首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The objective was to compare pregnancy rates in domestic cats using fresh semen for intravaginal artificial insemination (IVI), either at the time of hCG treatment for induction of ovulation, or 28 h later, and to compare pregnancy rates following IVI or transcervical intrauterine insemination (IUI) of frozen-thawed semen. Eighteen queens were inseminated during 39 estrus cycles. Fresh semen with 13.5+/-5.4 x 10(6) sperm (range, 6.8-22 x 10(6)) collected by electroejaculation from four male cats was used in Experiment 1, and cryopreserved semen (20 x 10(6) sperm, with 70+/-5% post-thaw motility) from one male cat was used in Experiment 2. Serum concentrations of estradiol-17beta and progesterone were determined in most queens on the day of AI and again 30-40 days later. Treatment with 100 IU of hCG 3 days after the onset of estrus induced ovulation in 95% of treated queens. Pregnancy rates to IVI with fresh semen at the time of hCG administration versus 28 h later were not different (P=0.58); overall 33% (5/15) of the queens became pregnant. For frozen-thawed semen, AI was consistently done 28h after hCG administration; IUI and IVI resulted in pregnancy rates of 41.7% (5/12), whereas no queen (0/12) became pregnant by IVI (P=0.0083). In conclusion, an acceptable pregnancy rate was obtained with frozen-thawed semen in the domestic cat by non-surgical transcervical IUI; this method might also be useful in other small felids.  相似文献   

2.
Sieme H  Bonk A  Hamann H  Klug E  Katila T 《Theriogenology》2004,62(5):915-928
The effects of different artificial insemination (AI) techniques and sperm doses on pregnancy rates of normal Hanoverian breed mares and mares with a history of barrenness or pregnancy failure using fresh or frozen-thawed sperm were investigated. The material included 187 normal mares (148 foaling and 39 young maiden mares) and 85 problem mares with abnormal reproductive history. Mares were randomly allotted into groups with respect to AI technique (routine AI into the uterine body, transrectally controlled deep intracornual AI ipsilateral to the preovulatory follicle, or hysteroscopic AI onto the uterotubal junction ipsilateral to the preovulatory follicle), storage method of semen (fresh, frozen-thawed), AI volume (0.5, 2, 12 ml), and sperm dose (50 x 10(6) or 300 x 10(6) progressively motile sperm (pms) for fresh semen and 100 or 800 x 10(6) frozen-thawed sperm with >35% post-thaw motility). The mares were inseminated once per cycle, 24 h after hCG administration when fresh semen was used, or 30 h for frozen-thawed semen. Differences in pregnancy rates between treatment groups were analyzed by Chi-squared test, and for most relevant factors (insemination technique, mare, semen, and stallion) expectation values and confidence intervals were calculated using multivariate logistic models. Neither insemination technique, volume, sperm dose, nor mare or stallion had significant effects (P > 0.05) on fertility. Type of semen, breeding mares during foal heat, and an interaction between insemination technique, semen parameters, and mares did have significant effects (P < 0.05). In problem mares, frozen semen AI yielded significantly lower pregnancy rates than fresh semen AI (16/43, 37.2% versus 25/42, 59.5%), but this was not the case in normal mares. In normal mares, hysteroscopic AI with fresh semen gave significantly (P < 0.05) better pregnancy rates than uterine body AI (27/38, 71% versus 18/38, 47.3%), whereas in problem mares this resulted in significantly lower pregnancy rates than uterine body AI (5/15, 33.3% versus 16/19, 84.2%). Our results demonstrate that for problem mares, conventional insemination into the uterine body appears to be superior to hysteroscopic insemination and in normal mares, the highest pregnancy rates can be expected by hysteroscopic insemination.  相似文献   

3.
4.
In this study, we tested the hypothesis that insemination of mares with twice the recommended dose of cooled semen (2 x 10(9) spermatozoa) would result in higher pregnancy rates than insemination with a single dose (1 x 10(9) spermatozoa) or with 1 x 10(9) spermatozoa on each of 2 consecutive days. A total of 83 cycles from 61 mares was used. Mares were randomly assigned to 1 of 3 treatment groups when a 40-mm follicle was detected by palpation and ultrasonography. Mares in Group 1 were inseminated with 1 x 10(9) progressively motile spermatozoa that had been cooled in a passive cooling unit to 5 degrees C and stored for 24 h. A second aliquot of semen from the same collection was stored for an additional 24 h and inseminated at 48 h after collection. Mares in Group 2 were inseminated once with 1 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. Group 3 mares were inseminated once with 2 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. All mares were given 2500 IU i.v. hCG at the first insemination. Pregnancy was determined by ultrasonography 12, 14 and 16 d after ovulation. On Day 16, mares were administered i.m. 10 mg of PGF2 alpha and, upon returning to estrus, were randomly reassigned to a group for repeated treatment. Semen was collected from one of 3 stallions every 3 d; mares with a 40-mm ovarian follicle were inseminated with semen from the stallion collected on the preceding day. Semen was allocated into doses containing 1 x 10(9) progressively motile spermatozoa, diluted with dried skim milk-glucose extender to a concentration of 25 x 10(6) motile spermatozoa/ml (total volume 40 ml), placed in a passive cooling unit and cooled to 5 degrees C for 24 or 48 h. Response was measured by number of mares showing pregnancy. Data were analyzed by Chi square. Mares inseminated twice with 1 x 10(9) progressively motile spermatozoa on each of two consecutive days had a higher pregnancy rate (16/25, 64%; P < 0.05) than mares inseminated once with 1 x 10(9) progressively motile spermatozoa (9/29, 31%) or those inseminated once with 2 x 10(9) progressively motile spermatozoa (12/29, 41%). Pregnancy rates did not differ significantly (P > 0.10) among stallions (69, 34 and 32%). Interval from last insemination to ovulation was 0.9, 2.0 and 2.0 d for mares in Groups 1, 2 and 3, respectively. Based on these results, the optimal insemination regimen is a dose of 1 x 10(9) progressively motile spermatozoa given on two consecutive days. However, a shorter interval (< or = 24 h rather than > 0.9 d) between insemination and ovulation may affect pregnancy rates, and needs to be investigated.  相似文献   

5.
It has become a common practice in the equine breeding industry to send 2 insemination doses for breeding with transported cooled semen, one to be used for the initial insemination upon arrival, and the other to be held a second insemination the next day. One fertile stallion and 36 fertile mares were used to determine if breeding once with 1 dose of semen cooled for 24 h would improve fertility compared with breeding twice, 1 d apart, with half the dose of semen cooled for 24 h on the first day of breeding and half cooled for 48 h on the second day of breeding. Mares were given two intramuscular injections of 10 mg PGF2 alpha 14 d apart. Following the second injection, mares were teased with a stallion and their ovaries were scanned by transrectal ultrasonography daily. When a dominant follicle (> 35 mm diameter) was detected, 1500 units hCG were injected intravenously, and the mares were inseminated. Semen was collected in advance of anticipated breeding, mixed in nonfat dry milk solids-glucose extender to a concentration of 25 million sperm/mL, and placed in 2 commercial cooling containers for 24 or 48 h of storage prior to breeding. Mares were randomly assigned to 1 of 2 insemination treatment groups: 1) Group T1 (n = 18), in which mares were inseminated on the day of hCG injection with 500 million spermatozoa cooled for 24 h, or 2) Group T2 (n = 18), in which mares were inseminated on the day of hCG injection with 250 million spermatozoa cooled for 24 h, and again on the following day with 250 million spermatozoa cooled for 48 h. Pregnancy status was confirmed by transrectal ultrasonographic examination at 14 and 16 d after ovulation. Pregnancy rates were the same for both insemination treatment groups (12/18; 67%). There was no advantage to holding half of the insemination dose for rebreeding on the following day.  相似文献   

6.
Ninety five mares were inseminated with frozen semen either within 12 h before ovulation or within 8 h after ovulation. The effect of preovulatory versus postovulatory insemination (AI) on the subsequent detection of uterine fluid was studied. The overall pregnancy rate was 43% and this was not significantly influenced by preovulatory or postovulatory insemination. When mares were first examined 12 h after AI, 18 of 52 mares (35%) had accumulated uterine fluid. However, when mares were first examined 18 to 24 h after AI, only 6 of 43 mares (14%) had uterine fluid. Presence of intrauterine fluid significantly lowered pregnancy rates. Timing of insemination did not affect incidence of uterine fluid. Serum concentrations of estrogen and progesterone at time of insemination did not influence uterine clearance or pregnancy rates, but both hormones were higher at preovulatory than at postovulatory inseminations. We concluded that there was no evidence that postovulatory inseminations would predispose mares to persistence of uterine fluid after AI.  相似文献   

7.
Katila  T.  Celebi  M.  Koskinen  E. 《Acta veterinaria Scandinavica》1996,37(3):361-365
Thirty-four mares were inseminated with frozen semen from one stallion during 2 oestrous cycles, every 48 h until ovulation took place and within 12 h after ovulation. Semen was frozen using the Colorado method. The insemination dose was from 200 to 400×106 progressively motile spermatozoa. Ovaries were examined every 12 h to determine time of ovulation. Examination for pregnancy was carried out using ultrasonography, 15 days after ovulation. Thirty-five per cent of mares inseminated < 24 h and 23% of mares inseminated between 24 - 48 h before ovulation were pregnant (p = 0.388). The pregnancy rate in all mares inseminated before ovulation was 30%. In the mares inseminated within 12 h of ovulation, it was 18% (p = 0.253). Younger mares (aged 4-10 yr) had a higher pregnancy rate (59%) than older mares (aged 11-15 yr) (23%), but the difference was not statistically significant (p = 0.057).  相似文献   

8.
The widespread use of artificial insemination (AI) in sheep is currently prevented due to the lack of a cost effective insemination technique utilising frozen-thawed semen. The objective of the present study was to determine if the deposition of frozen-thawed semen in the vaginal fornix would result in a pregnancy rate comparable to that achieved following cervical insemination. Multiparous ewes of various breeds were synchronised and inseminated into either the vaginal fornix (n=78) or the cervix (n=79), at 57 h post sponge removal, with frozen-thawed semen. Information on mucus secretion and the depth to which it was possible to penetrate the cervix at insemination (cervically inseminated ewes only) was recorded at the time of AI. Pregnancy rate was subsequently determined either by return to service (oestrus) or after slaughter 30 days post insemination. Insemination site did not significantly influence pregnancy rate using frozen-thawed semen (36.2% compared to 27.6% for cervical and vaginal fornix insemination, respectively; P=0.26). Whilst depth of cervical penetration was positively associated with pregnancy rate (P<0.05), this association needs to be interpreted with caution as none of the ewes where the cervix could not be penetrated (score=0) was pregnant. In conclusion, pregnancy rate following insemination of frozen-thawed semen into the vaginal fornix was within 10% points of that obtained following cervical AI of frozen-thawed semen. As insemination into the vaginal fornix is technically easier than cervical insemination, it may be more practical for use in large scale applications.  相似文献   

9.
In three experiments, the onset of oestrus, time of ovulation and lambing after intrauterine insemination with frozen-thawed semen were examined following synchronisation of oestrus using intravaginal progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG at sponge removal.

The number (and percentage) of ewes detected in oestrus 12, 24, 36, 48, 60 and 72 h after sponge removal was 1 (0.3), 2 (0.6), 17 (5.2), 120 (36.7), 65 (20.0) and 10 (3.1) respectively. One hundred and twelve ewes (34.3%) remained unmarked. Egg fertilisation rates were not different between ewes irrespective of time of onset of oestrus or whether or not ewes were marked.

The median time of ovulation with respect to sponge removal (with 95% fiducial limits) for ewes joined with vasectomised rams (10:1) at spronge removal (teased ewes) was 55.8 h (54.61–57.09) and for unteased ewes 59.7 h (58.27–61.12).

In the third experiment, a total of 394 ewes were inseminated by laparoscopy with frozen-thawed semen. The percentage of ewes lambing and lambs born per ewe inseminated, and number of lambs born per ewe lambing for inseminations 48, 60, 72 and 78 h after sponge removal were 45.9, 57.7 and 1.25; 55.1, 72.0 and 1.31; 57.4, 80.9 and 1.41; and 39.3, 60.7 and 1.54, and for 59 control ewes receiving fresh semen by cervical insemination 47.5, 69.5 and 1.46 respectively. The lambing data after insemination with frozen semen was not different to that of the controls. The percentage of ewes lambing and lambs born per ewe inseminated increased with time of insemination at 48, 60 and 72 h (linear, P < 0.01) but was lower for inseminations at 78 h after sponge removal. Number of lambs born per ewe lambing increased with time of insemination after sponge removal (linear, P < 0.05).  相似文献   


10.
Semen from 3 stallions was extended using 2 methods (Kenney extender and a modified Kenney extender), slowly cooled, and stored for 41 ± 6 (s.d.) h before insemination. An insemination dose (40 ml) contained 1.5-2 billion spermatozoa. In the experiment, 26 mares were inseminated in 30 cycles. The pregnancy rate per cycle obtained with sperm stored in the Kenney extender was 87% (n=15). When the semen was extended with the modified extender, centrifuged and stored, the pregnancy rate was 60% (n=15). Inseminations were done every other day until ovulation was detected. If a mare ovulated more than 24 h after the last insemination, she was inseminated also after ovulation. The single-cycle pregnancy rate was 58% when the mares were inseminated only before ovulation (n=19) but the rate was 100% when the inseminations were done both before and after ovulation (n=9) or only after ovulation (n=2). The difference in pregnancy rates was significant (p<0.05), indicating that postovula-tory inseminations probably serve to ensure the pregnancies. The extending and handling methods used in this study resulted in a combined pregnancy rate of 73%, and appear thus to be useful for storing stallion semen for approximately 2 days.  相似文献   

11.
The aim of the present study was to evaluate the effect of artificial insemination time (before or after ovulation) using either fresh or frozen-thawed boar semen on embryo viability and early pregnancy rate. Seventy-seven prepubertal crossbred (Landrace x Large White x Duroc) gilts were inseminated in 4 treatments. Artificial inseminations were performed 6 h either after (A) or before (B) ovulation using frozenthawed (A-frozen, n = 19; B-frozen, n = 19) or fresh semen (A-fresh, n = 21; B-fresh, n = 18). The gilts were induced to puberty by administration of 400 IU of eCG and 200 IU hCG (sc) followed by 500 IU of hCG (sc) 72 h later. Ovulation was predicted to occur 42 h after the second injection. All animals were slaughtered 96 h after AI. Embryos were collected and classified as viable (5- to 8-cells, morulae, compacted morulae and early blastocysts) and nonviable (fragmented, degenerated and 1- to 4-cell embryos). The total embryo viability rate was: 64.3% (A-frozen), 54.2% (A-fresh), 76.0% (B-frozen), 91.9% (B-fresh); (A-fresh vs B-fresh, P = 0.018; A-frozen vs B-frozen, P = 0.094). It was observed that AI before ovulation resulted in a higher percentage of total viable embryos than AI after ovulation (P = 0.041). The early pregnancy rate, defined as presence of at least one viable embryo, was 78.9, 80.9, 84.2 and 94.4% for A-frozen, A-fresh, B-frozen, B-fresh, respectively. There was no significant difference in the early pregnancy rate among groups. In conclusion, there was a detrimental effect upon total embryo viability rate when AI was performed after ovulation with either frozen-thawed or fresh semen. The total embryo viability rate and the early pregancy rate were not affected by AI with either frozen-thawed or fresh semen regardless of the time of AI.  相似文献   

12.
Pregnancy rates with cooled equine semen can be unsatisfactory and show great variation. Information about first cycle pregnancy rates and pregnancy rates per cycle are often lacking from publicly available records. This retrospective cohort study was performed to evaluate the fertility of the Norwegian Coldblooded trotter. The aim of the study was to compare the breeding results after insemination with fresh, extended with those of cooled, shipped semen among Norwegian Coldblooded trotter mares. First cycle pregnancy rate was the main parameter used to measure fertility. Stud-books were collected from four studs from the years 2006–2010. Statistical analyses were done in Stata using Chi square test and multivariable analyses where different models were compared based on Akaike’s information criterion. First cycle pregnancy rate, seasonal pregnancy rate and foaling rate all showed significant differences (P < 0.0001) when comparing mares inseminated at stud with mares inseminated with cooled, shipped semen, favoring artificial insemination (AI) at stud. First cycle pregnancy rate was 55.1 % for mares inseminated at stud with fresh extended semen and 42.2 % for mares inseminated with cooled shipped semen. The overall pregnancy rate per cycle was 84.4 % for AI at stud and 66.9 % for cooled, shipped semen. The parameters stud, mare age, number of inseminations within an estrus cycle and individual stallion were also investigated for influence on fertility. Few retrospective studies include the parameter of first cycle pregnancy rates. Our study does not differ dramatically when comparing seasonal pregnancy rates and foaling rates with similar studies. Fertility parameters for the Norwegian Coldblooded trotter do not differ significantly from most other studies of Coldblooded mares and other mare breeds around the world. But the difference in fertility parameters between AI at stud to AI with cooled semen between our study and others, indicates that higher pregnancy rates in Norwegian Coldblooded trotter may be possible.  相似文献   

13.
Proper timing of insemination for optimal conception is accomplished by frequent palpations per rectum, by ultrasonography of the preovulatory follicle and/or by treatment with hCG or GnRH. Sustained release of GnRH from implants has been shown to hasten ovulation. Therefore, 2 studies were conducted to evaluate the efficacy of a GnRH analog, deslorelin, for hastening ovulation in nonlactating cyclic mares. The GnRH implant was 2.3 x 3.7 mm and released deslorelin for 2 to 3 days. In Experiment 1, 60 nonlactating, cycling mares were assigned to 1 of 5 doses: 0, 1.2, 1.7, 2.2 and 2.7 mg per implant. Mares were assigned sequentially on the first day of estrus (Day 1). Ovaries were examined per rectum and with ultrasonography every 12 h until ovulation. Once the mares obtained a follicle >30 mm, they were injected subcutaneously with a GnRH implant. The mares were inseminated every other day during estrus with semen from 1 of 3 stallions. Pregnancy was determined with ultrasonography. Experiment 2, 40 nonlactating, cyclic mares were assigned to 1 of 5 treatments (same treatments as in Experiment 1). Data were obtained on interval to ovulation, duration of estrus and pregnancy rates at 12, 18 and 35 d after ovulation. Time to ovulation was shorter (P<0.05) in GnRH-treated mares than in control mares in the Experiment 1. Mean time to ovulation was 68, 49, 48, 47, 44 h in Experiment 1, and 91, 66, 58, 46, 58 h in Experiment 2 for mares given 0, 1.2, 1.7, 2.2 and 2.7 mg/mare in the 2 trials. Averaged for both experiments, the proportion of mares ovulating within 48 h of treatment was 40, 75, 85, 90 and 90% for 0, 1.2, 1.7, 2.2 and 2.7 mg/mare. For both experiments, there was no effect of GnRH on pregnancy rate. In summary, a subcutaneous implant containing GnRH analog induced ovulation in most mares by 48 h of injection, and there was no advantage of doses higher than 2.2 mg/mare.  相似文献   

14.
Sieme H  Katila T  Klug E 《Theriogenology》2004,61(4):769-784
This study analyzed effects of different methods and intervals of semen collection on the quantity and quality of fresh, cool-stored, and frozen-thawed sperm and fertility of AI stallions. In Experiment 1, ejaculates were obtained from six stallions (72 ejaculates per stallion) using fractionated versus non-fractionated semen collection techniques. Initial sperm quality of the first three jets of the ejaculate was not different from that of total ejaculates. Centrifugation of sperm-rich fractions before freezing improved post-thaw motility and sperm membrane integrity when compared to non-centrifuged sperm-rich fractions or non-fractionated centrifuged ejaculates (P<0.05). In Experiment 2, semen from four stallions (60-70 ejaculates per stallion) was collected either once daily or two times 1h apart every 48 h. The first ejaculates of double collections had significantly higher sperm concentrations, percentages of progressively motile sperm (PMS) after storage for 24h at 5 degrees C and lower percentages of midpiece alterations than single daily ejaculates. Semen collected once daily showed significantly lower values of live sperm after freezing and thawing than the first ejaculate of two ejaculates collected 1h apart every 48 h. In Experiment 3, semen was collected from 36 stallions (> or =12 ejaculates per stallion) during the non-breeding season and the time to ejaculation and the number of mounts was recorded. When time to ejaculation and the number of mounts increased, volume and total sperm count (TSC) also increased (P<0.05), whereas a decrease was observed in sperm concentration, percentage of PMS after storage for 24 h at 5 degrees C, percentage of membrane-intact sperm in fresh semen (P<0.05) as well as motility and percentage of membrane-intact sperm of frozen-thawed sperm (P<0.05). In Experiment 4, AI data of 71 stallions were retrospectively analyzed for the effect of number of mounts per ejaculation and frequency, time interval of semen collections on pregnancy, and foaling rates (FRs) of mares. Semen volume increased, but sperm concentration and percentage of PMS after 24-h cool-storage decreased with increasing number of mounts on the phantom (P<0.05). A statistically significant inter-relationship was demonstrated between frequency and interval of semen collection and FR. Mares inseminated with stallions from which semen was collected frequently (> or =1 on an average per day) showed significantly higher FRs than mares inseminated with semen from stallions with a daily collection frequency of 0.5-1 or <0.5. FR of mares inseminated with stallions having 0.5-1 days between semen collections was significantly better than FR of mares that were inseminated with stallions having semen collection intervals of 1-1.5 days or >2.5 days.  相似文献   

15.
The objective was to improve pregnancy per artificial insemination (P/AI; 35-42 d after AI) in virgin Jersey heifers bred by AI of sex-sorted semen after being detected in estrus. Giving 100 μg of GnRH at first detection of estrus, with AI 12 h later, did not affect P/AI in Experiment I [GnRH = 47.2% (100/212) vs. No GnRH = 51.7% (104/201); P = 0.38] or Experiment II [GnRH = 53.1% (137/258) vs. No GnRH = 48.6% (122/251); P = 0.43]. In these two experiments, estrus detection was done with tail-head chalk or a HeatWatch® system, respectively. In Experiment III, a single insemination dose (2.1 × 106 sperm) 12 h after estrus detection (n = 193), a double dose at 12 h (n = 193), or a double dose involving insemination 12 and 24 h after estrus detection (n = 190) did not affect P/AI (87/193 = 45.1%, 85/193 = 44.0%, and 94/190 = 49.5%, respectively; P = 0.51). However, P/AI was influenced by the number of AI service (First, 115/208 = 55.3%a; Second, 94/204 = 46.1%a; and Third, 57/165 = 34.8%b; P = 0.004). In Experiment IV, the P/AI of heifers inseminated from 12 to 16 h after the onset of estrus (40/106 = 37.7%) was less (P = 0.03) than those inseminated from 16.1 to 20 h (85/164 = 51.8%), and 20.1 to 24 h (130/234 = 55.6%). However, the P/AI for heifers inseminated from 24.1 to 30 h (61/134 = 45.5%) did not differ from that of any other interval. In conclusion, in Jersey heifers inseminated with sex-sorted semen, P/AI was not significantly affected by giving GnRH at detection of estrus or a double insemination dose, but it was higher with AI 16.1 to 24 h vs. 12 to 16 h after the onset of estrus.  相似文献   

16.
《Theriogenology》2011,75(9):1636-1642
The objective was to improve pregnancy per artificial insemination (P/AI; 35–42 d after AI) in virgin Jersey heifers bred by AI of sex-sorted semen after being detected in estrus. Giving 100 μg of GnRH at first detection of estrus, with AI 12 h later, did not affect P/AI in Experiment I [GnRH = 47.2% (100/212) vs. No GnRH = 51.7% (104/201); P = 0.38] or Experiment II [GnRH = 53.1% (137/258) vs. No GnRH = 48.6% (122/251); P = 0.43]. In these two experiments, estrus detection was done with tail-head chalk or a HeatWatch® system, respectively. In Experiment III, a single insemination dose (2.1 × 106 sperm) 12 h after estrus detection (n = 193), a double dose at 12 h (n = 193), or a double dose involving insemination 12 and 24 h after estrus detection (n = 190) did not affect P/AI (87/193 = 45.1%, 85/193 = 44.0%, and 94/190 = 49.5%, respectively; P = 0.51). However, P/AI was influenced by the number of AI service (First, 115/208 = 55.3%a; Second, 94/204 = 46.1%a; and Third, 57/165 = 34.8%b; P = 0.004). In Experiment IV, the P/AI of heifers inseminated from 12 to 16 h after the onset of estrus (40/106 = 37.7%) was less (P = 0.03) than those inseminated from 16.1 to 20 h (85/164 = 51.8%), and 20.1 to 24 h (130/234 = 55.6%). However, the P/AI for heifers inseminated from 24.1 to 30 h (61/134 = 45.5%) did not differ from that of any other interval. In conclusion, in Jersey heifers inseminated with sex-sorted semen, P/AI was not significantly affected by giving GnRH at detection of estrus or a double insemination dose, but it was higher with AI 16.1 to 24 h vs. 12 to 16 h after the onset of estrus.  相似文献   

17.
Data were analysed retrospectively from fourteen breeding seasons at an Equine Fertility Clinic for the effect of interval between pre- and postovulatory examinations for immediate postovulatory insemination on pregnancy rate (PR) and embryo loss rate (ELR). Mares of various breeds and ages were examined at intervals which varied from 0.5 to 15h between the pre- and postovulatory period over 867 cycles. When ovulation was detected they were inseminated with a single dose of commercial frozen-thawed semen. All mares were treated in the post-insemination period with intrauterine antibiotics and then with oxytocin. Pregnancy diagnoses were made at 12-17 days post-ovulation and at intervals up to 40 days. The overall PR was 47.9%. The data were pooled into 3h examination intervals. In the first interval, mares were inseminated at the time of ovulation to 3h post-ovulation (n=44) with a PR of 43.2%. Results of insemination to consecutive 3h intervals gave PR of 44.7% (3-6h, n=150), 45.1% (6-9h, n=432), 55.8% (9-12h, n=190) and 54.9% (12-15h, n=51). ELR was 10.5%, 11.9%, 5.6%, 7.5% and 3.6% respectively for the same intervals. There was no statistical difference in either the PR or ELR. It is concluded that in a postovulatory insemination regime with routine post-insemination treatment as described, examination of mares at intervals of any less than 12-15h does not improve pregnancy or embryo loss rates.  相似文献   

18.
19.
Precise data on fertility results following peri- and postovulatory insemination in spontaneously ovulating gilts is lacking. Using transcutaneous sonography every 4 h during estrus as a tool for diagnosis of ovulation, the effects of different time intervals of insemination relative to ovulation were investigated with liquid semen (Experiment 1, n=76 gilts) and frozen semen (Experiment 2, n=80 gilts). In Experiment 3 (n=24 gilts) the number of Day-28 embryos related to the various intervals between insemination and ovulation was determined after the use of liquid semen. Using liquid semen the fertilization rates based on Day-2 to Day-5 embryos and the number of accessory spermatozoa decreased significantly in gilts inseminated with 2 x 10(9) spermatozoa per dosage in intervals of more than 12 h before or more than 4 h after ovulation. In the time interval 4 to 0 h before ovulation, comparable fertilization rates were obtained using frozen semen (88.1%) and liquid semen (92.5%). Fertilization rates and numbers of accessory spermatozoa decreased significantly when gilts were inseminated with frozen semen more than 4 h before or 0 to 4 h after the detection of ovulation. The percentage of Day-28 embryos was significantly higher following preovulatory insemination compared to inseminations 0 to 4 h and 4 to 8 h after ovulation. It is concluded that the optimal time of insemination using liquid semen is 12 to 0 h before ovulation, and 4 to 0 h before ovulation using frozen semen. The results stress the importance of further research on sperm transport and ovulation stimulating mechanisms, as well as studies on the time of ovulation relative to estrus-weaning intervals and estrus duration.  相似文献   

20.
Güvenc K  Reilas T  Katila T 《Theriogenology》2005,63(9):2504-2512
It is unclear whether AI of mares deep into the uterine horn causes more or less inflammation of the endometrium than conventional AI. Thus, we compared uterine inflammatory reactions of mares inseminated with two different doses of frozen-thawed semen into the tip of the uterine horn (UH) ipsilateral to the preovulatory follicle with those of mares inseminated into the uterine body (UB). Thirty-two mares were assigned to one of four groups (eight mares/group): UB20=AI into UB, 20 x 10(6)sperm/0.5 mL; UB200=AI into UB, 200 x 10(6)sperm/0.5 mL; UH20=AI into UH, 20 x 10(6)sperm/0.5 mL; UH200=AI into UH, 200 x 10(6)sperm/0.5 mL, and inseminated 24 h after hCG administration. Before and 24 h after AI, they were examined with ultrasonography for the presence of intrauterine fluid. At 24 h, uterine fluid samples were obtained first by absorbing fluid into a tampon and then by uterine lavage. Uterine fluid was examined for polymorphonuclear leukocytes (PMN) and bacteriology, and frozen for lysozyme and TIC (trypsin-inhibitor capacity) assays. Only three mares conceived, one in each of the following groups: UB200, UH20, and UH200. Mares in the UH20 group accumulated less intrauterine fluid (p<0.05) than those in the other groups, which had similar amounts. No significant differences in PMN numbers were detected in either tampon or lavage fluid. Enzyme levels between groups did not differ statistically, except for TIC, which was lowest in the UH200 group. Thus, deep uterine horn AI caused no greater inflammation or irritation than uterine body AI in normal mares 24 h after insemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号