 1.5 A). To test the method's usefulness for inhibitor discovery, multi-compound and multi-conformer databases were screened for compounds known to bind to dihydrofolate reductase and compounds known to bind to thymidylate synthase. In both cases, known inhibitors and substrates were identified in conformations resembling those observed experimentally. The ligand ensemble method was 100-fold faster than docking a single conformation at a time and was able to screen a database of over 34 million conformations from 117,000 molecules in one to four CPU days on a workstation.  相似文献   

8.
Proteins and their complexes can be heterogeneously disordered. In ensemble modeling of such systems with restraints from several experimental techniques the following problems arise: (a) integration of diverse restraints obtained on different samples under different conditions; (b) estimation of a realistic ensemble width; (c) sufficient sampling of conformational space; (d) representation of the ensemble by an interpretable number of conformers; (e) recognition of weak order with site resolution. Here, I introduce several tools that address these problems, focusing on utilization of distance distribution information for estimating ensemble width. The RigiFlex approach integrates such information with high‐resolution structures of ordered domains and small‐angle scattering data. The EnsembleFit module provides moderately sized ensembles by fitting conformer populations and discarding conformers with low population. EnsembleFit balances the loss in fit quality upon combining restraint subsets from different techniques. Pair correlation analysis for residues and local compaction analysis help in feature detection. The RigiFlex pipeline is tested on data simulated from the structure 70 kDa protein‐RNA complex RsmE/RsmZ. It recovers this structure with ensemble width and difference from ground truth both being on the order of 4.2 Å. EnsembleFit reduces the ensemble of the proliferating‐cell‐nuclear‐antigen‐associated factor p15PAF from 4,939 to 75 conformers while maintaining good fit quality of restraints. Local compaction analysis for the PaaA2 antitoxin from E. coli O157 revealed correlations between compactness and enhanced residual dipolar couplings in the original NMR restraint set.  相似文献   

9.
Conformational changes upon protein-protein association are the key element of the binding mechanism. The study presents a systematic large-scale analysis of such conformational changes in the side chains. The results indicate that short and long side chains have different propensities for the conformational changes. Long side chains with three or more dihedral angles are often subject to large conformational transition. Shorter residues with one or two dihedral angles typically undergo local conformational changes not leading to a conformational transition. A relationship between the local readjustments and the equilibrium fluctuations of a side chain around its unbound conformation is suggested. Most of the side chains undergo larger changes in the dihedral angle most distant from the backbone. The frequencies of the core-to-surface interface transitions of six nonpolar residues and Tyr are larger than the frequencies of the opposite surface-to-core transitions. The binding increases both polar and nonpolar interface areas. However, the increase of the nonpolar area is larger for all considered classes of protein complexes, suggesting that the protein association perturbs the unbound interfaces to increase the hydrophobic contribution to the binding free energy. To test modeling approaches to side-chain flexibility in protein docking, conformational changes in the X-ray set were compared with those in the docking decoy sets. The results lead to a better understanding of the conformational changes in proteins and suggest directions for efficient conformational sampling in docking protocols.  相似文献   

10.
The emerging picture of biomolecular recognition is that of conformational selection followed by induced‐fit. Conformational selection theory states that binding partners exist in various conformations in solution, with binding involving a “selection” between complementary conformers. In this study, we devise a docking protocol that mimics conformational selection in protein–ligand binding and demonstrate that it significantly enhances crossdocking accuracy over Glide's flexible docking protocol, which is widely used in the pharmaceutical industry. Our protocol uses a pregenerated conformational ensemble to simulate ligand flexibility. The ensemble was generated by thorough conformational sampling coupled with conformer minimization. The generated conformers were then rigidly docked in the active site of the protein along with a postdocking minimization step that allows limited induced fit effects to be modeled for the ligand. We illustrate the improved performance of our protocol through crossdocking of 31 ligands to cocomplexed proteins of the kinase 3‐phosphoinositide dependent protein kinase‐1 extracted from the crystal structures 1H1W (ATP bound), 1OKY (staurosporine bound) and 3QD0 (bound to a potent inhibitor). Consistent with conformational selection theory, the performance of our protocol was the best for crossdocking to the cognate protein bound to the natural ligand, ATP. Proteins 2014; 82:436–451. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Docking ligands into an ensemble of NMR conformers is essential to structure-based drug discovery if only NMR structures are available for the target. However, sequentially docking ligands into each NMR conformer through standard single-receptor-structure docking, referred to as sequential docking, is computationally expensive for large-scale database screening because of the large number of NMR conformers involved. Recently, we developed an efficient ensemble docking algorithm to consider protein structural variations in ligand binding. The algorithm simultaneously docks ligands into an ensemble of protein structures and achieves comparable performance to sequential docking without significant increase in computational time over single-structure docking. Here, we applied this algorithm to docking with NMR structures. The HIV-1 protease was used for validation in terms of docking accuracy and virtual screening. Ensemble docking of the NMR structures identified 91% of the known inhibitors under the criterion of RMSD < 2.0 A for the best-scored conformation, higher than the average success rate of single docking of individual crystal structures (66%). In the virtual screening test, on average, ensemble docking of the NMR structures obtained higher enrichments than single-structure docking of the crystal structures. In contrast, docking of either the NMR minimized average structure or a single NMR conformer performed less satisfactorily on both binding mode prediction and virtual screening, indicating that a single NMR structure may not be suitable for docking calculations. The success of ensemble docking of the NMR structures suggests an efficient alternative method for standard single docking of crystal structures and for considering protein flexibility.  相似文献   

12.
Protein data in the PDB covers only a snapshot of a protein structure. For flexible docking conformational changes need to be considered. Rotamer statistics provide the likelihood for side chain conformations, and further comparison of bound and unbound state yields differences in preferred positions. Furthermore, we do a full sampling of selected chi angles and apply the AMBER force field. Conformation of energy minima complies with the rotamer statistics. Both types of information target the reduction of search space for enumerative docking algorithms and provide parameters for elastic docking.  相似文献   

13.
14.
Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.  相似文献   

15.
16.
Computational prediction of side‐chain conformation is an important component of protein structure prediction. Accurate side‐chain prediction is crucial for practical applications of protein structure models that need atomic‐detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side‐chain prediction methods in reproducing the side‐chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane‐spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side‐chains at protein interfaces and membrane‐spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane‐spanning regions as for modeling monomers. Proteins 2014; 82:1971–1984. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
We compare the modelling accuracy of two common rotamer libraries, the Dunbrack-Cohen and the 'Penultimate' rotamer libraries, with that of a novel library of discrete side chain conformations extracted from the Protein Data Bank. These side chain conformer libraries are extracted automatically from high-quality protein structures using stringent filters and maintain crystallographic bond lengths and angles. This contrasts with traditional rotamer libraries defined in terms of chi angles under the assumption of idealized covalent geometry. We demonstrate that side chain modelling onto native and near-native main chain conformations is significantly more successful with the conformer libraries than with the rotamer libraries when solely considering excluded-volume interactions. The rotamer libraries are inadequate to model side chains without atomic clashes on over 20% of targets if the backbone is held fixed in the native conformation. An algorithm is described for simultaneously modelling both main chain and side chain atoms during discrete ab initio sampling. The resulting models have equivalent root mean square deviations from the experimentally determined protein loops as models from backbone-only ensembles, indicating that all-atom modelling does not detract from the accuracy of conformational sampling.  相似文献   

18.
A method is introduced to represent an ensemble of conformers of a protein by a single structure in torsion angle space that lies closest to the averaged Cartesian coordinates while maintaining perfect covalent geometry and on average equal steric quality and an equally good fit to the experimental (e.g. NMR) data as the individual conformers of the ensemble. The single representative ‘regmean structure’ is obtained by simulated annealing in torsion angle space with the program CYANA using as input data the experimental restraints, restraints for the atom positions relative to the average Cartesian coordinates, and restraints for the torsion angles relative to the corresponding principal cluster average values of the ensemble. The method was applied to 11 proteins for which NMR structure ensembles are available, and compared to alternative, commonly used simple approaches for selecting a single representative structure, e.g. the structure from the ensemble that best fulfills the experimental and steric restraints, or the structure from the ensemble that has the lowest RMSD value to the average Cartesian coordinates. In all cases our method found a structure in torsion angle space that is significantly closer to the mean coordinates than the alternatives while maintaining the same quality as individual conformers. The method is thus suitable to generate representative single structure representations of protein structure ensembles in torsion angle space. Since in the case of NMR structure calculations with CYANA the single structure is calculated in the same way as the individual conformers except that weak positional and torsion angle restraints are added, we propose to represent new NMR structures by a ‘regmean bundle’ consisting of the single representative structure as the first conformer and all but one original individual conformers (the original conformer with the highest target function value is discarded in order to keep the number of conformers in the bundle constant). In this way, analyses that require a single structure can be carried out in the most meaningful way using the first model, while at the same time the additional information contained in the ensemble remains available.  相似文献   

19.
To address challenging flexible docking problems, a number of docking algorithms pregenerate large collections of candidate conformers. To remove the redundancy from such ensembles, a central problem in this context is to report a selection of conformers maximizing some geometric diversity criterion. We make three contributions to this problem. First, we resort to geometric optimization so as to report selections maximizing the molecular volume or molecular surface area (MSA) of the selection. Greedy strategies are developed, together with approximation bounds. Second, to assess the efficacy of our algorithms, we investigate two conformer ensembles corresponding to a flexible loop of four protein complexes. By focusing on the MSA of the selection, we show that our strategy matches the MSA of standard selection methods, but resorting to a number of conformers between one and two orders of magnitude smaller. This observation is qualitatively explained using the Betti numbers of the union of balls of the selection. Finally, we replace the conformer selection problem in the context of multiple-copy flexible docking. On the aforementioned systems, we show that using the loops selected by our strategy can improve the result of the docking process.  相似文献   

20.
Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using ROSETTA LIGAND , we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density‐95/Dlg/ZO‐1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号