首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 801 毫秒
1.
Several crystal structure analyses of complexes of synthetic polyamine compounds, including N(1)-(2-(2-aminoethylamino))ethyl)ethane-1,2-diamine PA(222) and N(1)-(2-(2-(2-aminoethylamino)ethylamino)ethyl)ethane-1,2-diamine PA(2222), and left-handed Z-DNA d(CGCGCG)(2) have been reported. However, until now, there have been no examples of naturally occurring polyamines bound to the minor groove of the left-handed Z-DNA of d(CGCGCG)(2) molecule. We have found that spermidine, a natural polyamine, is connected to the minor groove of left-handed Z-DNA of d(CGCGCG)(2) molecule in a crystalline complex grown at 10 degrees C. The electron density of the DNA molecule was clear enough to determine that the spermidine was connected in the minor groove of two symmetry related molecules of left-handed Z-DNA d(CGCGCG)(2). This is the first example that a spermidine molecule can form a bridge conformation between two symmetry related molecules of left-handed Z-DNA d(CGCGCG)(2) in the minor groove.  相似文献   

2.
M Egli  L D Williams  Q Gao  A Rich 《Biochemistry》1991,30(48):11388-11402
We describe the three-dimensional X-ray structure of a complex of spermine bound to a Z-DNA duplex, [d(CGCGCG)]2, in the absence of any inorganic polyvalent cations. We have crystallized the DNA hexamer d(CGCGCG) in the exclusion of magnesium and other polyvalent ions and solved its structure at 1.0-A resolution. In the crystal of this pure-spermine form of Z-DNA, the relative orientation, position, and interactions of the DNA differ from the arrangement uniformly observed in over a dozen previously reported Z-DNA hexamers. Moreover, the conformation of the Z-DNA hexamer in this structure varies somewhat from those found in earlier structures. The DNA is compressed along the helical axis, the base pairs are shifted into the major groove, and the minor groove is more narrow. The packing of spermine-DNA complexes in crystals suggests that the molecular basis for the tendency of spermine to stabilize compact DNA structures derives from the capacity of spermine to interact simultaneously with several duplexes. This capacity is maximized by both the polymorphic nature and the length of the spermine cation. The length and flexibility of spermine and the dispersion of charge-charge, hydrogen-bonding, and hydrophobic bonding potential throughout the molecule maximize the ability of spermine to interact simultaneously with different DNA molecules.  相似文献   

3.
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 A resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C(3)H(10)N(2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.  相似文献   

4.
The Z-DNA crystal structures of d(CGCGTG) and d(CGCGCG) are compared by laser Raman spectroscopy. Raman bands originating from vibrations of the phosphodiester groups and sensitive to the DNA backbone conformation are similar for the two structures, indicating no significant perturbation to the Z-DNA backbone as a result of the incorporation of G.T mismatches. Both Z structures also exhibit Raman markers at 625 and 670 cm-1, assigned respectively to C3'-endo/syn-dG (internal) and C2'-endo/syn-dG conformers (3' terminus). Additional Raman intensity near 620 and 670 cm-1 in the spectrum of the d(CGCGTG) crystal is assigned to C4'-exo/syn-dG conformers at the mismatch sites (penultimate from the 5' terminus). A Raman band at 1680 cm-1, detected only in the d(CGCGTG) crystal, is assigned to the hydrogen-bonded dT residues and is proposed as a definitive marker of the Z-DNA wobble G.T pair. For aqueous solutions, the Raman spectra of d(CGCGTG) and d(CGCGCG) are those of B-DNA, but with significant differences between them. For example, the usual B-form marker band at 832 cm-1 in the spectrum of d(CGCGTG) is about 40% less intense than the corresponding band in the spectrum of d(CGCGCG), and the former structure exhibits a companion band at 864 cm-1 not observed for d(CGCGCG). The simplest interpretation of these results is that the conventional B-form OPO geometry occurs for only 6 of the 10 OPO groups of d(CGCGTG). The remaining four OPO groups, believed to be those at or near the mismatch site, are in an "unusual B" conformation which generates the 864 cm-1 band.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The crystal structure of the deoxyhexamer, d(CGCICG), has been determined and refined to a resolution of 1.7A. The DNA hexamer crystallises in space group P2(1)2(1)2(1) with unit cell dimensions of a = 18.412 +/- .017 A, b = 30.485 +/- .036A, and c = 43.318 +/- .024 A. The structure has been solved by rotation and translation searches and refined to an R-factor of 0.148 using 2678 unique reflections greater than 1.0 sigma (F) between 10.0-1.7 A resolution. Although the crystal parameters are similar to several previously reported Z-DNA hexamers, this inosine containing Z-DNA differs in the relative orientation, position, and crystal packing interactions compared to d(CGCGCG) DNA. Many of these differences in the inosine form of Z-DNA can be explained by crystal packing interactions, which are responsible for distortions of the duplex at different locations. The most noteworthy features of the inosine form of Z-DNA as a result of such distortions are: (1) sugar puckers for the inosines are of C4'-exo type, (2) all phosphates have the Zl conformation, and (3) narrower minor grove and compression along the helical axis compared to d(CGCGCG) DNA. In addition, the substitution of guanosine by inosine appears to have resulted in Watson-Crick type base-pairing between inosine and cytidine with a potential bifurcated hydrogen bond between inosine N1 and cytidine N3 (2.9 A) and O2 (3.3-3.A).  相似文献   

6.
DNA fragments crystallize in an unpredictable manner, and relationships between their crystal and solution conformations still are not known. We have studied, using circular dichroism spectroscopy, solution conformations of (G + C)-rich DNA fragments, the crystal structures of which were solved in the laboratory of one of the present authors. In aqueous trifluorethanol (TFE) solutions, all of the examined oligonucleotides adopted the same type of double helix as in the crystal. Specifically, the dodecamer d(CCCCCGCGGGGG) crystalized as A-DNA and isomerized into A-DNA at high TFE concentrations. On the other hand, the hexamer d(CCGCGG) crystallized in Z-form containing tilted base pairs, and high TFE concentrations cooperatively transformed it into the same Z-form as adopted by the RNA hexamer r(CGCGCG), although d(CCGCGG) could isomerize into Z-DNA in the NaCl + NiCl2) aqueous solution. The fragments crystallizing as B-DNA remained B-DNA, regardless of the solution conditions, unless they denatured or aggregated. Effects on the oligonucleotide conformation of 2-methyl-2,4-pentanediol and other crystallization agents were also studied. 2-Methyl-2,4-pentanediol induced the same conformational transitions as TFE but, in addition, caused an oligonucleotide condensation that was also promoted by the other crystallization agents. The present results indicate that the crystal double helices of DNA are stable in aqueous TFE rather than aqueous solution.  相似文献   

7.
The chemotherapeutic agent 5-fluorouracil is a DNA base analogue which is known to incorporate into DNA in vivo. We have solved the structure of the oligonucleotide d(CGCGFG), where F is 5-fluorouracil (5FU). The DNA hexamer crystallizes in the Z-DNA conformation at two pH values with the 5FU forming a wobble base pair with guanine in both crystal forms. No evidence of the enol or ionized form of 5FU is found under either condition. The crystals diffracted X-rays to a resolution of 1.5 A and their structures have been refined to R-factors of 20.0% and 17.2%, respectively, for the pH = 7.0 and pH = 9.0 forms. By comparing this structure to that of d(CGCGCG) and d(CGCGTG), we were able to demonstrate that the backbone conformation of d(CGCGFG) is similar to that of the archetypal Z-DNA. The two F-G wobble base pairs in the duplex are structurally similar to the T-G base pairs both with respect to the DNA helix itself and its interactions with solvent molecules. In both cases water molecules associated with the wobble base pairs bridge between the bases and stabilize the structure. The fluorine in the 5FU base is hydrophobic and is not hydrogen bonded to any solvent molecules.  相似文献   

8.
The structure of d(CGCGCG) crystallized in the presence of magnesium and sodium ions alone is compared to that of the spermine form of the molecule. The very high resolution nature of these structure determinations allows the first true examination of an oligonucleotide structure in fine detail. The values of bond distances and angles are compared to those derived from small molecule crystal structures. In addition, the interactions of cations and polyamines with the Z-DNA helix are analyzed. In particular, multiple cationic charges appear to offer enhanced stabilization for the Z-DNA conformation. The location of spermine molecules along the edge of the deep groove and also spanning the entrance to the groove emphasizes the importance of polyamines for stabilizing this left-handed structure. On averaging, we obtained very similar structural parameters for the two different structures with standard deviations generally smaller than the deviations of the crystallographic model from ideal values. This indicates a high degree of accuracy of the two structures, which have been refined using different data and different refinement methods. The derived bond lengths and angles may thus be more representative of this polymeric DNA structure than those derived from mono- and dinucleotide structures at a similar accuracy.  相似文献   

9.
A crystal of d(CGCGCG) in the Z-DNA lattice was soaked with ruthenium(III) hexaammine and its structure refined at 1.2 A resolution. Three unique metal complexes were found absorbed to each hexamer duplex. In addition, two symmetry-related binding sites were located, yielding a total of five ruthenium complexes bound to each d(CGCGCG) duplex. One unique site and its symmetry related site are nearly identical to the binding site of cobalt(III) hexaammine on Z-DNA. At that position, the metal complex bridges the convex surfaces of two adjacent Z-DNA strands by hydrogen bonds to the N7 and O6 functional groups of the guanine bases. The remaining three ruthenium three ruthenium(III) hexaammine binding sites are not present in the cobalt(III) hexaammine Z-DNA structure. Of these, two are related by symmetry and span the gap between the convex outer surface of one Z-DNA strand and the helical groove crevice of a neighboring strand. The third ruthenium site has no symmetry mate and involves interactions with only the deep groove. In this interaction, the metal complex hydrogen bonds to both the phosphate backbone and to a set of primary shell water molecules that extend the hydrogen bonding potential of the deep groove crevice out to the surface of the molecule. Solution studies comparing the circular dichroism spectra of low salt poly(dG-dC).poly(dG-dC) samples in the presence of ruthenium(III) and cobalt(III) hexammine show that the ruthenium complex does stabilize Z-DNA in solution, but not as effectively as the cobalt analogue. This suggests that some of the interactions available for the larger ruthenium complex may not be important for stabilization of the left-handed DNA conformation.  相似文献   

10.
Various oligonucleotides containing 8-methylguanine (m8G) have been synthesized and their structures and thermodynamic properties investigated. Introduction Of M8G into DNA sequences markedly stabilizes the Z conformation under low salt conditions. The hexamer d(CGC[M8G]CG)2 exhibits a CD spectrum characteristic of the Z conformation under physiological salt conditions. The NOE-restrained refinement unequivocally demonstrated that d(CGC[m8G]CG)2 adopts a Z structure with all guanines in the syn conformation. The refined NMR structure is very similar to the Z form crystal structure of d(CGCGCG)2, with a root mean square deviation of 0.6 between the two structures. The contribution of m8G to the stabilization of Z-DNA has been estimated from the mid-point NaCl concentrations for the B-Z transition of various m8G-containing oligomers. The presence of m8G in d(CGC[m8G]CG)2 stabilizes the Z conformation by at least deltaG = -0.8 kcal/mol relative to the unmodified hexamer. The Z conformation was further stabilized by increasing the number of m8Gs incorporated and destabilized by incorporating syn-A or syn-T, found respectively in the (A,T)-containing alternating and non-alternating pyrimidine-purine sequences. The results suggest that the chemically less reactive m8G base is a useful agent for studying molecular interactions of Z-DNA or other DNA structures that incorporate syn-G conformation.  相似文献   

11.
The structure of d(CGCGm4CG) were m4C = N4-methylcytosine has been determined by crystallographic methods. The crystals are multifaced prisms, with orthorhombic space group P2(1)2(1)2(1) and unit cell dimensions of a = 17.98, b = 30.77 and c = 44.75A. The asymmetric unit consists of one duplex of hexanucleotide and 49 waters. The R-factor is 0.189 for 1495 reflections with F > or = sigma(F) to a resolution limit of 1.8A. The double helix has a Z-DNA type structure which appears to be intermediate in structure to the two previously characterised structure types for Z-DNA hexamers. The two m4C.G base-pairs adopt structures that are very similar to those of the equivalent base-pairs in the structure of the native sequence d(CGCGCG) except for the presence of the methyl groups which are trans to the N3 atoms of their parent nucleotides and protrude into the solvent region. The introduction of the modified base-pairs into the d(CGCGCG) duplex appears to have a minimal effect on the overall base-pair morphology of the Z-DNA duplex.  相似文献   

12.
We have solved the single crystal structure to 1.2-A resolution of the Z-DNA sequence d(CGCGCG) soaked with copper(II) chloride. This structure allows us to elucidate the structural properties of copper in a model that mimics a physiologically relevant environment. A copper(II) cation was observed to form a covalent coordinate bond to N-7 of each guanine base along the hexamer duplex. The occurrence of copper bound at each site was dependent on the exposure of the bases and the packing of the hexamers in the crystal. The copper at the highest occupied site was observed to form a regular octahedral complex, with four water ligands in the equatorial plane and a fifth water along with N-7 of the purine base at the axial positions. All other copper complexes appear to be variations of this structure. By using the octahedral complex as the prototype for copper(II) binding to guanine bases in the Z-DNA crystal, model structures were built showing that duplex B-DNA can accommodate octahedral copper(II) complexes at the guanine bases as well as copper complexes bridged at adjacent guanine residues by a reactive dioxygen species. The increased susceptibility to oxidative DNA cleavage induced by copper(II) ions in solution of the bases located 5' to one or more adjacent guanine residues can thus be explained in terms of the cation and DNA structures described by these models.  相似文献   

13.
We report here the crystal structure of the DNA hexamer duplex d(CGCGCA).d(TGCGCG) at 1.71 Å resolution. The crystals, in orthorhombic space group, were grown in the presence of cobalt hexammine, a known inducer of the left-handed Z form of DNA. The interaction of this ion with the DNA helix results in a change of the adenine base from the common amino tautomeric form to the imino tautomer. Consequently the A:T base pair is disrupted from the normal Watson–Crick base pairing to a ‘wobble’ like base pairing. This change is accommodated easily within the helix, and the helical parameters are those expected for Z-DNA. When the cobalt hexammine concentration is decreased slightly in the crystallization conditions, the duplex crystallizes in a different, hexagonal space group, with two hexamer duplexes in the asymmetric unit. One of these is situated on a crystallographic 6-fold screw axis, leading to disorder. The tautomeric shift is not observed in this space group. We show that the change in inter-helix interactions that lead to the two different space groups probably arise from the small decrease in ion concentration, and consequently disordered positions for the ion.  相似文献   

14.
In crystals of complexes of thermine and d(CGCGCG)2 molecules grown at 4, 10, and 20 °C, the numbers of thermine molecules connected to the DNA molecule were dependent on the temperature of the crystallization. Two molecules of thermine and one Mg2+ ion were connected to DNA molecule when thermine and d(CGCGCG)2 were co-crystallized at 4 and at 20 °C. When an increased concentration of magnesium and thermine molecules were co-crystallized with d(CGCGCG)2 molecules at 10 °C, three Mg2+ ions and only one thermine molecule were bound with a d(CGCGCG)2 molecule. The number of polyamines and of Mg2+ ions connected to DNA was dependent on the atomic values of the polyamine and of the metal ion. The binding of more Mg2+ ions occurred when the atomic value of Mg2+ exceeded that of the corresponding mono- or polyamine, and when the Mg2+ ion concentration was elevated. Furthermore, this study is the first documentation of a naturally occurring polyamine bound to the minor groove of DNA in a crystal structure.  相似文献   

15.
To investigate the role of divalent cations in crystal packing, a Dickerson-Drew-type dodecamer with the sequence d(CGCGAATXCGCG), containing 2'-deoxy-5-formyluridine at X, was crystallized under several conditions with Ba(2+) ion instead of Mg(2+) ion. The crystal structure is isomorphous with the original Dickerson-type crystal containing Mg(2+) ion. In the Mg(2+)-free crystals, however, a five-membered ring of water molecules occupies the same position as the magnesium site found in the Mg(2+)-containing crystals, and connects the two duplexes similarly to the hydrated Mg(2+) ion. It has been concluded that the five-membered water molecules can take the place of the hydrated magnesium cation in crystallization. The 5-formyluracil residues form the canonical Watson-Crick pair with the opposite adenine residues.  相似文献   

16.
17.
B Pan  C Ban  M C Wahl    M Sundaralingam 《Biophysical journal》1997,73(3):1553-1561
The crystal structure of the DNA heptamer d(GCGCGCG) has been solved at 1.65 A resolution by the molecular replacement method and refined to an R-value of 0.184 for 3598 reflections. The heptamer forms a Z-DNA d(CGCGCG)2 with 5'-overhang G residues instead of an A-DNA d(GCGCGC)2 with 3'-overhang G residues. The overhang G residues from parallel strands of two adjacent duplexes form a trans reverse Hoogsteen G x G basepair that stacks on the six Z-DNA basepairs to produce a pseudocontinuous helix. The reverse Hoogsteen G x G basepair is unusual in that the displacement of one G base relative to the other allows them to participate in a bifurcated (G1)N2 . . . N7(G8) and an enhanced (G8)C8-H . . . O6(G1) hydrogen bond, in addition to the two usual hydrogen bonds. The 5'-overhang G residues are anti and C2'-endo while the 3'-terminal G residues are syn and C2'-endo. The conformations of both G residues are different from the syn/C3'-endo for the guanosine in a standard Z-DNA. The two cobalt hexammine ions bind to the phosphate groups in both GpC and CpG steps in Z(I) and Z(II) conformations. The water structure motif is similar to the other Z-DNA structures.  相似文献   

18.
Cobalt hexammine [Co(NH3)6(3+)] is an efficient DNA complexing agent which significantly perturbs nucleic acid secondary structure. We have employed red excitation (647.1 nm) from a krypton laser to obtain Raman spectra of the highly colored complexes formed between cobalt hexammine and crystals of the DNA oligomers, d(5BrCGAT5BrCG) and d(CGCGATCGCG), both of which incorporate out-of-alternation pyrimidine/purine sequences. The Co(NH3)6(3+) complex of d(5BrCGAT5BrCG) exhibits a typical Z-form Raman signature, similar to that reported previously for the alternating d(CGCGCG) sequence. Comparison of the Raman bands of d(5BrCGAT5BrCG) with those of other oligonucleotide and polynucleotide structures suggests that C3'-endo/syn and C3'-endo/anti thymidines may exhibit distinctive nucleoside conformation markers, and tentative assignments are proposed. The Raman markers for C2'-endo/anti adenosine in this Z-DNA are consistent with those reported previously for B-DNA crystals containing C2'-endo/anti dA. Raman bands of the cobalt hexammine complex of d(CGCGATCGCG) are those of B-DNA, but with significant differences from the previously characterized B-DNA dodecamer, d(CGCAAATTTGCG). The observed differences suggest an unusual deoxyguanosine conformer, possibly related to a previously characterized structural intermediate in the B-->Z transition. The present results show that crystallization of d(CGCGATCGCG) in the presence of cobalt hexammine is not alone sufficient to induce the left-handed Z-DNA conformation. This investigation represents the first application of off-resonance Raman spectroscopy for characterization of highly chromophoric DNA and illustrates the feasibility of the Raman method for investigating other structurally perturbed states of DNA-cobalt hexammine complexes.  相似文献   

19.
The DNA oligomer d(CGCGTG) crystallizes as a Z-DNA double helix containing two guanine-thymine base pair mismatches of the wobble type. The crystal diffracts to 1 A resolution and the structure has been solved and refined. At this resolution, a large amount of information is revealed about the organization of the water molecules in the lattice generally and more specifically around the wobble base pairs. By comparing this structure with the analogous high resolution structure of d(CGCGCG) we can visualize the structural changes as well as the reorganization of the solvent molecules associated with wobble base pairing. There is only a small distortion of the Z-DNA backbone resulting from introduction of the GT mismatched base pairs. The water molecules cluster around the wobble base pair taking up all of the hydrogen bonding capabilities of the bases due to wobble pairing. These bridging water molecules serve to stabilize the base-base interaction and, thus, may be generally important for base mispairing either in DNA or in RNA molecules.  相似文献   

20.
Lee EH  Seo YJ  Ahn HC  Kang YM  Kim HE  Lee YM  Choi BS  Lee JH 《FEBS letters》2010,584(21):4453-4457
The Yaba-like disease viruses (YLDV) are members of the Yatapoxvirus family and have double-stranded DNA genomes. The E3L protein, which is essential for pathogenesis in the vaccinia virus, consists of two domains: an N-terminal Z-DNA binding domain and a C-terminal RNA binding domain. The crystal structure of the E3L orthologue of YLDV (yabZαE3L) bound to Z-DNA revealed that the overall structure of yabZαE3L and its interaction with Z-DNA are very similar to those of hZαADAR1. Here we have performed NMR hydrogen exchange experiments on the complexes between yabZαE3L and d(CGCGCG)2 with a variety of protein-to-DNA molar ratios. This study revealed that yabZαE3L could efficiently change the B-form helix of the d(CGCGCG)2 to left-handed Z-DNA via the active-mono B-Z transition pathway like hZαADAR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号