首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The open-chain, potentially, pentadentate, ligan 1,11-bis(dimethylamino)-3,6,9-trimethyl-3,6,9,-triazaundecane (Me7tetren) forms a series of metal complexes having the general formula [M(Me7tetren)]Y2 (Y = 1, M = Co, Ni; Y = ClO4, M = Co, Ni, Cu, Zn). On the basis of their physical properties, it is suggested that all these compounds contains isostructural five-coordinate [M(Me7tetren)]2+ cations, the ligand acting as pentadentate. These complexes react in solution with thiocyanate ion to give mono- and, with exception of copper(II), di-thiocyanato five- and six-co-ordinate derivatives. Mono-thiocyanato derivatives of cobalt(II), nickel(II) and zinc(II) have been isolated as tetraphenylborate salts. Cobalt(II) and nickel (II) di-thiocyanato derivatives have been also isolated. Results are discussed in terms of the steric requirements of the ligand and electronic properties of the metal ions.  相似文献   

2.
It has been established that small molecule model complexes have been useful in studying more complex biological systems of metalloproteins. Because many metalloproteins have active sites that contain multiple histidine residues bound to a metal center, a series of imidazole-containing scorpionate ligands and the associated Co and Ni complexes have been developed to investigate the bonding parameters of histidine containing active sites. The tris(2-imidazolyl) carbinol (2-TIC, 6) and tris[2-(N-methylimidazolyl)] carbinol (2-MeTIC, 7) complexes of Ni2+ and Co2+, namely [Co(2-MeTIC)2]Cl2 (8), [Co(2-MeTIC)2](NO3)2 (9), [Ni(2-MeTIC)2]Cl2 (10), [Ni(2-MeTIC)2](NO3)2 (11), [Co(2-TIC)2](NO3)2 (12), and [Ni(2-TIC)2](NO3)2 (13), have been prepared from the reaction of the appropriate ligand and appropriate metal salt in polar solvent. These complexes have been characterized by single crystal X-ray diffraction, spectroscopic techniques, and magnetic susceptibility. In each solid-state structure the metal center in the cation coordinates to three N atoms from two ligands and adopts a pseudo-octahedral coordination geometry. The X-ray characterization of tris[2-(N-methylimidazolyl)] carbinol is also reported.  相似文献   

3.
The complex formation of Co(II) with N-donor ligands in dimethylsulfoxide (DMSO) is investigated by means of calorimetric and spectroscopic methods. The ligands considered in this work are tripodal polyamines and polypyridines: 2,2′,2′′-triaminotriethylamine (TREN), tris(2-(methylamino)ethyl)amine (Me3TREN), tris(2-(dimethylamino)ethyl)amine (Me6TREN), tris[(2-pyridyl)methyl]amine (TPA) and 6,6′-bis-[bis-(2-pyridylmethyl)aminomethyl]-2,2′-bipyridine (BTPA).These ligands are characterized by a systematic modification of the donor groups in order to study how their structure is related to the stability of the complexes formed and to their ability to bind oxygen. A comparison with thermodynamic data for similar Cd(II) systems as well as with data referred to linear tetra-amines in DMSO is also made. The solvent effect on the nature and stability of the species formed is discussed. DFT calculations are carried out to explain the trend in thermodynamic parameters for Me6TREN. Only Co(TREN)2+ is able to bind oxygen and two successive species (μ-superoxo and μ-peroxo) are formed. The kinetics of oxygen uptake by Co(TREN)2+ is found to be less solvent-dependent than other Co(II)-polyamine complexes when the formation of the mononuclear μ-superoxo complex is considered.  相似文献   

4.
The cobalt(III) complexes of 4,11-diacetato-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (1), [Co(1)]PF6, and 4,11-diacetamido-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (2), [Co(2)][PF6]3, have been synthesized and characterized. The crystal structure of [Co(1)]PF6 consists of an octahedral cobalt(III) cation coordinated to all four ligand nitrogen donors in the macrobicycle’s cavity, as well as to the deprotonated carboxylate oxygen atoms of both pendant arms. Analytical and spectroscopic data indicates that the ligand in [Co(2)][PF6]3 is not deprotonated, suggesting coordination through the amide carbonyl oxygens. Study of the electronic spectra of these novel complexes and comparison with data from related cobalt(III) complexes characterizes the ligands as strong field with Δ0=24,040 and Δ0=24,250 cm−1 for 1 and 2, respectively. Cyclic voltammograms were obtained for both complexes with large variations observed due to the differences in ligand charge and coordination.  相似文献   

5.
Copper(II) cations coordinated with PMDTA (pentamethyldiethylenetriamine) and TMEDA (tetramethylethylenediamine) possess a high synthetic potential. The synthesis of these cations was carried out by metathesis reactions with silver salts. The cationic copper(II) complexes, [Cu(PMDTA)(Me2CO)Cl]+, [Cu(PMDTA)(H2O)Cl]+, [Cu(PMDTA)(DMF)]+, [Cu(PMDTA)Cl]+, [Cu(PMDTA)OAc]+, [Cu(PMDTA)(MeCN)2]2+, [Cu2(TMEDA)2Cl3]+ and [Cu(TMEDA)(MeCN)3]2+ were synthesised as PF6 salts, crystallised and characterised by single-crystal X-ray diffraction.  相似文献   

6.
Four new Co(III) complexes, namely [Co(cq)3](PF6)3, [Co(phen)2(cq)](PF6)3, [Co(bnp)3] (PF6)3, and [Co(phen)2(bnp)](PF6)3 (where cq = chromeno[2,3-b]quinoline, phen = 1,10-phenanthroline and bnp = dibenzo[b,g][1,8]naphthyridine), were synthesized and structurally characterized. Spectroscopic data suggested an octahedral geometry for all the complexes. Binding studies of these complexes with double-stranded (ds)DNA were analyzed by absorption spectra, viscosity, and thermal denaturation studies. The results revealed that the metal complex intercalates into the DNA base stack as intercalator. The oxidative cleavage activities of the complexes were studied with supercoiled pUC19 DNA using gel electrophoresis and the results show that the complexes have potent nuclease activity.  相似文献   

7.
Nitric oxide reacts with [Co(PSR)2](BF4)2 (PSR  1-(thioalkyl)-2-(diphenylphosphino)ethane) to form five-coordinate mononitrosyl {CoNO}8 complexes. On the basis of infrared and NMR data the [Co(NO)(PSR)2]2+ cations are believed to have a trigonal–bipyramidal geometry, with a linear Co–NO linkage. The mononitrosyl derivatives disproportionate in solution giving [Co(NO)2(PSR)2]+ species, and probably Co(III) compounds. The stoichiometry of this reaction was examined in different solvents and in the presence of added halide or pseudohalide ions by NMR and IR techniques. The cobalt(III) complex [Co(NCS)2(PSEt)2]BF4 has been isolated and characterized.  相似文献   

8.
Three new five-coordinate CuII complexes, [Cu(tpy)(phen-dione)](PF6)2, [Cu(phen)(phen-dione)Cl]PF6 and [Cu(bpy)(phen-dione)Cl]PF6 (tpy = 2,2′;6′,2″-terpyridine, phen = 1,10-phenanthroline and phen-dione = 1,10-phenanthroline-5,6-dione) have been prepared and characterized by elemental analysis, IR and UV-Vis spectroscopies and cyclic voltammetry.The complex of [Cu(tpy)(phen-dione)](PF6)2 crystallized with one molecule of acetonitrile. The ortep drawing of [Cu(tpy)(phen-dione)](PF6)2 · CH3CN shows that the coordination geometry around CuII is a distorted trigonal- bipyramid. Due to the steric hindrance of in the unit cell, the tpy ligands in each complex cation cannot interact in a π-π fashion. The effective magnetic moment (μeff) of the complexes was measured by the Evans method. The cyclic voltammograms at Pt disk electrode for these complexes display only one reversible Cu(II)/Cu(I) redox couple.  相似文献   

9.
The two complexes containing bioactive ligands of the type and [Fe(L)] (PF6)2 (1) (where L = [1-{[2-{[2-hydroxynaphthalen-1-yl)methylidine]amino}phenyl)imino] methyl}naphthalene-2-ol]) and [Co(L1L2)] (PF6)3 (2) (where L1L2 = mixed ligand of 2-seleno-4-methylquinoline and 1,10-phenanthroline in the ratio 1:2, respectively) were synthesized and structurally characterized. The DNA binding property of the complexes with calf thymus DNA has been investigated using absorption spectra, viscosity measurements, and thermal denaturation experiments. Intrinsic binding constant Kb has been estimated at room temperature. The absorption spectral studies indicate that the complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 2.8 × 105 M?1 for (1) and 4.8 × 105 M?1 for (2) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2, respectively. The oxidative cleavage activity of (1) and (2) were studied by using gel electrophoresis and the results show that complexes have potent nuclease activity.  相似文献   

10.
《Inorganica chimica acta》1988,149(2):177-185
CpRuCl(PPh3)2 reacted with excess R-DAB in refluxing toluene to give CpRuCl(R-DAB(4e)) (1a: R = i-Pr; 1b: R = t-Bu; 1c: R = neo-Pent; 1d: R =p-Tol). 1H NMR and 13C NMR spectroscopic data indicated that in these complexes the R-DAB ligand is bonded in a chelating 4e coordination mode.Reaction of 1a and 1b with one equivalent of [Co(CO)4] afforded CpRuCo(CO)3(R-DAB(6e)) (2a: R = i-Pr; 2b: R = t-Bu). The structure of 2b was determined by a single crystal X-ray structure determination. Crystals of 2b are monoclinic, space group P21/n, with four molecules in a unit cell of dimensions: a = 16.812(4), b = 12.233(3), c = 9.938(3) Å and β = 105.47(3)°. The structure was solved via the heavy atom method and refined to R = 0.060 and Rw = 0.065 for the 3706 observed reflections. The molecule contains a RuCo bond of 2.660(3) Å and a cyclopentadienyl group that is η5-coordinated to ruthenium [RuC(cyclopentadienyl) = 2.208(3) Å (mean)]. Two carbonyls are terminally coordinated to cobalt (CoC(1) = 1.746(7) and CoC(2) = 1.715(6) Å) while the third is slightly asymmetrically bridging the RuCo bond (RuC(3) = 2.025(6) and CoC(3) = 1.912(6) Å). The RuC(3)O(3) and CoC(3)O(3) angles are 138.4(5)° and 136.5(5)°, respectively. The t-Bu-DAB ligand is in the bridging 6e coordination mode: σ-N coordinated to Ru (RuN(2) = 2.125(4) Å), μ2-N′ bridging the RuCo bond and η2-CN coordinated to Co (RuN(1) = 2.113(5), CoN(1) = 1.941(4) and CoC(4) = 2.084(5) Å). The η2-CN′ bonded imine group has a bond length of 1.394(7) Å indicating substantial π-backbonding from Co into the anti-bonding orbital of this CN bond.1H NMR spectroscopy indicated that 2a and 2b are fluxional on the NMR time scale. The fluxionality of 6e bonded R-DAB ligands is rarely observed and may be explained by the reversible interchange of the σ-N and η2-CN′ coordinated imine parts of the R-DAB ligand.  相似文献   

11.
The preparation and molecular structure of [(diethylenetriamine) (7,9-dimethylhypoxanthine) platinum(II)] (PF6)2·1.5H2O and [(ethylenediamine) (7,9-dimethylhypoxanthine)2platinum(II)] (PF6)2, are reported. These complexes represent the first structurally characterized N(1)-bound Pt(II) 6-oxopurine complexes. In each case, the Pt(II)N(1) bond length [2.051(6)A in the diethylenetriamine complex and 2.021(8)A in the ethylenediamine complex] indicates a strong metal-to-base binding. Both complexes contain interligand hydrogen bonds, with the ammine ligand acting as the donor and the O(6) atom of the base acting as the acceptor. These N(1)-bound complexes are compared with N(7)-bound 6-oxopurine and N(3)-bound cytosine complexes of Pt(II) anti-tumor agents.  相似文献   

12.
Six-coordinate cobalt(III) complex trans-[Co{o-C6H4(PPh2)2}2X2]ClO4, fac-[Co{PhP(CH2CH2PPh2)2}X3],cis-[Co{P(CH2CH2PPh2)3}X2]ClO4 and cis-β-[Co{-CH2P(Ph)CH2CH2PPh2}2X2]PF6 (X = Cl, Br) have been prepared by halogen oxidation of the Co(II) analogues, and characterised by IR, electronic and 31P NMR spectroscopy. The failure to obtain complexes with X = I, and with some related ligands is discussed, and the rather low stability of the above complexes is rationalised in terms of steric crowding at the metal centre.  相似文献   

13.
Two Co(salen) derivatives, Co(sal-ipsen) and Co(sal-bsen), containing pendant (CH2)2S(i-C3H7) and (CH2)2SC6H5 groups were synthesized. Electronic and ESR spectra in methylene chloride show that the former is five-coordinate with pendant thioether coordination at 198 K or below whereas the latter is four-coordinate at 198 K and becomes a mixture of the four- and five-coordinate species at liquid nitrogen temperature. Upon oxygenation at low temperatures, both complexes form dioxygen adducts in which the pendant thioether groups are coordinated to the trans position to dioxygen. Resonance Raman spectra show that Co(sal-ipsen) yields an equilibrium mixture of the 1:1 and 1:2(O2/ Co) adducts at 190 K while Co(sal-bsen) forms only the 1:1 adduct under similar conditions. These differences between Co(sal-ipsen) and Co(sal-bsen) can be attributed to the variance in basicity of their pendant sulfur atoms.  相似文献   

14.
Reactions of [(p-cymene)RuCl2]2 (1a) with dpmp ((Ph2PCH2)2PPh) in the absence or presence of KPF6 afforded the ionic complexes [{(p-cymene)RuCl2}(dpmp-P1,P3;P2){RuCl(p-cymene)}](X) (2a1: X=Cl; 2a2: X=PF6). A (p-cymene)RuCl moiety constructs a 6-membered ring coordinated by two terminal P atoms of the dpmp ligand and another one binds to a central P atom of the ligand. Reactions of [(C6Me6)RuCl2]2 (1b) with an excess of dpmp in the presence of KPF6 gave a 4-membered complex [(C6Me6)RuCl(dpmp-P1,P2)](PF6) (3b), chelated by a terminal and a central P atom and another terminal atom is free. Use of Ag(OTf) instead of KPF6 gave [{(C6Me6)RuCl2(dpmp)Ag} 2](OTf)2 (5b) that the Ag atoms were coordinated by a terminal and a central P atom of each dpmp ligand. Reaction with an equivalent of dpmp in the presence of KPF6 gave [{(C6Me6)RuCl}(dpmp-P1,P2;P3){(C6Me6)RuCl2}](PF6) 4b. Complex has a structure that the (C6Me6)RuCl2 moiety coordinated to the free P atom of 3b. Complex 3b was treated with MCl2(cod) (M=Pd, Pt), [Pd(MesNC)4](PF6)2 (MesNC=2,4,6-Me3C6H2NC) or [Pt2(XylNC)6](PF6)2 (XylNC=2,6-Me2C6H3NC), generating [{(C6Me6)RuCl(dpmp)}2MCl2](PF6)2 (8b: M=Pd; 9b: M=Pt), [{(C6Me6)RuCl(dpmp)}2{Pt(MesNC)2}](PF6)4 (10b) and [{(C6Me6)RuCl(dpmp)}2{Pt2(XylNC)4}](PF6)4 (11b), respectively. Complex 3b reacted readily with [Cp*MCl2]2 (M=Rh, Ir) or AuCl(SC4H8), affording the corresponding hetero-binuclear complexes [{(C6Me6)RuCl}(dpmp-P1,P2;P3)(MCl2Cp*](PF6) (6b: M=Rh; 7b: M=Ir) and [{(C6Me6)RuCl}(dpmp-P1,P2;P3)(AuCl)](PF6) (12b). These complexes have two chiral centers. Some complexes were separated as two diastereomers by successive recrystallization. The structures of 3b, 5b, 6b, 8b and 12b were confirmed by X-ray analyses.  相似文献   

15.
Complexes [M(η12-C8H12OMe)((2,6-(R)2---C6H3)N=C(R′)---C(R′)=N((2,6-(R)2---C6H3))]PF6 (where M=Pd, R=H and R′2=Me2 (1), M=Pd, R=Me and R′2=Me2 (2), M=Pd, R=Et and R′2=Me2 (3), M=Pd, R=iPr and R′2=Me2 (4), M=Pd, R=iPr and R′2=An (5), M=Pt, R=iPr and R′2=An (6)) were synthesized by the reaction of [M(η12-C8H12OMe)Cl]2 with the appropriate α-diimine ligand in the presence of NH4PF6. Their ion pair structure in solution was investigated by detecting dipolar interactions between protons belonging to the cation and fluorine nuclei of the anion (interionic contacts) in the 19F, 1H-HOESY NMR spectra. In complexes 14, the anion in solution is located close to the peripheral protons of the α-diimine ligand and it interacts with the R′ protons and with the R protons that point toward the R′ groups. The steric protection of apical position exerted by the R substituents is clearly illustrated by the absence of interionic contacts between any protons of the cycloctenylmethoxy-moiety and the anion for R≥Me in 14. In complexes 5 and 6 the interactions between the anion and the peripheral N,N protons also predominate but other anion–cation orientations are significantly present and, consequently, the interionic structure is less specific.  相似文献   

16.
The reaction of cis-[Os(CO)4Me2] with Me3NO in the THF or MeCN yields the complexes fac-[Os(CO)3(L)Me2] (where L = THF or MeCN). Whereas the THF complex is unstable and only characterised spectroscopically, fac-[Os(CO)3(MeCN)Me2] has been isolated as a white solid and fully characterized by both analytical and spectroscopic methods. These complexes fac-[Os(CO)3(L)Me2] are shown to be useful intermediates. Thus, reaction with PPh3 gives fac-[Os(CO)3(PPh3)Me2] in good yield.Reactions of fac-[Os(CO)3(L)Me2] (L = CO or MeCN) with CPh3PF6 or B(C6F5)3 have been investigated. Whereas cis-[Os(CO)4Me2] showed no reaction with either CPh3PF6 or B(C6F5)3, the reaction of fac-[Os(CO)3(MeCN)Me2] with CPh3PF6 in CH2Cl2 occurred over 16 h at room temperature to give an unstable cationic product and CPh3Me. The reaction was monitored by both IR and NMR spectroscopies. When this reaction of fac-[Os(CO)3(MeCN)Me2] was carried out in the presence of a trapping ligand such as MeCN, the stable cationic product [Os(CO)3(MeCN)2Me]+ could be isolated and identified spectroscopically.  相似文献   

17.
N-(2-Pyridyl)acetamide (aapH) complexes of palladium(II), cobalt(II), nickel(II), and copper(II) have been studied by means of magnetic susceptibilities, and infrared, electronic, and PMR spectra. In the octahedral complexes M(aapH)2X2(M = Co, Ni, Cu; X = Cl, Br, NCS, NO3), bidentate aapH is chelated through the pyridine-N and amid-O atomes, whereas in the square-planar Pd(aapH)2X2 (X = Cl, Br) unidentate aapH is coordinated through the pyridine-N atom alone. Under alkaline conditions aapH is deprotonated in the presence of palladium(II) to form Pd(aap)2·4H2O, aap being an anionic bidentate ligand and chelating through the pyridine-N and amide-O atoms.  相似文献   

18.
Abstract

A computer assisted pH-metric investigation has been carried out on the speciation of complexes of Co(II), Ni(II) and Cu(II) with L-dopa and 1,10-phenanthroline. The titrations were performed in the presence of different relative concentrations (M:L:X = 1.0:2.5:2.5; 1.0:2.5:5.0; 1.0:5.0:2.5) of metal (M) to L-dopa (L) and 1,10-phenanthroline (X) with sodium hydroxide in varying concentrations (0-60% v/v) of 1,2-propanediol-water mixtures at an ionic strength of 0.16 mol L-1 and at a temperature of 303.0 K. Stability constants of the ternary complexes were refined using MINIQUAD75. The species MLXH, MLX, ML2X and MLX2H for Co(II) and Cu(II) and MLXH, MLX and MLX2H for Ni(II) were detected. The extra stability of ternary complexes compared to their binary complexes was believed to be due to electrostatic interactions of the side chains of ligands, charge neutralisation, chelate effect, stacking interactions and hydrogen bonding. The species distribution with pH at different compositions of 1, 2-propanediol-water mixtures and plausible equilibria for the formation of species were also presented. The bioavailability of the metal ions is explained based on the speciation.  相似文献   

19.
One of the equatorially coordinated terminal phosphorus atoms of tris(2-(diphenylphosphino)ethyl)phosphine (pp3) ligand on the five-coordinate trigonal-bipyramidal palladium(II) complex, [Pd(4-Cltp)(pp3)](BF4) (4-Cltp = 4-chlorothiophenolate), was selectively oxidized by photolysis to form the four-coordinate square-planar complex. Further selective oxidation of another coordinated terminal phosphorus atom proceeded quantitatively by the substitution reaction with 4-chlorothiophenolate. The solid state structures of these stepwise-oxidized square-planar complexes were determined by X-ray crystal structure analyses, and the structures of the starting trigonal-bipyramidal and the oxidized complexes in solution have been characterized by 31P NMR spectroscopy.  相似文献   

20.
In order to systematically perform an experimental and theoretical study on DNA binding and photocleavage properties of transition metal complexes of the type [M(L)2(L1)](PF6)n · xH2O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline or 2.2′ bipryidine, L1 = Thiophene [2,3-b] quinoline (qt), n = 3 or 2 and x = 5 or 2) have been synthesized and characterized by elemental analysis, IR, 1H NMR, UV and magnetic susceptibility data. The DNA-binding properties of these complexes have been investigated with UV-Vis, viscosity measurements, thermal denaturation and cyclic voltametric studies. It is experimentally found that all the complexes are bound to DNA via intercalation in the order [Co(bpy)2(qt)](PF6)3 > [Co(phen)2(qt)](PF6)3 > [Ni(phen)2(qt)](PF6)2 > [Ni(bpy)2(qt)](PF6)2. The photocleavage studies with pUC19 DNA shows that all these complexes promoted the conversion of SC form to NC form in absence of ‘inhibitors’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号