首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genome linkage scan was carried out using a resource flock of 1029 sheep in six half-sib families. The families were offspring of sires derived by crossing divergent lines of sheep selected for response to challenge with the intestinal parasitic nematode Trichostrongylus colubriformis. All animals in the resource flock were phenotypically assessed for worm resistance soon after weaning using a vaccination/challenge regime. After correcting for fixed effects using a least squares linear model the faecal egg count data obtained following the first challenge and the faecal egg count data obtained after the second challenge were designated Trait 1 and Trait 2, respectively. A total of 472 lambs drawn from the phenotypic extremes of the Trait 2 faecal egg count distribution were genotyped with a panel of 133 microsatellite markers covering all 26 sheep autosomes. Detection of quantitative trait loci (QTL) for each of the faecal egg count traits was determined using interval analysis with the Animap program with recombination rates between markers derived from an existing marker map. No chromosomal regions attained genome-wide significance for QTL influencing either of the traits. However, one region attained chromosome-wide significance and five other regions attained point-wise significance for the presence of QTL affecting parasite resistance.  相似文献   

2.
Fine mapping of quantitative trait loci (QTL) associated with resistance to the gastrointestinal parasite Heligmosomoides polygyrus was achieved on F6/F7 offspring (1076 mice) from resistant (SWR) and susceptible (CBA) mouse strains by selective genotyping (top and bottom 20% selected on total worm count in week 6). Fecal egg counts were recorded at weeks 2, 4, and 6, and the average was also analyzed. Blood packed cell volume in weeks 3 and 6 and five immunological traits (mucosal mast cell protease 1, granuloma score, IgG1 against adult worm, IgG1, and IgE to L4 antigen) were also recorded. On Chromosome 1 single-trait analyses identified a QTL with effects on eight traits located at about 24 cM on the F2 mouse genome database (MGD) linkage map, with a 95% confidence interval (CI) of 20-32 cM established from a multitrait analysis. On Chromosome 17 a QTL with effects on nine traits was located at about 18 cM on the MGD map (CI 17.9-18.4 cM). Strong candidate genes for the QTL position on Chromosome 1 include genes known to be involved in regulating immune responses and on Chromosome 17 genes within the MHC, notably the Class II molecules and tumor necrosis factor.  相似文献   

3.
Zhong D  Pai A  Yan G 《Genetics》2005,169(4):2127-2135
Information on the molecular basis of resistance and the evolution of resistance is crucial to an understanding of the appearance, spread, and distribution of resistance genes and of the mechanisms of host adaptation in natural populations. One potential important genetic constraint for the evolution of resistance is fitness cost associated with resistance. To determine whether host resistance to parasite infection is associated with fitness costs, we conducted simultaneous quantitative trait loci (QTL) mapping of resistance to parasite infection and fitness traits using the red flour beetle (Tribolium castaneum) and the tapeworm parasite (Hymenolepis diminuta) system in two independent segregating populations. A genome-wide QTL scan using amplified fragment length polymorphism (AFLP) markers revealed three QTL for beetle resistance to tapeworm infection. These three QTL account for 44-58% variance in beetle infection intensity. We identified five QTL for fecundity and five QTL for egg-to-adult viability, which accounted for 36-57% and 36-49%, respectively, of the phenotypic variance in fecundity and egg-to-adult viability. The three QTL conferring resistance were colocalized with the QTL affecting beetle fitness. The genome regions that contain the QTL for parasite resistance explained the majority of the variance in fecundity and egg-to-adult viability in the mapping populations. Colocalization of QTL conferring resistance to parasite infection and beetle fitness may result from the pleiotropic effects of the resistance genes on host fitness or from tight linkages between resistance genes and adverse deleterious mutations. Therefore, our results provide evidence that the genome regions conferring resistance to tapeworm infection are partially responsible for fitness costs in the resistant beetle populations.  相似文献   

4.
The root hemiparasitic weed Striga hermonthica is a serious constraint to grain production of economically important cereals in sub-Saharan Africa. Breeding for parasite resistance in cereals is widely recognized as the most sustainable form of long-term control; however, advances have been limited owing to a lack of cereal germplasm demonstrating postattachment resistance to Striga. Here, we identify a cultivar of rice (Nipponbare) that exhibits strong postattachment resistance to S. hermonthica; the parasite penetrates the host root cortex but does not form parasite-host xylem-xylem connections. In order to identify the genomic regions contributing to this resistance, a mapping population of backcross inbred lines between the resistant (Nipponbare) and susceptible (Kasalath) parents were evaluated for resistance to S. hermonthica. Composite interval mapping located seven putative quantitative trait loci (QTL) explaining 31% of the overall phenotypic variance; a second, independent, screen confirmed four of these QTL. Relative to the parental lines, allelic substitutions at these QTL altered the phenotype by at least 0.5 of a phenotypic standard deviation. Thus, they should be regarded as major genes and are likely to be useful in breeding programmes to enhance host resistance.  相似文献   

5.
The differences in host response among strains of rats to intestinal nematode parasite Trichinella spiralis infection could provide a powerful benefit for further elucidation of molecular interactions between the host and the parasite. Using several strains of rats, we previously observed that DA strain is a strong responder and F344 strain is a weak responder with respect to expulsion of the adult worm. To identify the host resistance loci, quantitative trait loci (QTLs) analysis in F2 population from crosses between DA and F344 strains was performed. One significant QTL (designated as Tspe) was mapped to the middle region of chromosome 9. In addition, the effect of DA allele at Tspe locus could act recessively and lead to the rejection of more adult worms from the gut. The results from the present study provide more insights on host–parasite interactions, which may be useful in facilitating the development of novel approaches for treatment and control of intestinal parasites in human and domestic livestock.  相似文献   

6.
Marek's disease (MD) is a lymphoproliferative disease of chickens that costs the poultry industry approximately $1 billion annually. Genetic resistance to MD is gaining increased attention to augment vaccinal control as disease outbreaks occur more frequently. Previously, analysis of a 272 F2 White Leghorn resource population measured for many MD traits and genotyped for 78 microsatellite markers revealed two and four quantitative trait loci (QTL) with significant and suggestive association, respectively, to one or more MD associated traits. Additional genetic markers have since been scored on the MD resource population to increase QTL resolution and genome coverage. Saturation of four of the QTL regions with 17 markers revealed five new QTL while 32 markers extended the genome coverage by 400 + CM and uncovered three more QTL. QTL analysis by single-point and interval mapping algorithms agreed well when marker saturation was approximately 20 CM or less. Currently 127 genetic markers cover approximately 68% of the genome that contain up to 14 MD QTL associated to one or more MD trait; seven at the significant level and seven at the suggestive level. Individually each QTL accounts for 2-10% of the variation and, in general, resistance was dominant although the resistant allele may come from either parental line. This study suggests that a limited number of genomic regions play a major role in the genetic control of MD resistance. Markers linked to these loci may be useful for selection of MD resistant stock by the poultry industry following verification of the association within their breeding populations.  相似文献   

7.
Solanum galapagense is closely related to the cultivated tomato and can show a very good resistance towards whitefly. A segregating population resulting from a cross between the cultivated tomato and a whitefly resistant S. galapagense was created and used for mapping whitefly resistance and related traits, which made it possible to study the genetic basis of the resistance. Quantitative trait loci (QTL) for adult survival co-localized with type IV trichome characteristics (presence, density, gland longevity and gland size). A major QTL (Wf-1) was found for adult survival and trichome characters on Chromosome 2. This QTL explained 54.1 % of the variation in adult survival and 81.5 % of the occurrence of type IV trichomes. A minor QTL (Wf-2) for adult survival and trichome characters was identified on Chromosome 9. The major QTL was confirmed in F3 populations. Comprehensive metabolomics, based on GCMS profiling, revealed that 16 metabolites segregating in the F2 mapping population were associated with Wf-1 and/or Wf-2. Analysis of the 10 most resistant and susceptible F2 genotypes by LCMS showed that several acyl sugars were present in significantly higher concentration in the whitefly resistant genotypes, suggesting a role for these components in the resistance as well. Our results show that whitefly resistance in S. galapagense seems to inherit relatively simple compared to whitefly resistance from other sources and this offers great prospects for resistance breeding as well as elucidating the underlying molecular mechanism(s) of the resistance.  相似文献   

8.
Field resistance is defined as the resistance that allows effective control of a parasite under natural field conditions and is durable when exposed to new races of that parasite. To identify the genes for field resistance to rice blast, quantitative trait loci (QTLs) conferring field resistance to rice blast in Japanese upland rice were detected and mapped using RFLP and SSR markers. QTL analysis was carried out in F4 progeny lines from the cross between Nipponbare (moderately susceptible, lowland) and Owarihatamochi (resistant, upland). Two QTLs were detected on chromosome 4 and one QTL was detected on each of chromosomes 9 and 12. The phenotypic variation explained by each QTL ranged from 7.9 to 45.7% and the four QTLs explained 66.3% of the total phenotypic variation. Backcrossed progeny lines were developed to transfer the QTL with largest effect using the susceptible cultivar Aichiasahi as a recurrent parent. Among 82 F3 lines derived from the backcross, resistance segregated in the expected ratio of resistant 1 : heterozygous 2 : susceptible 1. The average score for blast resistance measured in the field was 4.2 ± 0.67, 7.5 ± 0.51and 8.2 ± 0.66, for resistant, heterozygous and susceptible groups, respectively. The resistance gene, designated pi21, was mapped on chromosome 4 as a single recessive gene between RFLP marker loci G271 and G317 at a distance of 5.0 cM and 8.5 cM, respectively. The relationship to previously reported major genes and QTLs conferring resistance to blasts, and the significance of marker-assisted selection to improve field resistance, are discussed. Received: 8 June 2000 / Accepted: 24 November 2000  相似文献   

9.
Desiccation, resulting from extremely dry environmental conditions, is a serious obstacle to the survival of organisms. Water is vital for the maintenance of intracellular structure and prevents the irreversible formation of aggregates, an occurrence leading to loss of cellular function. To characterize genetic variation in desiccation stress resistance (DSR) in Drosophila melanogaster Meigen, an intercontinental set of recombinant inbred lines (RIL) is used. Flies are exposed to a low humidity environment (<10% relative humidity) at a constant temperature of 25 °C. Desiccation stress resistance is higher in RIL derived from a backcross to the parental stock sensitive to heat stress (from Denmark) than in RIL derived from the reciprocal backcross to the heat‐stress resistant stock (from Australia). Composite interval mapping reveals significant quantitative trail loci (QTL) for DSR in the set of RIL. Both major and minor effects QTL are detected, suggesting a complex genetic architecture. When compared with a previous investigation performed on the same set of RIL, the present study indicates that not all traits of resistance to environmental stressors are affected in the same direction by segregating co‐localized QTL.  相似文献   

10.
Fusarium crown rot (FCR), caused by Fusarium pseudograminearum and F. culmorum, reduces wheat (Triticum aestivum L.) yields in the Pacific Northwest (PNW) of the US by as much as 35%. Resistance to FCR has not yet been discovered in currently grown PNW wheat cultivars. Several significant quantitative trait loci (QTL) for FCR resistance have been documented on chromosomes 1A, 1D, 2B, 3B, and 4B in resistant Australian cultivars. Our objective was to identify QTL and tightly linked SSR markers for FCR resistance in the partially resistant Australian spring wheat cultivar Sunco using PNW isolates of F. pseudograminerarum in greenhouse and field based screening nurseries. A second objective was to compare heritabilities of FCR resistance in multiple types of disease assaying environments (seedling, terrace, and field) using multiple disease rating methods. Two recombinant inbred line (RIL) mapping populations were derived from crosses between Sunco and PNW spring wheat cultivars Macon and Otis. The Sunco/Macon population comprised 219 F(6):F(7) lines and the Sunco/Otis population comprised 151 F(5):F(6) lines. Plants were inoculated with a single PNW F. pseudograminearum isolate (006-13) in growth room (seedling), outdoor terrace (adult) and field (adult) assays conducted from 2008 through 2010. Crown and lower stem tissues of seedling and adult plants were rated for disease severity on several different scales, but mainly on a numeric scale from 0 to 10 where 0?=?no discoloration and 10?=?severe disease. Significant QTL were identified on chromosomes 2B, 3B, 4B, 4D, and 7A with LOD scores ranging from 3 to 22. The most significant and consistent QTL across screening environments was located on chromosome 3BL, inherited from the PNW cultivars Macon and Otis, with maximum LOD scores of 22 and 9 explaining 36 and 23% of the variation, respectively for the Sunco/Macon and Sunco/Otis populations. The SSR markers Xgwm247 and Xgwm299 flank these QTL and are being validated for use in marker-assisted selection for FCR resistance. This is the first report of QTL associated with FCR resistance in the US.  相似文献   

11.
Increased oxygen (O(2)) levels help manage severely injured patients, but too much for too long can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and even death. In fact, continuous hyperoxia has become a prototype in rodents to mimic salient clinical and pathological characteristics of ALI/ARDS. To identify genes affecting hyperoxia-induced ALI (HALI), we previously established a mouse model of differential susceptibility. Genetic analysis of backcross and F(2) populations derived from sensitive (C57BL/6J; B) and resistant (129X1/SvJ; X1) inbred strains identified five quantitative trait loci (QTLs; Shali1-5) linked to HALI survival time. Interestingly, analysis of these recombinant populations supported opposite within-strain effects on survival for the two major-effect QTLs. Whereas Shali1 alleles imparted the expected survival time effects (i.e., X1 alleles increased HALI resistance and B alleles increased sensitivity), the allelic effects of Shali2 were reversed (i.e., X1 alleles increased HALI sensitivity and B alleles increased resistance). For in vivo validation of these inverse allelic effects, we constructed reciprocal congenic lines to synchronize the sensitivity or resistance alleles of Shali1 and Shali2 within the same strain. Specifically, B-derived Shali1 or Shali2 QTL regions were transferred to X1 mice and X1-derived QTL segments were transferred to B mice. Our previous QTL results predicted that substituting Shali1 B alleles onto the resistant X1 background would add sensitivity. Surprisingly, not only were these mice more sensitive than the resistant X1 strain, they were more sensitive than the sensitive B strain. In stark contrast, substituting the Shali2 interval from the sensitive B strain onto the X1 background markedly increased the survival time. Reciprocal congenic lines confirmed the opposing allelic effects of Shali1 and Shali2 on HALI survival time and provide unique models to identify their respective quantitative trait genes and to critically assess the apparent bidirectional epistatic interactions between these major-effect loci.  相似文献   

12.
White mold, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, is a devastating disease in common bean (Phaseolus vulgaris L.). Resistance to this pathogen can be due to physiological or avoidance mechanisms. We sought to characterize the partial physiological resistance exhibited by Xana dry bean in the greenhouse straw test using quantitative trait locus (QTL) analysis. A population of 104 F7 recombinant inbred lines (RILs) derived from an inter-gene pool cross between Xana and the susceptible black bean Cornell 49242 was evaluated against five local isolates of Sclerotinia. The effect of morphological traits (plant height, first internode length, and first internode width) on response to white mold was examined. The level of resistance exhibited by Xana to five isolates of S. sclerotiorum was similar to that of the well-known resistant lines PC50, A195, and G122. Eighteen QTL, involving the linkage groups (LG) 1, 3, 6, 7, 8, and 11, were found to be significant in at least one evaluation and in the mean of the two evaluations. The number of significant QTL identified per trait ranged from one to five. Four major regions on LG 1, 6, and 7 were associated with partial resistance to white mold, confirming the results obtained in other populations. A relative specificity in the number and the position of the identified QTL was found depending on the isolate used. QTL involved in the control of morphological traits and in the response to white mold were co-located at the same relative position on LG 1, 6, and 7. The role of these genomic regions in physiological resistance or avoidance mechanisms to white mold is discussed.  相似文献   

13.
Sudden death syndrome (SDS) is an important soybean [Glycine max (L) Merrill] disease caused by the soilborne fungus Fusarium virguliforme. Currently, 14 quantitative trait loci (QTL) had been confirmed associated with resistance or tolerance to SDS. The objective of the study was to evaluate usefulness of 10 of these QTL in controlling disease expression. Six populations were developed providing a total of 321 F2-derived lines for the study. Recombinant inbred lines (RIL) used as parents were obtained from populations of ‘Essex’ × ‘Forrest’ (EF), ‘Flyer’ × ‘Hartwig’ (FH), and ‘Pyramid’ × ‘Douglas’ (PD). Disease resistance was evaluated in the greenhouse at three different planting times, each with four replications, using sorghum infested with F. virguliforme homogeneously mixed in the soil (Luckew et al., Crop Sci 52:2215–2223, 2012). Four disease assessment criteria—foliar disease incidence (DI), foliar leaf scorch disease severity (DS), area under the disease progress curve (AUDPC), and root rot severity—were used. QTL were identified in more than one of the disease assessment criteria, mainly associated with lines in the most resistant categories. Five QTL (qRfs4, qRfs5, qRfs7, qRfs12, and Rfs16) were associated with at least one of the disease assessments across multiple populations. Of the five, qRfs4 was associated with DI, AUDPC, and root rot severity, and Rfs16 with AUDPC and root rot severity. The findings suggest it may be possible for plant breeders to focus on stacking a subset of the previously identified QTL to improve resistance to SDS in soybean.  相似文献   

14.
Phaeosphaeria leaf spot (PLS) is an important disease in tropical and subtropical maize (Zea mays, L.) growing areas, but there is limited information on its inheritance. Thus, this research was conducted to study the inheritance of the PLS disease in tropical maize by using QTL mapping and to assess the feasibility of using marker-assisted selection aimed to develop genotypes resistance to this disease. Highly susceptible L14-04B and highly resistant L08-05F inbred lines were crossed to develop an F2 population. Two-hundred and fifty six F2 plants were genotyped with 143 microsatellite markers and their F2:3 progenies were evaluated at seven environments. Ten plants per plot were evaluated 30 days after silk emergence following a rating scale, and the plot means were used for analyses. The heritability coefficient on a progeny mean basis was high (91.37%), and six QTL were mapped, with one QTL on chromosomes 1, 3, 4, and 6, and two QTL on chromosome 8. The gene action of the QTL ranged from additive to partial dominance, and the average level of dominance was partial dominance; also a dominance × dominance epistatic effect was detected between the QTL mapped on chromosome 8. The phenotypic variance explained by each QTL ranged from 2.91 to 11.86%, and the joint QTL effects explained 41.62% of the phenotypic variance. The alleles conditioning resistance to PLS disease of all mapped QTL were in the resistant parental inbred L08-05F. Thus, these alleles could be transferred to other elite maize inbreds by marker-assisted backcross selection to develop hybrids resistant to PLS disease.  相似文献   

15.
Gyrodactylus salaris Malmberg, 1957 is a freshwater monogenean ectoparasite of salmonids, first recorded in Norway in 1975 and responsible for extensive epizootics in wild Atlantic salmon Salmo salar L. The susceptibility of different populations of Atlantic salmon to G. salaris infection differs markedly, with fish from the Baltic being characterised as relatively resistant whereas those from Norway or Scotland are known to be (extremely) susceptible. Resistance to Gyrodactylus infection in salmonids has been found to be heritable and a polygenic mechanism of control has been hypothesised. The current study utilises a 'Quantitative trait loci' (QTL) screening approach in order to identify molecular markers linked to QTL influencing G. salaris resistance in B1 backcrosses of Baltic and Scottish salmon. Infection patterns in these fish exhibited 3 distinct types; susceptible (exponential parasite growth), responding (parasite load builds before dropping) and resistant (parasite load never increases). B1 backcross fish were screened at 39 microsatellite markers and single marker-trait associations were examined using general linear modelling. We identified 10 genomic regions associated with heterogeneity in both innate and acquired resistance, explaining up to 27.3% of the total variation in parasite loads. We found that both innate and acquired parasite resistance in Atlantic salmon are under polygenic control, and that salmon would be well suited to a selection programme designed to quickly increase resistance to G. salaris in wild or farmed stocks.  相似文献   

16.
Fusarium head blight (FHB, scab) causes severe yield and quality losses, but the most serious concern is the mycotoxin contamination of cereal food and feed. The cultivation of resistant varieties may contribute to integrated control of this fungal disease. Breeding for FHB resistance by conventional selection is feasible, but tedious and expensive. The aim of this work was to detect QTLs for combined type I and type II resistance against FHB and estimate their effects in comparison to the QTLs identified previously for type II resistance. A population of 364, F1 derived doubled-haploid (DH) lines from the cross 'CM-82036' (resistant)/'Remus' (susceptible) was evaluated for components of FHB resistance during 2 years under field conditions. Plants were inoculated at anthesis with a conidial suspension of Fusarium graminearum or Fusarium culmorum. The crop was kept wet for 20 h after inoculation by mist-irrigation. Disease severity was assessed by visual scoring. Initial QTL analysis was performed on 239 randomly chosen DH lines and extended to 361 lines for putative QTL regions. Different marker types were applied, with an emphasis on PCR markers. Analysis of variance, as well as simple and composite interval mapping, revealed that two genomic regions were significantly associated with FHB resistance. The two QTLs on chromosomes 3B (Qfhs.ndsu-3BS) and 5A (Qfhs.ifa-5A) explained 29 and 20% of the phenotypic variance, respectively, for visual FHB severity. Qfhs.ndsu-3BS appeared to be associated mainly with resistance to fungal spread, and Qfhs.ifa-5A primarily with resistance to fungal penetration. Both QTL regions were tagged with flanking SSR markers. These results indicate that FHB resistance was under the control of two major QTLs operating together with unknown numbers of minor genes. Marker-assisted selection for these two major QTLs appears feasible and should accelerate the development of resistant and locally adapted wheat cultivars.  相似文献   

17.
This study aimed to identify regions of the genome affecting resistance to gastrointestinal nematodes in a Creole goat population naturally exposed to a mixed nematode infection (Haemonchus contortus, Trichostrongylus colubriformis and Oesophagostomum columbianum) by grazing on irrigated pasture. A genome‐wide quantitative trait loci (QTL) scan was performed on 383 offspring from 12 half‐sib families. A total of 101 microsatellite markers were genotyped. Traits analysed were faecal egg count (FEC), packed cell volume (PCV), eosinophil count and bodyweight (BW) at 7 and 11 months of age. Levels of activity of immunoglobulin A (IgA) and activity of immunoglobulin E (IgE) anti‐Haemonchus contortus L3 crude extracts and adult excretion/secretion products (ESPs) were also analysed. Using interval mapping, this study identified 13 QTL for parasite resistance. Two QTL linked with FEC were found on chromosomes 22 and 26. Three QTL were detected on chromosomes 7, 8 and 14 for eosinophil counts. Three QTL linked with PCV were identified on chromosomes 5, 9 and 21. A QTL for BW at 7 months of age was found on chromosome 6. Lastly, two QTL detected on chromosomes 3 and 10 were associated with IgE anti‐L3, and IgE anti‐ESP was linked with two QTL on chromosomes 1 and 26. This study is the first to have identified regions of the genome linked with nematode resistance in a goat population using a genome scan. These results provide useful tools for the understanding of parasite resistance in small ruminants.  相似文献   

18.
High-temperature adult-plant (HTAP) resistance from the winter wheat (Triticum aestivum) cultivar 'Stephens' has protected wheat crops from stripe rust caused by Puccinia striiformis f. sp. tritici for 30 years. The objectives of this study were to identify quantitative trait loci (QTL) for HTAP resistance in Stephens through genetic linkage analysis and identify DNA markers linked to the QTL for use in marker-assisted breeding. Mapping populations consisted of 101 recombinant inbred lines (RILs) through single-seed descent from 'Stephens' (resistant) x 'Michigan Amber' (susceptible). F(5), F(6) and F(7) RILs were evaluated for stripe rust resistance at Pullman, WA in 1996, 1997 and 1998, respectively, whereas F(8) RILs were evaluated at Mt Vernon, WA, USA in 2005. The 101 F(8) RILs were evaluated with 250 resistance gene analog polymorphism (RGAP), 245 simple sequence repeat (SSR) and 1 sequence tagged site (STS) markers for genetic linkage map construction. Two QTL, which explained 48-61% of the total phenotypic variation of the HTAP resistance in Stephens, were identified. QYrst.wgp-6BS.1 was within a 3.9-cM region flanked by Xbarc101 and Xbarc136. QYrst.wgp-6BS.2 was mapped in a 17.5-cM region flanked by Xgwm132 and Xgdm113. Both two QTL were physically mapped to the short arm of chromosome 6B, but in different bins. Validation and polymorphism tests of the flanking markers in 43 wheat genotypes indicated that the molecular markers associated with these QTL should be useful in marker-assisted breeding programs to efficiently incorporate HTAP resistance into new wheat cultivars.  相似文献   

19.
During the past decade Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe has resulted in severe grain yield and quality losses of wheat (Triticum aestivum L.) in the Northern Great Plains of the U.S. Given the complexity of breeding for FHB resistance, molecular markers associated with this trait will be valuable in accelerating efforts to breed resistant cultivars. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) for FHB resistance in wheat using a set of lines obtained by several cycles of crossing to North Dakota adapted genotypes, which derived their resistance from cv. Sumai 3. Microsatellite markers spanning the wheat genome were used to screen parents and derived lines. Polymorphisms for parental alleles were compared to disease scores for Type II resistance. The probability of linkage between markers and introgressed resistance genes was calculated using a binomial probability formula based on the assumption that a molecular marker at a specific distance from the introgressed gene, in a near-isogenic line (NIL), will carry the donor-parent allele as a function of the distance between marker and gene and the number of backcrosses/selfs performed in deriving the NIL. Microsatellite loci Xgwm533 and Xgwm274 were significantly associated with QTL for FHB resistance.  相似文献   

20.
Sandor C  Georges M 《Genetics》2008,180(2):1167-1175
Imprinted quantitative trait loci (QTL) are commonly reported in studies using line-cross designs, especially in livestock species. It was previously shown that such parent-of-origin effects might result from the nonfixation of QTL alleles in one or both parental lines, rather than from genuine molecular parental imprinting. We herein demonstrate that if linkage disequilibrium exists between marker loci and nonfixed QTL, spurious detection of pseudo-imprinting is increased by an additional 40–80% in scenarios mimicking typical livestock situations. This is due to the fact that imprinting can be tested only in F2 offspring whose sire and dam have distinct marker genotypes. In the case of linkage disequilibrium between markers and QTL, such parents have a higher chance to have distinct QTL genotypes as well, thus resulting in distinct padumnal and madumnal allele substitution effects, i.e., QTL pseudo-imprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号