首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant phages are generated when Lactococcus lactis subsp. lactis harboring plasmids encoding the abortive type (Abi) of phage resistance mechanisms is infected with small isometric phages belonging to the P335 species. These phage variants are likely to be an important source of virulent new phages that appear in dairy fermentations. They are distinguished from their progenitors by resistance to Abi defenses and by altered genome organization, including regions of L. lactis chromosomal DNA. The objective of this study was to characterize four recombinant variants that arose from infection of L. lactis NCK203 (Abi(+)) with phage phi31. HindIII restriction maps of the variants (phi31.1, phi31.2, phi31.7, and phi31.8) were generated, and these maps revealed the regions containing recombinant DNA. The recombinant region of phage phi31.1, the variant that occurred most frequently, was sequenced and revealed 7.8 kb of new DNA compared with the parent phage, phi31. This region contained numerous instances of homology with various lactococcal temperate phages, as well as homologues of the lambda recombination protein BET and Escherichia coli Holliday junction resolvase Rus, factors which may contribute to efficient recombination processes. A sequence analysis and phenotypic tests revealed a new origin of replication in the phi31.1 DNA, which replaced the phi31 origin. Three separate HindIII fragments, accounting for most of the recombinant region of phi31.1, were separately cloned into gram-positive suicide vector pTRK333 and transformed into NCK203. Chromosomal insertions of each plasmid prevented the appearance of different combinations of recombinant phages. The chromosomal insertions did not affect an inducible prophage present in NCK203. Our results demonstrated that recombinant phages can acquire DNA cassettes from different regions of the chromosome in order to overcome Abi defenses. Disruption of these regions by insertion can alter the types and diversity of new phages that appear during phage-host interactions.  相似文献   

2.
3.
4.
Three derivatives of Lactococcus lactis subsp. lactis NCK203, each with a different pair of restriction/ modification (R/M) and abortive infection (Abi) phage defense systems, were constructed and then rotated in repeated cycles of a milk starter culture activity test (SAT). The rotation proceeded successfully through nine successive SATs in the presence of phage and whey containing phage from previous cycles. Lactococcus cultures were challenged with 2 small isometric-headed phages, (phi)31 and ul36, in one rotation series and with a composite of 10 industrial phages in another series. Two native lactococcal R(sup+)/M(sup+) plasmids, pTRK68 and pTRK11, and one recombinant plasmid, pTRK308, harboring a third distinct R/M system were incorporated into three NCK203 derivatives constructed separately for the rotation. The R(sup+)/M(sup+) NCK203 derivatives were transformed with high-copy-number plasmids encoding four Abi genes, abiA, abiC, per31, and per50. Various Abi and R/M combinations constructed in NCK203 were evaluated for their effects on cell growth, level of phage resistance, and retardation of phage development during repeated cycles of the SAT. The three NCK203 derivatives chosen for use in the SAT exhibited additive effects of the R/M and Abi phenotypes against sensitive phages. In such combinations, phage escaping restriction are prevented from completing their infective cycle by an abortive response that kills the host cell. The rotation series successfully controlled modified, recombinant, and mutant phages which were resistant to any one of the individual defense systems by presenting a different set of R/M and Abi defenses in the next test of the rotation.  相似文献   

5.
The abiA gene (formerly hsp) encodes an abortive phage infection mechanism which inhibits phage DNA replication. To analyze the effects of varying the abiA gene dosage on bacteriophage resistance in Lactococcus lactis, various genetic constructions were made. An IS946-based integration vector, pTRK75, was used to integrate a single copy of abiA into the chromosomes of two lactococcal strains, MG1363 and NCK203. In both strains, a single copy of abiA did not confer any significant phage resistance on the host except for one of the MG1363 integrants, NCK625, which exhibited a slightly higher level of resistance to phages sk1 and p2. Hybridization of the total cellular RNA from NCK625 to an abiA-specific probe indicated that the integration took place downstream of a promoter causing stronger expression of abiA in this integrant. Three abiA-containing plasmids of various copy numbers were introduced into both strains, and the recombinants were evaluated for resistance to phages c2, p2, sk1, and phi31. Plasmid pTRK18 has a copy number of approximately six (cn = 6) and caused a decreased plaque size for all phages evaluated. Integration of pTRK75 into a native plasmid of NCK203 generated pTRK362 (cn = 13), which caused a reduced efficiency of plaquing (EOP = 10) and reduced plaque size. A high-copy-number abiA plasmid (pTRK363), based on the pAMbeta1 origin of replication, was also constructed (cn = 100). Plasmid pTRK363 caused a significant reduction in EOP (10 to 10) and plaque size for all phages tested, although in some cases, this plasmid caused the evolution of AbiA-resistant phage derivatives. Altering the gene dosage or expression level of abiA significantly affects the phage resistance levels.  相似文献   

6.
7.
AIMS: To study the ability of the plasmid-encoded restriction and modification (R/M) system LlaAI to function as a bacteriophage resistance mechanism in Lactococcus lactis during milk fermentations. METHODS AND RESULTS: Plasmid pAIcat4, carrying the R/M system LlaAI and a chloramphenicol resistance cassette, was introduced into the plasmid-free strain L. lactis MG1614 and the industrial strain L. lactis 964. By measuring changes in conductivity the influence of different phage on the growth was determined. CONCLUSIONS: The plasmid-encoded R/M system LlaAI significantly improves the bacteriophage resistance of L. lactis during milk fermentations. SIGNIFICANCE AND IMPACT OF THE STUDY: It is essential to determine the potential of a phage defence mechanism in L. lactis starter culture strains during growth in milk before steps are taken to improve starter cultures. This study shows that LlaAI is useful for improvement of starter cultures.  相似文献   

8.
98 Lactococcus lactis strains were isolated from traditional fermented milk products in Turkey tested against 60 lactococcal lytic phages to determine their resistance levels. While 82 L. lactis strains were sensitive against lactic phages at different levels, 16 L. lactis strains showed resistance to all phages tested. Types of phage resistance among 16 L. lactis strains were identified as phage adsorption inhibition in eight strains, restriction/modification in six strains and abortive infection (heat sensitive phage resistance) in two strains, using three broad-spectrum phages phi pll 98-32, phi pld 67-42 and phi pld 67-44.  相似文献   

9.
Although the lambdoid bacteriophage phi 80 and P22 possess site-specific recombination systems analogous to bacteriophage lambda, they have different attachment (att) site specificities. We have identified and determined the nucleotide sequences of the att sites of phi 80 and P22 and have examined the interaction of these sites with purified Escherichia coli integration host factor (IHF). The sizes of the homologous core regions of the att sites vary greatly: P22 has a 46-base pair core, while phi 80 and lambda have 17- and 15-base pair cores, respectively. The core sequences of the three phage show no significant homology, although dispersed regions of homology in arm sequences indicate that the three phage att sites are related. All three att sites have a high A + T composition, and restriction fragments carrying these sites migrate anomalously upon polyacrylamide gel electrophoresis. IHF binds to a site to the left of the common core in the phi 80 and P22 phage att sites (attP) and to a site to the right of the core in P22 attP and attB (the bacterial att site). In the lambda system, IHF interacts with three regions on attP (designated H1, H2, and H') and none on attB (Craig N., and Nash, H.A. (1984) Cell 39, 707-716). Alignment of the IHF sites of all three phage results in a consensus sequence for IHF binding, Pyr-AANNNNTTGATAT. Among the three phage, the number of IHF sites differs; however, the location and orientation of the binding sites in relation to the respective core regions are well conserved. An IHF site analogous to lambda H2 is present in both phi 80 and P22 attP, while a site analogous to lambda H' is present in P22 attP. This conservation suggests that IHF plays a very similar role in the site-specific recombination pathways of all three phage, and that the flanking arm sequences are necessary for phi 80 and P22 attP function, as is the case for lambda attP function. These structural similarities presumably reflect a conservation of the mechanism of site-specific recombination for the three phage.  相似文献   

10.
The temperate bacteriophage phi adh integrates its genome into the chromosomal DNA of Lactobacillus gasseri ADH by a site-specific recombination process. Southern hybridization analysis of BclI-digested genomic DNA from six relysogenized derivatives of the prophage-cured strain NCK102 displayed phage-chromosomal junction fragments identical to those of the lysogenic parent. The phi adh attachment site sequence, attP, was located within a 365-bp EcoRI-HindIII fragment of phage phi adh. This fragment was cloned and sequenced. DNA sequence analysis revealed striking features common to the attachment sites of other site-specific recombination systems: five direct repeats of the sequence TGTCCCTTTT(C/T) and a 14-bp inverted repeat. Oligonucleotides derived from the sequence of the attP-containing fragment enabled us to amplify predicted junction fragment sequences and thus to identify attL, attR, and attB. The core region was defined as the 16-bp sequence TACACTTCTTAGGAGG. Phage-encoded functions essential for site-specific insertion of phage phi adh were located in a 4.5-kb BclI fragment. This fragment was cloned in plasmid pSA34 to generate the insertional vector pTRK182. Plasmid pTRK182 was introduced into L. gasseri NCK102 by electroporation. Hybridization analysis showed that a single copy of pTRK182 had integrated at the attB site of the NCK102 erythromycin-resistant transformants. This is the first site-specific recombination system described in lactobacilli, as well as the first attP-based site-specific integration vector constructed for L. gasseri ADH.  相似文献   

11.
12.
P Garvey  G F Fitzgerald    C Hill 《Applied microbiology》1995,61(12):4321-4328
The lactococcal plasmid pNP40, from Lactococcus lactis subsp. lactis biovar diacetylactis DRC3, confers complete resistance to the prolate-headed phage phi c2 and the small isometric-headed phage phi 712 in L. lactis subsp. lactis MG1614. A 6.0-kb NcoI fragment of pNP40 cloned in the lactococcal Escherichia coli shuttle vector pAM401 was found to confer partial resistance to phi 712. Subcloning and deletion analysis of the recombinant plasmid pPG01 defined a 2.5-kb ScaIHpaI fragment as conferring phage insensitivity. Sequence analysis of this region confirmed the presence of two overlapping open reading frames (ORFs). Further subcloning of pNP40 to characterize the resistance determinant active against phi c2 identified a 5.6-kb EcoRV fragment of pNP40 which, when cloned in pAM401, conferred partial resistance to both phi c2 and phi 712. Subcloning and deletion analysis of the recombinant plasmid pCG1 defined a 3.7-kb EcoRV-XbaI fragment as encoding phage insensitivity. DNA sequence analysis of this region revealed the presence of a single complete ORF. The introduction of a frameshift mutation at the unique BglII site within this ORF disrupted the phage resistance phenotype, confirming that this ORF is responsible for the observed phage insensitivity. The mechanisms encoded by pPG01 and pCG1 in L. lactis subsp. lactis MG1614 conformed to the criteria defining abortive infection and were designated AbiE and AbiF, respectively. Analysis of the phage DNA content of phi 712-infected hosts containing AbiF demonstrated that it inhibited the rate of phage DNA replication, while AbiE had little effect on phage DNA replication, suggesting a later target of inhibition. The predicted protein product of abiF shows significant homology to the products of two other lactococcal abortive infection genes, abiD and abiD1.  相似文献   

13.
14.
The lactococcal insertion sequence IS946 was used to construct suicide vectors for insertion of heterologous DNA into chromosomal and plasmid sequences of Lactococcus lactis subsp. lactis. Electroporation of L. lactis strains, including the recombination-deficient strain MMS362, with the suicide vector pTRK145 yielded 10(1) to 10(3) transformants per micrograms of DNA. pTRK145 insertions occurred primarily in the chromosome, with one insertion detected in a resident plasmid. Vector-specific probes identified junction fragments that varied among transformants, indicating random insertions of pTRK145.  相似文献   

15.
16.
A phage-inducible middle promoter (P15A10) from the lytic, lactococcal bacteriophage 31, a member of the P335 species, is located in an 888-base pair fragment near the right cohesive end. Sequence analysis revealed extensive homology (>95%) to the right cohesive ends of two temperate phages of the P335 species, r1t and LC3. Sequencing upstream and downstream of P15A10 showed that the high degree of homology between 31 and r1t continued beyond the phage promoter. With the exception of one extra open reading frame in 31, the sequences were highly homologous (95 to 98%) between nucleotides 13448 and 16320 of the published r1t sequence. By use of a β-galactosidase (β-Gal) gene under the control of a smaller, more tightly regulated region within the P15A10 promoter, P566–888, it was established that mitomycin C induction of a lactococcal strain harboring the prophage r1t induced the P566–888 promoter, as determined from an increase in β-Gal activity. Hybridization of nine other lactococcal strains with 32P-labeled P566–888 showed that the Lactococcus lactis strains C10, ML8, and NCK203 harbored sequences homologous to that of the phage-inducible promoter. Mitomycin C induced the resident prophages in all these strains and concurrently induced the P566–888 promoter, as determined from an increase in β-Gal activity. DNA restriction analysis revealed that the prophages in C10, ML8, and NCK203 had identical restriction patterns which were different from that of r1t. In addition, DNA sequencing showed that the promoter elements in the three phages were identical to each other and to P566–888 from the lytic phage 31. These results point to a conserved mechanism in the regulation of gene expression between the lytic phage 31 and at least two temperate bacteriophages and provide further evidence for a link in the evolution of certain temperate phages and lytic phages.  相似文献   

17.
The lactococcal plasmid pNP40 mediates insensitivity to (phi)c2 by an early-acting phage resistance mechanism in addition to the previously identified abortive infection system, AbiF, in the Lactococcus lactis subsp. lactis MG1614 background. A second abortive infection determinant on pNP40, AbiE, does not confer resistance to (phi)c2. The early-acting mechanism on pNP40 does not prevent phage adsorption nor does it appear to operate by restriction/modification. Phage DNA was not detected in pNP40-containing cells until 30 min following exposure to (phi)c2 compared with 5 min in a sensitive host; however, electroporation of phage DNA into resistant hosts resulted in the release of phage progeny from a dramatically elevated number of cells compared with conventionally infected hosts. It appears therefore that pNP40 encodes a novel phage resistance mechanism which blocks DNA penetration specifically for (phi)c2.  相似文献   

18.
Bacteriophage resistance mechanisms which are derived from a bacteriophage genome are termed Per (phage-encoded resistance). When present in trans in Lactococcus lactis NCK203, Per50, the cloned origin of replication from phage 50, interferes with 50 replication. The per50 fragment was found to afford negligible protection to NCK203 against 50 infection when present in a low-copy-number plasmid, pTRK325. A high-copy-number Per50 construct (pTRK323) dramatically affected 50 infection, reducing the efficiency of plaquing (EOP) to 2.5 × 10-4 and the plaque size to pinhead proportions. This clone also afforded significant protection against other related small isometric phages. Per31 was cloned from phage 31 and demonstrated to function as an origin of replication by enabling replication of per31-containing plasmids, in NCK203, on 31 infection. A low-copy-number Per31 plasmid (pTRK360) reduced the EOP of 31 on NCK203 to 0.3 and the plaque diameter from 1.5 to 0.5 mm. When this plasmid was cloned in high copy number, the EOP was further reduced to 7.2 × 10-7 but the plaques were large and contained Per31-resistant phages. Characterization of these “new” phages revealed at least two different types that were similar to 31, except that DNA alterations were noted in the region containing the origin. This novel and powerful abortive phage resistance mechanism should prove useful when directed at specific, problematic phages.  相似文献   

19.
20.
Lactococcus lactis subsp. lactis biovar. diacetylactis DPC721 is a spontaneous bacteriophage insensitive mutant of strain DPC220, isolated after challenge with an industrial bacteriophage, phi D1. Plasmid analysis demonstrated that the bacteriophage insensitivity was associated with the absence of two native DPC220 plasmids (pAH82 and pAH33), and the presence of a novel plasmid (pAH90) in DPC721. The plasmids were transferred by conjugative mobilization to a plasmid free background where it was confirmed by restriction mapping that pAH90 is a co-integrate formed by the precise recombination of pAH82 and pAH33. The resistance phenotype encoded by pAH90 was also active against two bacteriophage homologous for the plasmid-free strain. Plasmid pAH90 was shown to encode at least two independent resistance mechanisms, including an adsorption-inhibition mechanism and a restriction and modification system. The adsorption-inhibition mechanism encoded by the co-integrate plasmid was specific for one of the phage used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号