首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro culture experiments using three bacterial strains CSJC1, CSJC2, and CSJC3 isolated from speleothems, Rani cave, Chhattisgarh, India, were studied to examine their biomineralization potential. These speleothems showed high microbial cell enumerations on nutrient agar and iron agar (9 × 104 CFU/g) followed by thiosulfate agar (7 × 104 CFU/g), and 60 diverse strains were isolated. The BLASTn sequence search of 16S rRNA sequences with the NCBI database to establish the identity of CSJC1, CSJC2, and CSJC3 strains yielded similarity scores of ≥99% with the respective organisms, and the strains were identified as CSJC1 – Bacillus sp., CSJC2 – Cupriavidus sp., CSJC3 – Bacillus sp. The phylogenetic analysis of CSJC2 strain suggests that it formed a separate major cluster with Cupriavidus sp. and Cupriavidus necator. The phylogenetic analysis of CSJC1 and CSJC3 strains revealed that it formed a major cluster with several strains of Bacillus sp. and Bacillus subtilis. The biominerals induced by Cupriavidus sp. CSJC2 strain imaged with an ultra high-resolution field emission scanning electron microscope (FE-SEM) were seen as calcified coccoid shells that transformed into calcified dumbbells. FE-SEM imaging of biominerals induced by B. subtilis CSJC1 and CSJC3 tested both on B4 media and sheep blood agar individually showed that the precipitates formed calcified dumbbells that were almost similar but not identical phenotypically, indicating that strain-specific morphologies and crystal formation is easier when Ca is present in the media. This is the first comprehensive report on the possible evidences about the role of Cupriavidus sp. in calcite precipitation isolated from speleothems in the Indian caves. These results allow us to postulate that the identified strains may have a role in the biogenic influences in mineral formations at Rani cave.  相似文献   

2.
The relative abundance of bacteria in the mucus and tissues of Oculina patagonica taken from bleached and cave (azooxanthellae) corals was determined by analyses of the 16S rRNA genes from cloned libraries of extracted DNA and from isolated colonies. The results were compared to previously published data on healthy O. patagonica. The bacterial community of bleached, cave, and healthy corals were completely different from each other. A tight cluster (>99.5% identity) of bacteria, showing 100% identity to Acinetobacter species, dominated bleached corals, comprising 25% of the 316 clones sequenced. The dominant bacterial cluster found in cave corals, representing 29% of the 97 clones sequenced, showed 98% identity to an uncultured bacterium from the Great Barrier Reef. Vibrio splendidus was the most dominant species in healthy O. patagonica. The culturable bacteria represented 0.1–1.0% of the total bacteria (SYBR Gold staining) of the corals. The most abundant culturable bacteria in bleached, cave, and healthy corals were clusters that most closely matched Microbulbifer sp., an α-proteobacterium previously isolated from healthy corals and an α-protobacterium (AB026194), respectively. Three generalizations emerge from this study on O. patagonica: (1) More bacteria are associated with coral tissue than mucus; (2) tissue and mucus populations are different; (3) bacterial populations associated with corals change dramatically when corals lack their symbiotic zooxanthellae, either as a result of the bleaching disease or when growing in the absence of light.  相似文献   

3.
Much is known about the bacterial precipitation of carbonate rocks, but comparatively little is known about the involvement of microbes in the formation of secondary mineral structures in caves. We hypothesized that bacteria isolated from calcareous stalactites, which are able to mediate CaCO3 precipitation in vitro, play a role in the formation of carbonate speleothems. We collected numerous cultivable calcifying bacteria from calcareous speleothems from Cervo cave, implying that their presence was not occasional. The relative abundance of calcifying bacteria among total cultivable microflora was found to be related to the calcifying activity in the stalactites. We also determined the δ 13C and δ 18 O values of the Cervo cave speleothems from which bacteria were isolated and of the carbonates obtained in vitro to determine whether bacteria were indeed involved in the formation of secondary mineral structures. We identified three groups of biological carbonates produced in vitro at 11°C on the basis of their carbon isotopic composition: carbonates with δ 13C values (a) slightly more positive, (b) more negative, and (c) much more negative than those of the stalactite carbonates. The carbonates belonging to the first group, characterized by the most similar δ 13C values to stalactites, were produced by the most abundant strains. Most of calcifying isolates belonged to the genus Kocuria. Scanning electron microscopy showed that dominant morphologies of the bioliths were sherulithic with fibrous radiated interiors. We suggest a mechanism of carbonate crystal formation by bacteria.  相似文献   

4.
Our study is one of the very few cases of speleomycological research in recently discovered caves. The aim of this research was to assess the population size of fungal colonies and their species composition in the Jarkowicka cave, discovered in 2012. The air samples were taken from one location outside the cave and from two locations inside of it. Mycological evaluation of the rocks inside the cave was performed usingswab sampling procedure. In the Jarkowicka cave we found 22 species of fungi, including 13 isolated from air at the entrance and from the walls, and 8 species from air inside the cave. Cladosporium spp. were the fungi most frequently isolated from internal atmosphere of the Jarkowicka cave, and from the external air. On the other hand, the fungi most frequently isolated from the rocks were Mucor spp. We found several species not yet described as cave inhabitants: Hypocrea pachybasioides, Cladosporium uredinicola, and Embellisia abundans. Our study may provide a basis for comparison to other similar studies conducted in frequently visited caves by tourists.  相似文献   

5.
The bacterial and fungal assemblages of clastic sediments collected from two caves located in north-western Romania were investigated by assessing ITS and 16S rRNA gene diversity. Bacterial members belonging to Chloroflexi, Nitrospirae, Proteobacteria, Firmicutes, Acidobacteria, Gemmatimonadetes, and fungal members of Ascomycota were identified. Except for Bacillus sp., all bacteria were related to uncultured or unknown species and the majority (86%) of the bacterial sequences from one of the caves had no close GenBank relatives. The bacterial sequences obtained clustered with species found in extreme environments. Half of the bacterial operational taxonomic units were clustered with clones isolated from deep subsurface sediments of a radioactively contaminated site in the USA. The present study represents the first attempt to identify microorganisms in Quaternary cave sediments.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   


6.
The diversity of bacteria and archaea was characterized from sediments collected from Wind Cave located in Wind Cave National Park in the Black Hills of South Dakota. Wind Cave is a limestone dissolution cave with strata that started forming over 300 million years ago, making it one of the oldest in the world. Previous work suggested that the cave was largely a detritus based system ultimately dependent upon allochthonous energy and carbon from photosynthesis of the overlying vegetation, and algae growing near lights along the tour routes. In this work, we used a molecular phylogenetic approach to characterize the microbial structure and infer a corresponding ecosystem function where appropriate. Four bacterial divisions and subdivisions were found in the culture collection, which represented 14 phylotypes, whereas 12 divisions and subdivisions were identified in the clonal analysis comprising 49 phylotypes. The predominant groups were the γ-Proteobacteria and Acidobacteria. Although a few of the clones resembled sequences from other cave and subterranean systems, no cave-specific bacterial community was evident in this work. Archaeal phylotypes (20 Crenarchaeota and 2 Euryarchaeota) were detected, with a large proportion of the Crenarchaeota resembling sequences from a South African gold mine. One archaeal cluster in particular appears to be specific to the subterranean environment. Most of the microbial sequences were not related to known chemolithoautotrophs, therefore we conclude that this particular community is likely detritus based where allochthonous energy and carbon are transported into the cave by infiltrating waters.  相似文献   

7.
A subterranean limestone cave, Manao-Pee, was investigated for bacterial diversity and potential secondary metabolites production. Comparative 16 S rRNA analysis revealed that cave soil was highly dominated by Actinobacteria; whereas, Proteobacteria was highly abundant outside the cave. As Actinobacteria are biotechnologically valuable for their secondary metabolites, the diversity of the β-ketoacyl synthase (KSβ) was investigated. The results showed that the identified KSβ has 61–80% amino acid sequence identity to known sequences. Phylogenetic analysis placed some of the sequences in novel clades, suggesting the presence of novel KSβ domains. Thus, Manao-Pee cave is a promising habitat to discover potential novel bioactive compounds.  相似文献   

8.
Microorganisms were isolated and identified from speleothems at Khasi hill caves, Meghalaya. The aim was to understand their biomineralization potential. Analyses of the speleothems from Krem Soitan, Krem Mawpun, and Krem Lawbah using scanning electron microscope (SEM) showed evidences for microbe–mineral interactions. SEM showed microbial reticulate and beaded filaments, cells, fiber calcites, and clusters of coccoid-like structures. A total of 113 bacterial strains were isolated and identified by a combination of conventional and molecular based tools. 105 strains that were sequenced belonged to the genus: Bacillus, Rummeliibacillus, Staphylococcus, and Brevibacterium. The BLASTn sequence search of 16S rRNA sequences with the National Centre for Biotechnology Information database to establish the identity of the strains yielded similarity scores of ≥99% with the respective organisms. The strains were identified as Bacillus simplex, Bacillus gaemokensis, Bacillus subtilis, Bacillus thuringiensis, Bacillus albus, Bacillus cereus, Bacillus anthracis, Bacillus weihenstephanensis, Rummeliibacillus stabekisii, Bacillus wiedmannii, Staphylococcus epidermidis, Rummeliibacillus pycnus, Kurthia zopfii, and Brevibacterium frigoritolerans. These strains were tested for biomineralization on B-4 medium. Five strains (B. subtilis, R. stabekisii, Staphylococcus epiderdimis, B. cereus, and B. wiedmannii) had the capability to precipitate biominerals in vitro. B. subtilis, R. stabekisii, and S. epidermidis precipitated 0.24, 0.36, and 0.35 g/L of biominerals at 22°C at the end of the four week experiment period. These strains increased the pH of the medium from 7 to 8.95. The precipitated biominerals were imaged using an ultra-high resolution field emission SEM. X-ray diffraction of the biomineral precipitated by R. stabekisii showed that it was composed of vaterite and jungite. Whereas S. epidermidis showed that it was composed of calcite, vaterite, and jungite. B. subtilis produced small, circular calcite crystals. This is the first comprehensive report on the possible evidences about the role of R. stabekisii and S. epidermidis in calcite precipitation isolated from speleothems in the Indian caves. These results allow us to postulate that the identified strains have biomineralization potential. Further evidences of the coexistence of exopolysaccharides, whisker fiber calcites, microbial filaments, and coccoid-like forms point to biogenic inputs in the cave mineral formations.  相似文献   

9.
The Vjetrenica cave in the Dinaric Karst hosts a worldwide extraordinarily high cave biodiversity. Beside a diverse and specialized cave fauna, sprout-like formations attached to the bed of the cave stream were observed and described, but not further characterized, almost a century ago. Here we investigated these sprout-like microbial aggregates by the rRNA approach and detailed microscopy. Based on fluorescence in situ hybridization and ultrastructural analysis, the sprout-like formations are morphologically highly organized, and their core consists of a member of a novel deep-branching lineage in the bacterial phylum Nitrospirae. This organism displays an interesting cellular ultrastructure with different kinds of cytoplasmic inclusions and is embedded in a thick extracellular matrix, which contributes to the stability and shape of the aggregates. This novel bacterium has been provisionally classified as “Candidatus Troglogloea absoloni.” The surface of the sprout-like aggregates is more diverse than the core. It is colonized by a bacterial biofilm consisting primarily of filamentous Betaproteobacteria, whereas other microbial populations present in the crust include members of the Bacteriodetes, Gammaproteobacteria, Actinombacteria, Alphaproteobacteria, and Planctomycetes, which are intermingled with mineral inclusions. This study represents the first thorough molecular and ultrastructural characterization of the elusive sprout-like bacterial aggregates, which are also found in other cave systems of the Dinaric Karst. The discovery of Ca. Troglogloea absoloni contributes to the known biodiversity of subterranean ecosystems and especially of macroscopic structures formed in caves by microorganisms, whose composition and ecological function often remain enigmatic.  相似文献   

10.
Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans.  相似文献   

11.
Moonmilk, a microcrystalline secondary cave deposit, actively forms on the floor of Krem Mawmluh – a limestone cave in Meghalaya, Northeastern India. Due to the abundance of micrite and calcified microbial filaments, we hypothesize that these deposits form as a result of ongoing microbial interactions. Consistent with this idea, we report electron microscopic and microbiological evidences for the biological origin of moonmilk in Krem Mawmluh. Scanning electron microscopy indicated abundant calcified microbial filaments, needle calcite, fibre calcites (micro-fibre and nano-fibre calcite crystals), biofilm and microbial filaments in the moonmilk. The total viable culturable microbes showed high population densities for microbes in the moonmilk and moonmilk pool waters. In vitro culture experiments, confirmed the capability of many of the isolated strains to precipitate calcite and some of the identified isolates belonged to the Bacillus sp. and Actinomycetes. These results clearly support the biogenic nature of the deposits.  相似文献   

12.
Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic “cave” Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert.  相似文献   

13.
Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.  相似文献   

14.
Cave mollies (Poecilia mexicana) inhabit a dark Mexican cave, where visual communication is impossible. I observed the preference of cave molly females to associate with a non-infected male or a male infected with a pathogenic bacterium (Mycobacterium sp.) which causes the formation of large blisters around the eyes of infected fish. Females preferred to stay near the non-infected male only when the two stimulus males were separated from the female by transparent Plexiglas in light, but not when the males were separated by a wire-mesh in light (where vision was to some extent hindered, but the females perceived non-visual cues) or in darkness (where only non-visual cues were available). I conclude that the visually mediated preference for non-infected males has been maintained during the colonisation of the lightless habitat, but a preference for this trait on the basis of non-visual cues did not evolve. The cave habitat may be poor in pathogens, resulting in low selection pressure to evolve a non-visual preference for males without bacterial infection.Communicated by R.F. Oliveira  相似文献   

15.
Movile Cave, Romania, is an unusual underground ecosystem that has been sealed off from the outside world for several million years and is sustained by non-phototrophic carbon fixation. Methane and sulfur-oxidising bacteria are the main primary producers, supporting a complex food web that includes bacteria, fungi and cave-adapted invertebrates. A range of methylotrophic bacteria in Movile Cave grow on one-carbon compounds including methylated amines, which are produced via decomposition of organic-rich microbial mats. The role of methylated amines as a carbon and nitrogen source for bacteria in Movile Cave was investigated using a combination of cultivation studies and DNA stable isotope probing (DNA-SIP) using 13C-monomethylamine (MMA). Two newly developed primer sets targeting the gene for gamma-glutamylmethylamide synthetase (gmaS), the first enzyme of the recently-discovered indirect MMA-oxidation pathway, were applied in functional gene probing. SIP experiments revealed that the obligate methylotroph Methylotenera mobilis is one of the dominant MMA utilisers in the cave. DNA-SIP experiments also showed that a new facultative methylotroph isolated in this study, Catellibacterium sp. LW-1 is probably one of the most active MMA utilisers in Movile Cave. Methylated amines were also used as a nitrogen source by a wide range of non-methylotrophic bacteria in Movile Cave. PCR-based screening of bacterial isolates suggested that the indirect MMA-oxidation pathway involving GMA and N-methylglutamate is widespread among both methylotrophic and non-methylotrophic MMA utilisers from the cave.  相似文献   

16.
Abstract Allochtonous leaf litter is an important source of energy and nutrients for invertebrates in cave ecosystems. A change to the quality or quantity of litter entering caves has the potential to disrupt the structure and function of cave communities. In this study, we adopted an experimental approach to examine rates of leaf litter decomposition and the invertebrate assemblages colonizing native and exotic leaf litter in limestone caves in the Jenolan Caves Karst Conservation Reserve, New South Wales, Australia. We deployed traps containing leaf litter from exotic sycamore (Acer pseudoplatanus) and radiata pine (Pinus radiata) trees and native eucalypts (Eucalyptus spp.) in twilight zones (near the cave entrance) and areas deep within the caves for 3 months. Thirty‐two invertebrate morphospecies were recorded from the litter traps, with greater richness and abundance evident in the samples from the twilight zone compared with areas deep within the cave. Sycamore litter had significantly greater richness and abundance of invertebrates compared with eucalypt and pine litter in samples from the twilight zone, but there was no difference in richness or abundance among litter samples placed deep within the cave. Relative rates of decay of the three litters were sycamore > eucalypt > pine. We discuss the potential for the higher decomposition rates and specific leaf area in sycamores to explain their higher invertebrate diversity and abundance. Our findings have important implications for the management of exotic plants and the contribution of their leaf litter to subterranean ecosystems.  相似文献   

17.
Monitoring bacterial communities is critical for assessing biodeterioration among other processes. This study presents a strategy and an example of comparative analysis of bacterial communities developing in a cave environment, Altamira Cave which contains unique paleolithic paintings. The analyzed question was whether white colonizations discovered throughout the cave corresponded to similar or different bacterial communities. Molecular fingerprints were obtained by PCR–DGGE from DNA and RNA and statistically compared. Results based on DNA analysis showed that a similar bacterial community was present in white colonizations throughout the cave. Fingerprints based on RNA confirmed the similarity of the major metabolically active components of these communities. The proposed procedure confirmed that white colonizations in Altamira Cave were a consequence of the development of a single complex bacterial community, and the method proves to be highly useful for comparative analysis of microbial communities, including biodeteriorating processes and any other comparative analysis of bacterial communities.  相似文献   

18.
The nocturnal Mexican catfish Rhamdia laticauda (Pimelodidae, Teleostei) is the surface sister species of a number of cave species. Comparison between two of them, R. zongolicensis and R. reddelli, reveals an intermediate state of reduction of the biologically functionless eyes, melanin pigmentation and the negative phototactic behavior. The surface species is perfectly adapted to life in darkness. Therefore only few constructive adaptations are developed in the cave species. For survival under conditions of low food supply in the caves the barbels are elongated to improve the senses of taste and touch and more fat can be deposited in the cave fish tissue. Due to convergent evolution the two cave species are morphologically much alike and show only minor diagnostic meristic differences. From geological data it can be concluded that the two cave species started troglobitic evolution at the end of Pleistocene.  相似文献   

19.
Kartchner Caverns in Benson, AZ, was opened for tourism in 1999 after a careful development protocol that was designed to maintain predevelopment conditions. As a part of an ongoing effort to determine the impact of humans on this limestone cave, samples were collected from cave rock surfaces along the cave trail traveled daily by tour groups (200,000 visitors year–1) and compared to samples taken from areas designated as having medium (30–40 visitors year–1) and low (2–3 visitors year–1) levels of human exposure. Samples were also taken from fiberglass moldings installed during cave development. Culturable bacteria were recovered from these samples and 90 unique isolates were identified by using 16S rRNA polymerase chain reaction and sequencing. Diversity generally decreased as human impact increased leading to the isolation of 32, 27, and 22 strains from the low, medium, and high impact areas, respectively. The degree of human impact was also reflected in the phylogeny of the isolates recovered. Although most isolates fell into one of three phyla: Actinobacteria, Firmicutes, or Proteobacteria, the Proteobacteria were most abundant along the cave trail (77% of the isolates), while Firmicutes predominated in the low (66%) and medium (52%) impact areas. Although the abundance of Proteobacteria along the cave trail seems to include microbes of environmental rather than of anthropogenic origin, it is likely that their presence is a consequence of increased organic matter availability due to lint and other organics brought in by cave visitors. Monitoring of the cave is still in progress to determine whether these bacterial community changes may impact the future development of cave formations.  相似文献   

20.
《Genomics》2021,113(6):4098-4108
Pukzing cave, the largest cave of Mizoram, India was explored for bacterial diversity. Culture dependent method revealed 235 bacterial isolates using three different treatments. Identity of the microbial species was confirmed by 16S rDNA sequencing. The highest bacterial population was recovered from heat treatment (n = 97;41.2%) followed by normal (n = 79;33.6%) and cold treatment (n = 59;25.1%) indicating dominance of moderate thermophiles. Antimicrobial potential of isolates showed 20.4% isolates having antimicrobial ability against tested pathogens. Amplicon sequencing of PKSI, PKSII and NRP specific genes revealed presence of AMP genes in the microbial population. Six microbial pathogens were selected for screening as they are well known for different disease cause organism in various fields such as agriculture and human health. Cave environment harbors unique microbial flora and hypervariable region V4 is more informative. Higher activity of AMP assay against these microbes indicates that cave microbial communities could be potential source of future genomic resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号